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The neural cell as elementary building block

pyramidal cell as canonical source element
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Net PSP experimental data (micro)MEG
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The equivalent current dipole

current source model of PSP’s and AP’s
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influence of cell morphology on signal strength
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influence of cell morphology on signal strength

radial cell morphology

weaker net currents than
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Dynamics
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“Average” representations
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Temporal jitter of unitary and ensemble responses
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Evidence of low-to-high frequency coupling
of neural oscillations: single cells & assemblies
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State-dependent expressions of neural oscillations

Consider the “resting-state” as a case example electrophysiology
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Correlation between ongoing brain rhythms and BOLD
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Scholvinck et al. PNAS (2010)
see also Logothetis et al., Nature (2001)
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Interdependencies in the polyrhythmic activity of the brain?
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Interdependencies in the polyrhythmic activity of the brain?
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Cross-frequency phase-amplitude coupling (PAC):
A generic mechanism regulating local brain dynamics?
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Cross-frequency phase-amplitude coupling (PAC):
A generic mechanism regulating local brain dynamics?
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Cross-frequency phase-amplitude coupling (PAC):
A generic mechanism regulating local brain dynamics?
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Cross-frequency coupling:
a generic mechanism regulating long-range brain dynamics?
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e Signal origins

@ currents induced by spatio-temporal overlap of post-synaptic
potentials in cell assemblies (cortex and elsewhere)

® possible fast spiking activity
¢ Dynamics
@ event-related responses as resetting of ongoing activity

e distinct roles of typical frequency bands: net excitation,
bottom-up vs top-down signaling, etc

@ a topic of intense research




