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Temporal	jiZer	of	unitary	and	ensemble	responses

Thalamic stimulation Cortical response
Contreras	&	Steriade,	J.	Neurophys.	(1996)



Evidence	of	low-to-high	frequency	coupling		
of	neural	oscilla7ons:	single	cells	&	assemblies

Contreras	&	Steriade,	J.	Neurosci.	(1995)
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Correla7on	between	ongoing	brain	rhythms	and	BOLD

Schölvinck	et	al.	PNAS	(2010)	
see	also	Logothe7s	et	al.,	Nature	(2001)
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