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The influence of the pore shape 
on the bulk modulus and the Biot 
coefficient of fluid‑saturated 
porous rocks
A. P. S. Selvadurai1* & A. P. Suvorov2

Fluid-saturated rocks are multi-phasic materials and the mechanics of partitioning the externally 
applied stresses between the porous skeleton of the rock and the interstitial fluids has to take into 
consideration the mechanical behaviour of the phases. In these studies the porosity of the multi-
phasic material is important for estimating the multi-phasic properties and most studies treat the 
porosity as a scalar measure without addressing the influence of pore shape and pore geometry. This 
paper shows that both the overall bulk modulus of a porous medium and the Biot coefficient depend 
on the shape of the pores. Pores with shapes resembling either thin oblate spheroids or spheres 
are considered. The Mori–Tanaka and the self-consistent methods are used to estimate the overall 
properties and the results are compared with experimental data. The pore density and the aspect ratio 
of the spheroidal pores influence the porosity of the geomaterials. For partially saturated rocks, the 
equivalent bulk modulus of the fluid–gas mixture occupying the pore space can also be obtained. The 
paper also examines the influence of the pore shape in estimating the Biot coefficient that controls the 
stress partitioning in fluid-saturated poroelastic materials.

The main purpose of this paper is to examine the important role that the pore shape plays in controlling the over-
all elastic moduli of fluid-saturated porous media. Several researchers have used information on the microstruc-
ture of a porous medium, such as the shape of the pore, to estimate the overall properties of the soil. For example, 
Bary1 considers pores with a spherical shape and Giraud et al.2 model the pores as thin oblate spheroids with a 
very small aspect ratio. Gruescu et al.3 noticed that the theoretical prediction of the overall thermal conductiv-
ity of the porous medium matches the experimental values if the geometric aspect ratio (i.e. the smallest to the 
largest pore dimension) of the pores is equal to about 1/20. Mavko et al.4 considered a porous system consisting 
of two types of pores: spherical and oblate spheroids. If information on the porosity and shape of the pores is 
given, we can use one of the effective media approaches to estimate the overall properties. The contributions in 
this area are too many to provide a detailed record of the advances. The reader is referred to the review articles 
and texts by Paul5, Budiansky6, Hashin7,8, Budiansky and O’Connell9, Christensen10, Mura11, Kachanov12, Nemat-
Nasser and Hori13, Buryachenko14 and Mavko et al.4. The most frequently used effective medium approaches are 
the Mori–Tanaka (Mori and Tanaka15; Bary1; Giraud et al2) and the self-consistent (Mavko et al.4) methods. In 
the Mori–Tanaka approach, each inhomogeneity (an inclusion or a pore) is considered to be embedded within 
a large volume of the material constituting the matrix phase, whereas in the self-consistent method each pore 
is embedded within a volume of the material having as yet unknown properties. By exploiting this embedding 
technique, a complicated problem of interaction between closely spaced inclusions is replaced by a simpler 
problem in which each inhomogeneity interacts with only a large volume of so-called comparison material in 
which the inhomogeneity is embedded.

The paper first presents estimates of the overall bulk modulus of a three-phase porous medium consisting of 
the solid phase (matrix), fluid phase and gas phase. The case of a fully-saturated porous medium can be obtained 
as a special case of this system by setting the saturation equal to unity. After obtaining an estimate of the overall 
bulk modulus, the Biot coefficient can be determined analytically. By matching the analytical estimate with the 
experimentally measured Biot coefficient for several rocks, we can then determine the shape of the pores that 
correlate with experimental data.
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The proposed estimates can also be used to find the equivalent bulk modulus of the fluid–air mixture in the 
partially saturated porous material. We note that if the fluid–gas mixture in the porous material is treated as a 
two-phase system, then the equivalent compressibility of the mixture is given by the Hashin–Shtrikman16 bound 
Cfa = Ca(1− S)+ Cf S . The Hashin–Shtrikman bounds of the overall bulk modulus of the isotropic two-phase 
system are obtained when the shear modulus of the constituents is set equal to zero. Since the compressibility 
of the gas Ca is much larger than the compressibility of the fluid Cf  , the compressibility of the air dominates the 
solution if the saturation S is smaller than unity.

In this paper, the fluid–gas mixture is considered to be part of a three-phase porous medium that includes 
the solid phase. A different estimate of the equivalent fluid–gas compressibility that depends on the shape of 
the pores can then be obtained. Other estimates of the compressibility of the fluid–gas mixture are available. 
For example, Vgenopoulou and Beskos17 considered the equivalent compressibility as a function of the depth 
below the ground surface, and, at large depths, the equivalent compressibility of the mixture becomes equal to 
the compressibility of the fluid when saturation is close to unity. A recent study by Selvadurai and Ichikawa18 
also provides estimates for the effective compressibility of a fluid–gas mixture; it was observed that the air voids 
content in a porous medium has a significant influence on the experimental results governing hydraulic pulse 
tests used to estimate the permeability characteristics of low permeability rocks. Similar conclusions have also 
been reported by Selvadurai and Najari19,20.

Effective medium methods
The effective properties of rocks can be estimated by one of the effective medium methods, such as the Mori-
Tanaka1–3 or the self-consistent method4. For all the effective media methods, some assumptions must invari-
ably be made about the shape of the pores, but the size of the pores does not affect the results obtained from the 
calculations. Typically, the pores are assumed to have an ellipsoidal shape.

A multi-phasic system consisting of N  randomly oriented thin spheroidal pores is considered first. Let 
a1 = a2, a3 be the semi-axes of the spheroidal cavity (pore) with a3 ≪ a1 . We define the aspect ratio of the 
spheroidal pore as ρ = a3/a1 ≪ 1 (i.e. resembling an oblate spheroidal cavity). The total volume fraction of the 
pores (i.e. the ratio of the volume of the voids to the total volume) is denoted by n . The volume fraction of the 
pores filled with fluid is nS , where S is the degree of saturation. The volume fraction of the pores filled with air 
is n(1− S) . The bulk moduli of the fluid and the solid phase are denoted by Kf and Ks , respectively, whereas the 
bulk modulus of air is Ka ≪ Kf  . The overall bulk modulus Ku of such a three-phase medium in the undrained 
state can be expressed as

where Af  and Aa are the total strain localization factors for the fluid phase and the air phase, respectively. In the 
Mori–Tanaka method the strain localization factors are approximated by the following expressions (Benveniste21),

where Tf  , Ta are, respectively, the partial strain localization factors for the fluid phase and the air. For flat oblate 
spheroidal pores, the partial strain localization factors take the form (Berryman22, Benveniste21) (The term strain 
localization should not be misconstrued for the term that indicates the development of material instabilities.)

and

The shear modulus of the fluid and the air Gf  , Ga in (3) can be set to zero. Note that the results (3) are accurate 
only if the aspect ratio of the spheroid becomes very small, i.e., ρ → 0 . For a two-phase system, in which the 
saturation S is equal to 1, it is possible to simplify the result (1) to

The overall bulk modulus of the drained medium is obtained by setting the bulk modulus of the fluid phase 
Kf  in (4) equal to zero, which gives

By defining the crack density parameter as

where N is the number of pores in volume V  , and using the identity
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where νs is the Poisson ratio of the solid phase, we can use (5) to obtain the following expression for the overall 
bulk modulus of the drained porous medium KD:

The shear modulus of the drained porous medium GD can be found by using appropriate strain localization 
factors for shear strain. The result is (Berryman22; Benveniste21)

By taking the limit ρ → 0 , the result obtained by Benveniste21 for the composite system with very flat penny-
shaped cracks can be recovered.

For pores having a spherical shape, the partial strain localization factors are given by (Bary1)

The formula (1) can now be used to find the overall bulk modulus of the three-phase porous medium having 
spherical pores. For a two-phase system, in which saturation S = 1 , the Mori–Tanaka estimate of the overall 
bulk modulus can be found from (1) as

Consequently, if one sets Kf = 0 in (11) the overall bulk modulus of the fully drained medium or the skeletal 
value KD can be obtained.

The self-consistent estimate of the overall properties of the drained porous medium with spherical pores can 
be obtained from formulae developed by Hill23: i.e.

Finally, we now assume that the pores of the geomaterial have a needle-like shape, i.e., a3 ≫ a1 , a1 = a2 . We 
can use the self-consistent method to obtain estimates for the effective properties of a geomaterial with long 
fibrous pores randomly distributed within the solid phase. We assume that fully drained conditions prevail. 
Using the result of Walpole24 we can write

Applications—the Biot coefficient
The classical theory of poroelasticity developed by Biot25 is an important development with applications in the 
fields of geoscience and geomechanics, ranging from energy resources extraction, deep geologic disposal of haz-
ardous materials and transport of environmental pollutants, etc. The range of applications of the basic approach 
developed by Biot25 to fields that encompass multi-physics influences arising from temperature change include 
deep geologic disposal of heat-emitting nuclear waste, geologic sequestration of greenhouse gases, geothermal 
energy extraction, enhanced oil recovery through steam stimulation, flash heating during earthquake fault rup-
ture and the impact of glaciation on geologic repositories. Recent advances associated with these topics and their 
extension to multi-porosity materials are documented by Selvadurai and Nguyen26, Khalili and Valliappan27, 
Khalili and Selvadurai28, Svanadze29, Svanadze and De Cicco30, Selvadurai et al.31 and Selvadurai and Suvorov32. 
The Biot coefficient is an important contribution resulting from the theory of poroelasticity and addresses the 
issue of partitioning the externally applied stresses between the porous skeleton and the pore fluid. The estimation 
of the Biot coefficient presents an experimental challenge when the porous medium has low permeability, which 
makes the process of saturating the pore space in an experimental context both time consuming and unreliable. 

(7)
(1− ν2s )

(1− 2νs)
=

3Ks(3Ks + 4Gs)

4Gs(3Ks + Gs)

(8)
Ks

KD
=

[

1+
16(1− ν2s )

9(1− 2νs)

η

1− (4π /3)ηρ

]

.

(9)
Gs

GD
=

[

1+
32(1− νs)(5− νs)

45(2− νs)

η

1− (4π /3)ηρ
+

1

5

ηρ(4π/3)

{1− ηρ(4π/3)}

]

.

(10)Tf =
4Gs + 3Ks

4Gs + 3Kf
Ta =

4Gs + 3Ks

4Gs + 3Ka
.

(11)Ku = Ks + n(Kf − Ks)

(

4Gs + 3Ks

4Gs + 3Kf

)[

1− n+ n
4Gs + 3Ks

4Gs + 3Kf

]−1

(12)
1

KD + (4/3)GD
=

n

(4/3)GD
+

1− n

Ks + (4/3)GD

(13)
1

5GD

(

3−
KD

KD + (4/3)GD

)

=
1− n

GD
+

n

GD − Gs

(14)

KD = (1− n)Ks

[

1+
nKs

GD

]−1

GD = (1− n)Gs

[

1+
7

15

nGs

GD
+

2

5

nGs

γ

]−1

γ = GD

(

3KD + GD

3KD + 7GD

)



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18959  | https://doi.org/10.1038/s41598-020-75979-6

www.nature.com/scientificreports/

The complete saturation of the pore space is a necessary pre-requisite for determining the compressibility of the 
solid materials composing the porous skeleton (Fig. 1).

Alternative approaches that rely on theories of elasticity for multiphasic composites have recently been applied 
to overcome this impediment (Selvadurai33; Selvadurai et al.34). The results derived previously can now be used 
to obtain an estimate of the Biot coefficient if one of the elastic moduli, either the bulk modulus of the skeleton 
KD or the bulk modulus of the solid phase KS is known but the other is not. The Biot coefficient is defined by

where KD and KS are, respectively, the bulk moduli values for the porous skeleton and the solid material. If the 
constitutive behaviour of the porous skeleton deviates from elastic behaviour, the approach used to define the 
Biot coefficient will change (Suvorov and Selvadurai35).

Figure 2 shows how the Biot coefficient depends on the porosity of the rock. This data is merely a collection 
of experimental results presented by Hart and Wang36 and Zimmerman37. The Biot coefficient for sandstones is 
shown with empty circles, the Biot coefficient of marble and granite is shown with filled circles. It can be seen that 
the Biot coefficient for sandstones ranges from 0.6 to 0.9, and, on average, is an increasing function of porosity. 
[This stands to reason since, as the porosity increases, KD ≪ KS and α → 1 .] For marble and granite the Biot 
coefficient is lower than 0.5.

This data is now analyzed from a micromechanics point of view. Using the effective medium methods, the 
effective elastic properties can be estimated from the given phase properties or vice versa, the phase properties 
can be estimated given the effective (overall) properties.

Consider the situation where the porosity n , the bulk modulus and the shear modulus of the drained porous 
material or the skeleton KD and GD , respectively, are known from experimental data. The properties of the solid 
phase, in particular the bulk modulus KS , and the properties of the rock in an undrained state Ku have then to 
be determined. We now consider the case of thin spheroidal pores.

(15)α = 1−
KD

KS

Figure 1.   The experimental configurations for estimating the Biot coefficient.

Figure 2.   Experimentally measured Biot coefficient versus porosity for sandstones, marble and granite.
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For linear elastic materials we make use of the relationships (Davis and Selvadurai 38)

The Eqs. (16), (8) and (9) have then to be solved for the unknown elastic properties of the solid phase KS , 
GS , νS.

For simplicity, we set the aspect ratio ρ = 0 in (8), (9), although more accurate results can be obtained when 
ρ  = 0 . First, we can express KD using (8) and the connection (16), which gives

Therefore, from (17)

The result (18) can now be used in (9) to give

The non-linear Eq. (19) can be solved either analytically or numerically to determine Poisson’s ratio for the 
solid phase νS . Note that the Poisson’s ratio must satisfy the energetic constraint νD ≤ νS ≤ 0.5 , i.e., it is expected 
to be larger than the Poisson’s ratio of the drained medium νD but less than 0.5. Using the known Poisson’s ratio 
of the solid phase νS , the bulk and shear moduli and KS , and GS respectively, of the solid phase can be found from 
(8), (9). Note that the relation (16) will be satisfied. The Biot coefficient α can now be found from (15).

Figure 3 shows both the Mori–Tanaka and self-consistent estimates of the Biot coefficient for geomaterials 
with the elastic properties of Indiana limestone, KD = 21.2 GPa, GD = 12.11 GPa, νD = 0.26 (Hart and Wang36). 
The Mori–Tanaka method is used when the pores are oblate spheroids (8), (9), and the self-consistent (SC) 
method (12)–(14) is used when the pores are either spheres or needle-shaped. It can be seen that for rocks with 
spherical or needled-shaped pores, the Biot coefficient is much lower than for rocks with pores that have a thin 
spheroid shape. Also, with the decrease in aspect ratio of the oblate spheroids, the Biot parameter approaches its 
upper limit equal to 1. For Indiana limestone with a porosity n = 0.13 , the experimentally measured value of the 
Biot coefficient is equal to 0.708 (Hart and Wang36). A good match between the experimentally measured value 
and the analytical result can be obtained if the aspect ratio of the spheroids is set equal to 1/12.

It is now possible to match the results of Figs. 2 and 3 if the pores are assumed to be oblate spheroids with a 
small aspect ratio. By varying the aspect ratio, or the crack density parameter, the best agreement with the experi-
mentally measured values of the Biot coefficient can be found. The results of comparisons appear in subsequent 
Figures. Figure 4 shows the dependence of the Biot coefficient of the rocks on the crack density parameter η
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Figure 3.   Approximate estimates of the Biot coefficient as a function of the porosity. Estimates were obtained 
using the Mori–Tanaka method for a rock with flat ellipsoidal pores and the self-consistent method (SC) was 
used for a rock with spherical and needle-shaped pores. The elastic properties of the rock are those of the 
Indiana limestone.
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As can be seen, the Biot coefficient increases with the crack density (i.e., the presence of the cracks reduces the 
skeletal stiffness), and for sandstones the crack density is larger than for marble and granite. The graph does not 
have a great deal of scatter, which shows that the Poisson’s ratio of the material of the solid phase in the rock is 
approximately constant (for a constant Poisson’s ratio of the solid phase and very small aspect ratios of the pores 
ρ , the Biot coefficient is a smooth function of the crack density η , which follows from (8)). It would be difficult 
to use this graph in practice since the crack density parameter is not usually known from experimental data. In 
fact, both the porosity n and the aspect ratio of the spheroid ρ = a3/a1 are needed to determine the crack density 
η . The porosity n is usually known from experimental data; thus, finding the dependency of the crack density η 
on the porosity is a useful result. The dependence of the aspect ratio a3/a1 ≪ 1 of the oblate spheroids on the 
porosity should also be considered. Figure 5 shows the variation of the crack density on porosity and Fig. 6 
shows the variation of the inverse of the crack density on porosity. For sandstones, the crack density appears to 
be roughly constant, equal to about 0.5 for porosities smaller than 0.15 (Fig. 5). For the porosities greater than 

(20)η = Na31/V =
3n

4πρ
.

Figure 4.   Dependence of the Biot coefficient on the crack density parameter for rocks shown in Fig. 2. The 
crack density parameter was found by matching the experimentally measured Biot coefficient with its Mori–
Tanaka estimate.

Figure 5.   Dependency of the crack density parameter, shown in Fig. 4 on the porosity for rocks in Fig. 2.
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0.15, the crack density begins to increase, reaching values above 1 for large porosities. For marble and granite, 
the crack density is considerably smaller than for sandstones.

From Fig. 6 we can see that the aspect ratio of the oblate spheroidal pores is small, remaining roughly equal 
to between 1/15 and 1/20 for porosities greater than 0.1. However, in sandstones with porosities lower than 0.1, 
the aspect ratio of the pores decreases (inverse of the aspect ratio increases). For marble and granite, the aspect 
ratio is larger than for sandstones. By matching the measurements of the effective conductivity of rocks with 
the theoretical estimates, Gruescu et al.3 reported that the aspect ratio of the spheroidal pores should be on the 
order of 0.05.

The bulk modulus of the undrained fully-saturated rock can be found from the Biot–Gassmann equation 
(Gassmann39; Saxena40)

Note that the Biot–Gassmann equation is only valid for an isotropic porous medium with arbitrary pore 
shapes. For very thin spheroidal pores, the bulk modulus of the undrained medium can also be found using 
the Mori–Tanaka estimate (8) derived previously. The results will be equal if the aspect ratio ρ of the pores is 
assumed to be small.

For a three-phase partially saturated medium, the Mori–Tanaka estimates can also be used to determine the 
equivalent bulk modulus of the fluid–gas mixture Kfa as a function of the saturation S and the fluid bulk modulus 
Kf  . In particular, equating the bulk modulus of the three-phase porous medium (1) to the bulk modulus of the 
two-phase medium (4) with the fluid having equivalent properties Kfa , gives

where the bulk modulus of the gaseous phase was set to zero. The porosity n can be expressed in terms of the 
aspect ratio and crack density using (6), n = 4πηρ/3 . Equation (22) can now be solved for Kfa . Alternatively, 
one could use the Biot–Gassmann result (21) for the bulk modulus of the two-phase medium with an equivalent 
fluid phase. This gives the following equation:

Equation (23) can be solved for Kfa . Note that the solutions provided by (22) and (23) will be equal only if 
the aspect ratio ρ of the spheroidal pore is assumed to be small. Similar equations can be obtained for a porous 
medium with spherical pores. Figures 7 and 8 show the equivalent bulk modulus of the fluid–gas mixture Kfa as 
a function of the saturation S for the porous medium with spheroidal pores having aspect ratios of 1/13.5 and 
1/33.5, respectively. The rock porosity is 0.19, and the properties of the rock constituents are: Kf = 2.2 GPa, 

(21)Ku = KD +
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Ks

.
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n
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Figure 6.   Variation of the inverse of the aspect ratio of the spheroidal pores with the porosity of the rocks in 
Fig. 1. The aspect ratio was estimated by matching the experimentally measured Biot coefficient with its Mori–
Tanaka estimate.
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KS = 29.73 GPa, GS = 11.47 GPa, with the overall bulk modulus of the drained rock KD = 6.6 GPa. The results 
are obtained using the formula (22). The equivalent bulk modulus Kfa obtained from formula (22) is compared 
with the simplified expression Kfa = SKf  . It can be seen that the difference between the two solutions is not 
very significant, especially for large or small levels of saturation. Note that as the aspect ratio becomes smaller, 
the equivalent bulk modulus Kfa tends to zero and, in the limit ρ = 0 , when all pores are very wide and thin, 
Kfa → 0 . Figure 9 shows the saturation dependency of the equivalent bulk modulus of the fluid–gas mixture 
Kfa for a porous medium with spherical pores, estimated using the Mori–Tanaka method. This estimate is very 
close to Kfa = SKf .

Conclusions
The conventional approaches for the estimation of overall elastic properties of porous media largely focus on a 
scalar measure of porosity. The results presented in this study clearly demonstrate that the overall elastic proper-
ties of a porous medium are also dependent on the shape of the pores. This finding has important implications 

Figure 7.   Normalized bulk modulus of the fluid–air mixture as a function of saturation. The pores are flat 
spheroids with an aspect ratio 1/13.5. The Mori–Tanaka (MT) estimate was obtained from the estimate of the 
overall bulk modulus for a three-phase porous medium having randomly oriented pores filled with fluid and 
gas. The bulk modulus of the gas phase is very small compared to that of the fluid.

Figure 8.   Normalized bulk modulus of the fluid–air mixture as a function of saturation. The pores are flat 
spheroids with an aspect ratio 1/33.5.
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for examining the stress partitioning between the saturating fluid and the porous skeleton as addressed in Biot’s25 
theory. The Biot coefficient for most rocks lies in the range 0.6–0.8 and the porosity of rocks is usually smaller 
than 0.2. It is possible to match the experimentally measured Biot coefficient with the analytical estimates if the 
pores are assumed to be thin oblate spheroids. It was found that the aspect ratio of the spheroids should decrease 
as the porosity gets smaller, but for porosities larger than 0.1, the aspect ratio is found to be equal to about 1/20 
for most sandstones.

For saturated porous media in particular, the equivalent bulk modulus of the fluid–gas mixture was also found 
to be dependent on the shape of the pores. In particular, if the bulk modulus of the air is neglected, for spherical 
pores the equivalent bulk modulus is very close to the estimate SKf  , For thin oblate spheroids, the equivalent 
bulk modulus decreases as the aspect ratio becomes smaller. Even for an aspect ratio of 1/33, the Mori–Tanaka 
estimate of the equivalent bulk modulus is not significantly different from SKf .

Received: 1 March 2020; Accepted: 13 October 2020
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