

Advanced multimodal imaging in malformations of cortical development

Seok Jun Hong (<u>sjhong@bic.mni.mcgill.ca)</u> NOEL – Neuroimaging of Epilepsy Lab MICA – Multimodal Imaging and Connectome Analysis Lab

Normal Brain Development

MALFORMATIONS OF CORTICAL DEVELOPMENT (MCD)

Abnormal...

Cortical organization

- Polymicrogyria
- Mild focal cortical dysplasia

Cell migration

- Heterotopia (PVNH, SCH)
- Lissencephaly

Cell proliferation

- Focal cortical dysplasia
- Micro-/Megalencephaly

Blümcke I, et al. Epileptic disord, 2010 Barkovich J, et al. Brain, 2012 Guerrini R, et al. Lancet Neurol, 2014

Focal cortical dysplasia

- Drug-resistant neocortical epilepsy
- Amenable to surgery if localized
- 40-60% good seizure control

dyslamination

STUDY MULTIMODAL LESION CHARACTERIZATION

Type-IIA

Intracortical dyslamination

+

Dysmorphic neurons

Type-IIB

Intracortical dyslamination

+ Dysmorphic neurons

+

Balloon cell

- Identifying subtype-specific imaging signatures may have potential clinical utility
 - I. Optimize lesion detection (specific to certain histopathological types)
 - 2. Complement minimally invasive surgical procedures (e.g. thermal laser ablation)
 - 3. Guide and monitor pharmacological interventions (mTOR signaling inhibitor)

PURPOSE In-vivo lesion profiling and subtype prediction in focal cortical dysplasia type-II

Consecutive patients with drug-resistant epilepsy and histologically verified <u>9 FCD Type-IIA and 24 IIB</u>

Multimodal MRIs (3T Siemens TimTrio, 32 channel head coil)

- 3DTIw MPRAGE (IxIxImm³)
- 3D FLAIR (0.9×0.9×0.9mm³)
- 2D EPI-DTI (2x2x2mm³, 64 directions)
- 2D rs-fMRI (4x4x4mm³, 150 volumes)

Classification

Feature 2

New

case

Multivariate

non-linear

SVM

100 times bagging at each training

Feature

selection

z-score

Multi-surface lesion profiling

Morphology Ι.

2. Intensity

IIB: Abnormalities across all cortical and subcortical surfaces

Distance-based lesion profiling

Pathological infiltration beyond the visible lesion in both subtypes

- Until 6-8 mm from the lesion
- Nevertheless, anomalies more marked in Type-IIB
- Except the reduced cortical FA specific to IIA

Hong SJ, et al. MICCAI 2015, Munich, Germany Hong SJ, et al. Neurology 2016 (in press)

CORTICAL

Histological subtype prediction

SI. CONCLUSION

- Multimodal, multiparametric MRI lesion profiling could dissociate FCD subtypes.
- Strikingly divergent subtype-specific patterns reflect different loads of underlying histopathology.
- In-vivo MRI prediction of histology could complement pre-surgical assessment (e.g., lesion detection) and possibly monitor emerging pharmacological interventions.

STUDY2 AUTOMATED DETECTION OF SUBTLE LESION

Purpose

To detect automatically FCD type II in patients with extratemporal epilepsy initially diagnosed as MRI-negative on routine inspection, both at 1.5 and 3.0Tesla

Automated lesion detection using machine-learning

I st CLASSIFICATION (vertex-wise)

Objective recognize lesional vertices with highest detection rate 2nd CLASSIFICATION (cluster-wise)

Objective reduce false positives while maintaining high sensitivity

Features z-scores of GM thickness, GW-WM gradient, intensity, sulcal depth, sulco-gyral curvature

> Classifier Linear discriminant

Features mean, SD skewness and kurtosis (texture) spatial priors

> Classifier Linear discriminant

Results

S2. Conclusion

- Substantially increased sensitivity and specificity
- Generalizability across different cohorts, scanners and field strengths
- Machine learning may assist presurgical decision-making

Extralesional findings

- 50 % patients had 1-3 extra-lesional clusters
- Localized in frontal or central areas
- Same lobe as the primary lesion in 2 patients; contralateral hemisphere in 3; bilateral in 2
- Less abnormal features than primary FCD
- Most abnormal feature: sulcal depth
- No EEG correlates

- Almost all previous assessments have focused on primary lesion alone
- Integrity of whole-brain anomalies have not been systematically evaluated

STUDY3 WHOLE-BRAIN MORPHOMETRY

Purpose

- 1) To assess whole-brain morphology in patients with dysplasia-related frontal lobe epilepsy
- 2) To compare the cohorts between FCD Type-I and II

- Two frontal lobe epilepsy cohorts with histologically-verified FCD (13 Type-I; 28 Type-II) & closely-matched 41 controls
- I.5 T, 3D T I-FFE (isotropic voxel size of Imm³)
- Cortical thickness
- Gyral complexity (mean curvature)

 Cross-sectional group comparison analysis (patients vs. controls; FCD Type-I vs. Type-II)

S3. Group-level comparisons

Hong SJ, et al Neurology, 2016

A. Feature generation

-3

Component 1

5

98%

95%

93%

Final accuracy

>80%

Accuracy

S3. Conclusion

- Extensive structural damage beyond the visible lesion
- Distinctive patterns between Type-I and Type-II.
- By successfully guiding multiple clinical tasks, our findings demonstrated high translational value for individualized diagnostics

Summary

PI. In vivo profiling and subtype prediction of FCD Type-II:

- Reliable imaging markers to clearly dissociate histopathological subtypes

P2. Automated detection of FCD Type II in MRI-negative epilepsy

- Highly accurate detection performance across two different datasets

P3. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy

- First demonstration that FCD is associated to whole-brain structural alterations.

Significance

- I. The power of multimodal MRI and image postprocessing
- 2. A new avenue to better understand fundamental pathological mechanisms in MCD, and clinically improve lesion detection and treatment strategies.

Thanks to

Andrea and Neda Bernasconi Boris Bernhardt Min Liu Benoit Caldairou Ravnoor Gill

THANKS AND ANY QUESTIONS?