

Electromagnetic Brain Mapping Physiology of source signals

Sylvain Baillet

McConnell Brain Imaging Centre Montreal Neurological Institute McGill University

[sylvain.baillet@mcgill.ca]

Google it! 'MEG MNI '

pyramidal cell as canonical source element

Baillet, Nature Neuroscience (2017)

Baillet, Nature Neuroscience (2017)

current source model of PSP's and AP's

+

=

current source model of PSP's and AP's

=

current source model of PSP's and AP's

=

current source model of PSP's and AP's

influence of cell morphology on signal strength

radial cell morphology

influence of cell morphology on signal strength

radial cell morphology

net current dipole

influence of cell morphology on signal strength

radial cell morphology

weaker net currents than from elongated cell morphology

A

net current dipole

Dynamics

a rapid overview

Dynamics a rapid overview

LFP EEG sensor/source MEG sensor/source

LFP EEG sensor/source MEG sensor/source

"Average" representations

"Average" representations

"Average" representations

Temporal jitter of unitary and ensemble responses

Evidence of low-to-high frequency coupling of neural oscillations: single cells & assemblies

Contreras & Steriade, J. Neurosci. (1995)

Oscillations

a scaffold of neural dynamics

Oscillations a scaffold of neural dynamics

Consider the "resting-state" as a case example

Consider the "resting-state" as a case example

Buckner et al. Ann NY Acad. Sci. (2008) Carhart-Harris & Friston, Brain (2010)

Consider the "resting-state" as a case example

Buckner et al. Ann NY Acad. Sci. (2008) Carhart-Harris & Friston, Brain (2010)

Buckner et al. *Ann NY Acad. Sci.* (2008) Carhart-Harris & Friston, *Brain* (2010) electrophysiology

Correlation between ongoing brain rhythms and BOLD

Schölvinck et al. *PNAS* (2010) see also Logothetis et al., *Nature* (2001)

Baillet, Nature Neuroscience (2017)

neural cell assembly

neural cell assembly

neural cell assembly

E

E: net excitability I: net inhibition

> Buszaki & Wang Ann Rev Neurosc (2012)

neural cell assembly

E

E: net excitability I: net inhibition

> Buszaki & Wang Ann Rev Neurosc (2012)

neural cell assembly

E: net excitability I: net inhibition

Buszaki & Wang Ann Rev Neurosc (2012)

neural cell assembly

E: net excitability I: net inhibition

Buszaki & Wang Ann Rev Neurosc (2012)

neural cell assembly

E: net excitability I: net inhibition

Buszaki & Wang Ann Rev Neurosc (2012)

Buszaki & Wang Ann Rev Neurosc (2012)

neuro

McGill

Cross-frequency coupling: a generic mechanism regulating long-range brain dynamics?
a generic mechanism regulating long-range brain dynamics?

Baillet, Nature Neuroscience (2017)

a generic mechanism regulating long-range brain dynamics?

Baillet, Nature Neuroscience (2017)

a generic mechanism regulating long-range brain dynamics?

A **testable** holistic **model of interdependent**, **polyrhythmic** neural activity

 $\delta - \alpha$: cycles of regional excitability

 $\boldsymbol{\beta}$: bursts as expressions of top-down modulations

 $\delta - \alpha$: cycles of regional excitability

 β : bursts as expressions of top-down modulations

 γ : bursts nested in slower rhythms, bottom-up signaling

 $\delta - \alpha$: cycles of regional excitability

 β : bursts as expressions of top-down modulations

 γ : bursts nested in slower rhythms, bottom-up signaling

higher γ : PSP/AP spiking ?

• Signal origins

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)
 - possible fast spiking activity

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)
 - possible fast spiking activity
- Dynamics

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)
 - possible fast spiking activity
- Dynamics
 - event-related responses as resetting of ongoing activity

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)
 - possible fast spiking activity
- Dynamics
 - event-related responses as resetting of ongoing activity
 - distinct roles of typical frequency bands: net excitation, bottom-up vs top-down signaling, etc

- Signal origins
 - currents induced by spatio-temporal overlap of post-synaptic potentials in cell assemblies (cortex and elsewhere)
 - possible fast spiking activity
- Dynamics
 - event-related responses as resetting of ongoing activity
 - distinct roles of typical frequency bands: net excitation, bottom-up vs top-down signaling, etc
 - a topic of intense research

