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A B S T R A C T   

The paper examines the role of irreversibility of skeletal deformations of a consolidating soil and its role in the 
pedagogy for explaining the development of pore fluid pressures in saturated soils subjected to loading and 
unloading. The role of irreversibility is demonstrated through the consideration of a one-dimensional consoli
dation model with an elasto-plastic skeletal response.   

1. Introduction 

The treatise by Terzaghi (1923) is widely recognized as the birth of 
the discipline of soil mechanics (see also Terzaghi and Fröhlich, 1936) 
and it is recognized as a commanding publication that brought to 
attention the need to elevate the topic of the mechanics of fluid- 
saturated soils from empiricism to a discipline firmly based on scienti
fic principles. The controversies and the tragic consequences associated 
with Fillunger (1936) following Terzaghi’s publication are presented in 
a comprehensive historical study of developments in porous media 
written by de Boer (2000). As remarked by Taylor and Merchant (1940) 
in their study of the process of secondary consolidation, “The theory of 
consolidation developed by Dr. Karl von Terzaghi is one of the most important 
theoretical contributions, which have been made in the new branch of 
Foundation Engineering known as Soil Mechanics”. A comprehensive 
documentary of the history and development of the theory of consoli
dation is given in a number of publications including the volume by de 
Boer (2000) and the extensive bibliographies are provided by Florin 
(1948), Paria (1963), Zaretskii (1972), Schiffman (1984), Selvadurai 
(1979, 2007), Lewis and Schrefler (1998), Coussy (1995), Aleynikov 
(2011), Schrefler (2002), Cheng (2015), Selvadurai and Suvorov 
(2016a) and Selvadurai and Samea (2021). Terzaghi’s contribution to 
the development of the one-dimensional theory of consolidation in
troduces several assumptions including: the complete saturation of the 
pore space, incompressibility of the pore fluid and the material 
composing the porous skeleton, the partitioning of the external stresses 
to skeletal stresses and pore fluid pressures, the validity of the linear 

form of Darcy’s law for the entire range of the consolidation process, the 
linear relationship between the stresses in the porous skeleton and the 
corresponding skeletal deformations (no explicit mention of reversibility 
of skeletal deformations) and the added observation that the time lag in 
the consolidation is entirely due to the low permeability of the soil. A 
mechanical model for replicating the consolidating soil was first pre
sented by Terzaghi (1927). It consisted of a fluid filled container with 
spring elements and narrow apertures in the movable platen repre
senting the pores of the soil as shown in the idealization in Fig. 1. The 
requirements for low permeability to ensure time dependency of the 
consolidation process is also mentioned on page 266 of Terzaghi (1943). 
The mechanical model of a consolidating soil was also presented by 
Terzaghi and Fröhlich (1936), where the single mechanical model was 
replaced by the “Mehrkolbenmodell” or the “Many Piston model” 
(Fig. 2). 

Terzaghi and Peck (1948) also presented the “Mehrkolbenmodell” 
(Fig. 3) with schematic expositions of the pore pressure distributions 
over the thickness of the consolidating element. Surprisingly, there is no 
record of the mechanical analogue in the volumes by Terzaghi (1923, 
1943) although the analogue is ubiquitous in nearly every undergrad
uate textbook devoted to soil mechanics. Examples of these can be found 
in the volumes by Taylor (1948), Krynine (1947) and Tschebotarioff 
(1951) and these are reproduced in Figs. 4, 5 and 6, respectively. The 
volumes attribute these mechanical analogues to works of Terzaghi 
(1923) and Terzaghi (1927), respectively. References to Terzaghi’s de
velopments are also cited by Scott (1963) and Harr (1966) and the latter 
refers to Terzaghi (1924) as a source for the introduction of the theory of 
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soil consolidation. 
At this stage it is useful to highlight important attributes related to 

Terzaghi’s one-dimensional theory. The first is the theory of effective 
stress, which states that the total stress (σij) is partitioned between the 
stress carried by the porous skeleton (σ′

ij) and the isotropic pressure (u) 
carried by the pore fluid, i.e. 

σij = σ′

ij + uδij (1)  

where δij is Kronecker’s delta function. The historical aspects of the 
theory of effective stresses in soils have differing interpretations. Sir Alec 

Skempton (1960) attributes the first reflections of the concept to Sir 
Charles Lyell in 1871, then by J. Boussinesq in 1876 and by Sir Osborne 
Reynolds in 1886. According to Skempton (1960), the idea of effective 
stress was formulated in a general form by Terzaghi (1936) and the 
concept introduced by Terzaghi (1923) is the one-dimensional version 
σ′

= σ − u, which formed the basis for the development of the one- 
dimensional theory of consolidation. The work of Biot (1935), howev
er, preceded the extension to three-dimensions proposed by Terzaghi in 
1936. Terzaghi (1936) postulated that “The stresses in any point of a 
section through a mass of soil can be computed from the total principal 
stresses σ1, σ2, σ3 which act in this point. If the voids of the soil are filled with 
water under a stress u, the total principal stresses consist of two parts. One 
part,u, acts in the water and in the solid in every direction with equal in
tensity. It is called the neutral stress (or the porewater pressure). The balance 
σ′

1 = σ1 − u, σ′

2 = σ2 − u, and σ′

3 = σ3 − u represents an excess over the 
neutral stress u and it has its seat exclusively in the solid phase of the soil. This 
fraction of the total principal stresses will be called the effective principal 
stresses…” An informative record of the stages in the development of the 
theory of effective stresses is also given by de Boer and Ehlers (1990). 

The tensorial representation (1) is a direct extension of the one- 
dimensional scalar partitioning presented in Terzaghi’s 1923 studies. 
The main observation is that in the partitioning process, neither the 
constitutive relationships of the porous skeleton nor the constitutive 
relationships of the pore fluid are present. This is, of course, at variance 
with other stress partitioning processes in multiphasic materials where 
the constitutive responses are expected to influence the mechanics of 
stress partitioning. A simple example of this is the two-bar elastic 
composite element extensively employed in undergraduate Solid Me
chanics courses (Timoshenko, 1930). Also, the partitioning process has 

Fig. 1. The mechanical model of a consolidating soil first presented by Terzaghi (1927).  

Fig. 2. Mechanical models of a consolidating soil presented by Terzaghi and Fröhlich (1936).  

Fig. 3. The mechanical model used to demonstrate soil consolidation (After 
Terzaghi and Peck, 1948). 
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Fig. 4. The mechanical model used to demonstrate soil consolidation (After Taylor, 1948).  

Fig. 5. The mechanical model used to demonstrate soil consolidation (After Krynine, 1947).  

Fig. 6. The mechanical model used to demonstrate soil consolidation (After Tschebotarioff, 1951).  
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its antecedents in the works of Kelvin (1878), Voigt (1910) and others. 
The concept nonetheless was readily adopted as an important precept in 
the development of soil mechanics, particularly in relation to the study 
of the role of pore fluid pressures in geotechnical problems. The second 
important concept related to the development of Terzaghi’s theory of 
consolidation is the assumption of the linear behaviour of the stress- 
strain response of the soil skeleton. Terzaghi and co-workers (Terzaghi 
and Peck, 1948; Art 13) were well aware of the limitations of linear 
elasticity and reversibility in describing the deformability characteris
tics of the soil skeleton but chose to adopt a linear relationship (i.e. a 
spring element) between the changes to the void ratio with effective 
stress. All approaches dealing with the estimation of consolidation set
tlements were deeply rooted in semi-logarithmic relationships between 
the void ratio and the effective stress and irreversible processes were 
implicit in the approaches that introduced concepts such as normally- 
consolidated and over-consolidated clays that adopted ingenious ap
proaches for determining the pre-consolidation stress. If the semi- 
logarithmic relationship was used to describe the skeletal deform
ability, the resulting governing equation for the one-dimensional 
consolidation equation would have been an unwieldy non-linear partial 
differential equation and the effect of irreversible deformations would 
have resulted only in numerical approaches to the solution of the 
resulting consolidation equation. Such procedures were not in vogue at 
the time of development of the consolidation theory. The prudent linear 
approach advocated by Terzaghi (1923, 1943) resulted in the classical 
consolidation equation, which is a second-order linear partial differential 
equation of the parabolic-type, which has been extensively investigated 
in connection with Fourier heat conduction and other diffusive phe
nomena (Carslaw and Jaeger, 1959; Crank, 1970; Hill and Dewynne, 
1987; Lamb, 1995; Selvadurai, 2000). The assumptions of linearity in 
the void ratio vs. the effective stress relationship and the absence of 
irreversibility in a loading-unloading cycle place constraint in examining 
the development of pore fluid pressures during a loading excursion that 
involves both loading and unloading. 

Terzaghi’s theory, which describes the one-dimensional theory of the 
consolidation for a fluid saturated soil with a purely elastic porous 
skeleton, was extended to three-dimensions by Rendulic (1936) but the 
developments are considered to be incomplete. The complete develop
ment of the three-dimensional theory of poroelasticity, which deals with 
the mechanics of a fluid-saturated porous elastic skeleton with an 
incompressible pore fluid was presented by Biot (1935, 1941). The 
theory represents a canonical development of the three-dimensional 
theory of consolidation, which has also been presented in subsequent 
independent studies by Mandel (1950, 1953) and others. In modern 
expositions of Biot’s theory, appeal is made to the theory of mixtures 
extensively developed in continuum theories applied to multiphasic 
fluid-saturated media (see e.g. Mills, 1966; Green and Naghdi, 1965, 
1967; Bowen and Wiese, 1969; Atkin and Craine, 1976; Bowen, 1976; 
Ehlers, 1991; de Boer 2000). It is also important to note that the appli
cation of mixture theories is permissible if the porous region is fully 
saturated with a single fluid. In the case of unsaturated media, the 
presence of multi-phasic fluids (liquids and gases) together with inter- 
phasic stress phenomena, such as surface tension forces, requires the 
introduction of additional measures to correctly describe the concept of 
effective stress. 

Terzaghi (1943; Art. 106)) presents a commentary on Biot’s contri
bution as follows: “All these investigations were based on the assumption 
that the coefficient of consolidation cv contained in equation (1) [Which is 
the direct extension of the one-dimensional equation to its three- 
dimensional Laplacian operator based equation] is a constant. For pro
cesses of consolidation involving linear flow this assumption is known to be 
reasonably accurate. However, in connection with two- and three- 
dimensional processes of consolidation, the same assumption should be 
regarded as a potential source of errors whose importance is not yet known. 
Biot also assumed that cv has the same value for both compression and 
swelling. This assumption is never justified. A better approximation could be 

obtained by assuming that cv for swelling is equal to infinity”. Terzaghi 
provides a critique of Biot’s developments but omits reference to his own 
one-dimensional theory where the same criticism can be applied if a 
loaded consolidating region is unloaded. His appreciation of irrevers
ibility of deformations in the porous skeleton is, however, very clear. The 
method for incorporating the differences in stiffness during loading and 
unloading is not that straightforward and the author would suspect that 
a purely analytical result for generalized three-dimensional stress states 
is not feasible. If the stress state involves only the principal stresses and if 
monotonic loadings ensure that the principal stresses follow either a 
compressive or tensile loading path, then the concept of bi-modularity 
can be invoked to develop an analytical solution. The concept of a bi- 
modular elastic material has been introduced in connection with the 
study of elastic solids (Timoshenko, 1930) and in the study of the me
chanics of elastic materials reinforced with fibres (Schwartz and 
Schwartz, 1967; Ambartsumian, 1966; Mkrtichian, 1970; Jones, 1977; 
Green and Mkrtichian, 1977; Spence and Mkrtchian, 1977; Bert 1977). 
In the context of geologic media containing randomly distributed cracks, 
the elastic moduli in tension will be different from the elastic modulus in 
compression if the stress states cause crack closure. The radial expansion 
of a spherical cavity in a poroelastic bi-modulus material was examined 
by Selvadurai and Mahyari (1998). In this case, the stress state is 
spherically symmetric, which allows for the formulation via a bi- 
modulus approach. 

Although Biot’s theory of poroelasticity is widely applied to examine 
the consolidation of saturated clays (McNamee and Gibson, 1960a,b; 
Gibson and McNamee, 1963; Agbezuge and Deresiewicz, 1974, 1975; 
Chiarella and Booker, 1975; Rajapakse and Senjuntichai, 1993; 
Detournay and Cheng, 1993; Yue and Selvadurai, 1995; Lan and Sel
vadurai, 1996; Selvadurai, 1996; 2007; Verruijt, 2015; Cheng, 2015; 
Selvadurai and Kim, 2016; Selvadurai and Samea, 2021, and others) the 
theory finds a firmer basis when applied to fluid-saturated rocks (Rice 
and Cleary, 1976; Rice, 1992; Souley et al., 2015; Cheng, 2015; Selva
durai and Suvorov, 2016a; Selvadurai and Najari, 2017; Chen et al., 
2018; Zhang et al., 2019 and others) that can maintain their elastic 
behaviour over a significant stress range, although the theory has also 
found applications even in the modelling of Callovo-Oxfordian claystone 
(Braun et al., 2019). An important development in Biot’s theory is the 
modification of the effective stress equation to the form 

σij = σ′

ij +αuδij (2)  

where α is the Biot coefficient represented by 

α = 1 −
KD

KS
(3)  

and KD and KS are, respectively, the bulk modulus for the porous skel
eton void of any pore fluid and the bulk modulus of the solid material 
composing the porous skeleton. If the bulk modulus of the solid material 
composing the porous skeleton is much greater than the bulk modulus of 
the porous skeleton, then (KD/KS)→0 and (2) reduces to Terzaghi’s 
result (1). The measurement of the Biot coefficient for rocks in particular 
is straightforward if the geomaterial has a high permeability, which 
facilitates saturation of the pore space (see e.g. Rice and Cleary, 1976; 
Berryman, 1992; Wang, 2000; Mavko et al., 2009). With very low 
permeability rocks, the saturation procedure required for estimating KS 
is unreliable and the presence of trapped air can give rise to erroneous 
estimates of KS and attention is usually focused on the application of 
multiphasic approaches for its estimation. Examples of these are given 
by Selvadurai (2019) and Selvadurai et al. (2019). It can also be shown 
that other factors, such as pore shape, can influence the Biot coefficient 
(Selvadurai and Suvorov, 2020). 

Of related interest are the studies by Skempton (1954) and Bishop 
(1973) that implicitly use elasticity concepts when developing the pore- 
pressure parameters, in the sense that irreversibility and loading path 
dependency are not addressed in these studies. The work of Pande and 
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Pietruszczak (1990) is one of the early studies where the issue of failure 
of the soil skeleton is discussed in relation to the estimation of the pore 
pressure parameters. Recently, Suvorov and Selvadurai (2019) have 
examined the influence of elasto-plasticity of the porous skeleton on the 
Biot coefficient. 

2. Irreversibility in the Skeletal Deformability 

The issue of irreversible deformations of geomaterials such as soils, 
regardless of the level of saturation, is universally accepted. Idealized 
skeletal responses based on elastic reversibility are rare and can be both 
used and abused. The a priori assignment of stress levels that can 
maintain certain soils in a condition that minimizes irreversible phe
nomena is advocated (Terzaghi, 1943; Taylor, 1948; Scott, 1963; Harr, 
1966; Suklje, 1969; Gibson, 1974; Burland, 1989; Davis and Selvadurai, 
1996; Selvadurai, 2007) and an incorrect setting can lead to erroneous 
interpretations. Terzaghi was well aware of the need to incorporate ef
fects of irreversibility into his fundamental developments in the theory 
of consolidation, but addressing this issue was far from straightforward. 
Developments in the computational aspects of soil mechanics were at 
their infancy and the studies by Taylor and Merchant (1940), which 
incorporated viscoelastic elements to represent the constitutive behav
iour of the porous skeleton to account for secondary consolidation, is 
probably an early development of addressing irreversible phenomena 
albeit in a time-dependent setting rather than in a time-independent 
context (see also, Geuze and Tan, 1950; Biot, 1956; Gibson and Lo, 
1961; Kravtchenko and Sirieys, 1966; Schiffman et al., 1966; Ichikawa 
and Selvadurai, 2012, to name a few). Terzaghi’s theory of one- 
dimensional consolidation gives rise to the second-order partial differ
ential equation 

cv
∂2u
∂z2 =

∂u
∂t

(4)  

where 

cv =
k(1 + e)

γwav
(5)  

where k is the hydraulic conductivity, e is the void ratio, av(= − ∂e/∂σ′

) is 
the coefficient of compressibility and γw is the unit weight of water. The 
extension of (4) to three-dimensions, proposed by Rendulic (1936) 
simply replaces the spatial derivative in (4) by the dyadic Laplace’s 
operator: 

cv∇
2u =

∂u
∂t

(6) 

Numerous other extensions have been proposed to modify the clas
sical theory of consolidation. For example, Zaslavsky (1964) correctly 
formulates Darcy’s law in terms of the relative velocity between the pore 
fluid and the soil skeleton, which gives rise to the following equation for 
the equation of consolidation 

∇k.∇
(

u
γw

)

=
∂
∂t
(1 + qs.∇)[ln(1 + e)] (7)  

where qs is the average velocity of soil particles relative to a stationary 
frame of reference. Similarly, Mikasa (1965) formulated the consolida
tion equation in terms of a logarithmic function of the void ratio instead 
of the pore fluid pressure: i.e. 

cv∇
2ε =

∂ε
∂t

(8)  

where 

ε = ln
(

1 + e0

1 + e

)

(9) 

Despite the noteworthy observation by Terzaghi, the irreversible 
aspects of the skeletal response in the context of the theory of consoli
dation, at least to the author’s knowledge, has received scant attention. 
Most of the expositions of the theory of consolidation largely focused on 

Fig. 7. Terzaghi analogue for the consolidation process.  

Fig. 8. One-dimensional constitutive relationship for the soil skeleton.  
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the notion advocated by Terzaghi in relation to the linearity in the 
relationship between effective stress and void ratio, without any 
mention of unloading. Any researcher who is involved in constitutive 
model development can appreciate the fact that the validity of a 
constitutive model is not proven until the response of the model taken 
through a cycle involving loading, unloading, stress reversal, re-loading, 
etc., can be correctly captured. This aspect is perhaps overlooked in 
many expositions adopted to model the skeletal behaviour during 
consolidation given in almost every elementary textbook in soil me
chanics. In fact, to the author’s knowledge, none of the 200-odd un
dergraduate texts on Soil Mechanics ever discuss the process of 
unloading during soil consolidation with a clear reference to the 
mechanism of pore pressure generation during the unloading process. 
This creates a pedagogical limitation when it comes to the discussion of a 
saturated soil such as clay during loading and unloading, and, in partic
ular, the rationale for the pre-loading of clayey soils to minimize 

settlements. The situation is not drastic until the question of the 
unloading of a consolidating soil has to be illustrated in terms of the 
development of pore fluid pressures and effective stress. The one- 
dimensional Terzaghi model of a saturated soil is shown in Fig. 7 and 
attention is drawn to the total stress σ, the resulting skeletal or effective 
stress σ′ and the excess pore pressure is denoted by u (the term excess pore 
fluid pressure is intended to identify the pore fluid pressures that are 
attributed to the changes in total stress). In addition, let us consider an 
elementary view of the one-dimensional constitutive relationship for the 
soil skeleton shown in Fig. 8. 

Fig. 8(i) illustrates a skeletal deformability response that is linearly 
elastic, and the skeletal strain energy accumulated during a loading 
cycle is perfectly recoverable. Fig. 8(ii) illustrates a skeletal deform
ability response that is linear in the loading path, but the unloading path 
results in zero skeletal strain recovery. This type of skeletal behaviour was 
alluded to by Terzaghi in his critique of Biot’s theory. Fig. 8(iii) 

Fig. 9. Loading-unloading skeletal stress-strain relationship and the development of effective stresses and excess pore fluid pressures.  
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illustrates a skeletal deformability response that is linear in the loading 
path, but the unloading takes place in a linear fashion with evidence of 
partial elastic recovery. These models are idealized responses intended 
to demonstrate the influence of the skeletal deformability response on 
the excess pore pressure, when the Terzaghi analogue is subjected to a 
loading-unloading response. 

Fig. 9 (i) illustrates the loading-unloading response for the total stress 
σ(t), the effective stress σ′

(t) and the excess pore fluid pressure u(t). The 
element is loaded by a total stress σ0 applied as a Heaviside step function 
of time and the element is allowed to consolidate. As Terzaghi postu
lates, the pore fluid pressure will instantaneously reach the value of σ0 
and will reduce to zero as the stress is transferred to the skeleton. In this 
case, strain energy is stored in the consolidated soil skeleton and when 
the external stress is reduced to zero, to preserve overall equilibrium in 
the system and to satisfy the effective stress concept (1), the excess pore 
fluid pressure has to be negative or in a state of tension. At the moment 
of instantaneous unloading, the excess pore water pressure must satisfy 
the constraint, u = − σ0. As time progresses, the soil will “unconsolidate” 
and the effective stresses and pore fluid pressures will reduce to zero. 
The concept is elementary and a simple superposition of solutions of the 
one-dimensional equation of consolidation for a finite or semi-infinite 
region with a time shift to identify the point of unloading can be used 
to confirm the observation. For example, for a saturated semi-infinite 
domain z ∈ (0,∞) subjected to a total stress σ0 over the time interval 
0 < t⩽t∗, the time dependent distribution of pore fluid pressure in the 
domain is given by 

u(z, t)
σ0

= erf
(

z
̅̅̅̅̅̅̅̅
4cvt

√

)

− erf
(

z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4cv(t − t∗)

√

)

(10)  

where erf(Δ) is the error function with the series approximation 

erf (Δ) =
2Δ̅̅̅

π
√

(

1 −
Δ2

1!3
+

Δ4

2!5
−

Δ6

3!7
+ ...

)

;Δ2 < ∞ (11) 

Fig. 9 (ii) illustrates the loading-unloading response for the case 
where the skeletal strain is completely irrecoverable. In this case, if the 
consolidation process is complete during the loading phase, the 
unloading of the externally applied stress does not result in any recovery 
of the skeletal strains and the excess pore fluid pressures do not exhibit 
any change. The consolidation deformations remain irrecoverable. The 
geotechnical engineering rationale for the pre-loading of clay layers to 
cause settlement is justified in these circumstances. To the author’s 
knowledge, this elementary concept is identified in the calculation of 
settlements but less well explained in relation to the development of 
excess pore fluid pressures and the recovery of consolidation settle
ments. Fig. 9 (iii) illustrates the loading-unloading response for the case 
where the skeletal strains are only partly recoverable. The presence of 
elastic unloading will ensure that the excess pore fluid pressure gener
ated in a fully consolidated element will become negative. The rate of 
decay of the effective stresses and the excess pore fluid pressure will be 
bounded by the responses associated with the cases illustrated in Fig. 9 
(i) and 9 (ii). Other scenarios similar to those presented in these three 
examples can be considered and such investigations are best handled by 
a computational approach, where the skeletal response is modelled by 
appeal to a theory of plasticity capable of accommodating both revers
ible and irreversible skeletal strains. 

3. Computational Modelling of Irreversibility in the Skeletal 
Deformability 

The modelling of the constitutive behavior of soils, both saturated 
and unsaturated, that can accommodate elastic, hyperelastic, hypo- 
elastic, elasto-plastic (with and without hardening) effects, visco- 
plasticity, creep, damage, etc., has been the subject of extensive 
research over the past century. This article is perhaps not the appro
priate venue for presenting a comprehensive overview of the important 

developments related to the constitutive modelling of soils and geo
material interfaces. The interested reader is referred to the seminal ar
ticles and texts by Drucker and Prager (1952), Drucker et al. (1957), 
Schofield and Wroth (1968), Zaretskii (1972), Desai and Siriwardane 
(1984), Chen and Baladi (1985), Pande et al. (1990), Darve (1990), 
Selvadurai and Boulon (1995), Desai (2001), Ehlers and Bluhm (2002), 
Willner (2003), Davis and Selvadurai (2005), Pietruszczak (2010), Sel
vadurai and Atluri (2010), Gens (2010), Aleynikov (2011), Puzrin 
(2012), Chau (2013), Wan et al. (2016), Selvadurai (2020) and others. 

3.1. Poroelasto-plastic and non-linear behaviour of the soil skeleton 

In extending the studies to include poroelasto-plasticity effects, we 
need to select an appropriate constitutive response for saturated clay- 
type materials. There are a variety of constitutive relations that have 
been proposed in the literature and for the purposes of illustration, we 
select an elasto-plastic skeletal response of the Modified Cam Clay type 
(see. e.g. Desai and Siriwardane, 1984; Davis and Selvadurai, 2005; 
Pietruszczak, 2010). 

The study of the consolidation is best illustrated by considering the 
one-dimensional behaviour of a soil column of finite length (Terzaghi, 
1943; Biot, 1941; Mandel, 1950, 1953, 1957; Verruijt, 2015; Cheng, 
2015; Selvadurai and Suvorov, 2016b; Stickle and Pastor, 2018). The 
analysis can also be investigated through consideration of spherically 
symmetric or spherically asymmetric (de Josselin de Jong, 1953, 1957; 
Gibson et al., 1963; Verruijt, 2015) or other radially symmetric situa
tions (Cryer, 1963). Similar treatments of spherical cavities and in
clusions in poroelastic and damage-susceptible poroelastic media are 
also given by Rice et al. (1978) and Selvadurai and Shirazi (2004). The 
one-dimensional consolidation problem for an elastic skeletal response 
has been exhaustively studied in the literature and the references to 
these articles can be gleaned from the articles cited previously. The 
consideration of non-linear behaviour attributed to large strain elastic 
skeletal behaviour was examined in the studies by Gibson et al. (1967, 
1981, 1989), Schiffman (1980) and Schiffman and Cargill (1981). The 
constitutive relationship adopted for the skeletal behaviour was, how
ever, restricted to a linear model. The one-dimensional consolidation 
behaviour of a fluid-saturated hyper-elastic material was first examined 
by Selvadurai and Suvorov (2016b) where a consistent hyperelasticity 
model (see e.g. Rivlin, 1953, 1961; Green and Adkins, 1970; Spencer, 
1970; Selvadurai and Spencer, 1972; Treloar, 1976) was used to 
represent the constitutive behaviour of the porous skeleton. In the 
studies by Selvadurai and Suvorov (2016b, 2017, 2018) and Suvorov 
and Selvadurai (2016), the effective stress relationship is represented by 
the Terzaghi (1923) result (1) rather than the Biot (1941) result since for 
a highly deformable hyperelastic material, KS is assumed to be much 
greater than KD. Also, the influence of hyperelastic deformations on the 
alteration of the fluid transport properties of the porous medium is 
neglected. These advances, which resulted in benchmark analytical 
studies were, however, restricted to the purely elastic behaviour of the 
porous skeleton in the absence of irreversible deformations during a 
cycle of loading and unloading. Along the theme of large strain 
behavior, computational approaches for the study of large elasto-plastic 
strains and strain rate sensitivity in materials including saturated soils 
were examined by a number of authors including Lee (1969), Small et al. 
(1976), Carter et al (1979), Borja and Tamagnini (1998), Borja et al. 
(1998), Ehlers and Bluhm (2002), Lubarda (2004) and Selvadurai and 
Yu (2006). 

An important contribution to the analytical modelling of the elasto- 
plastic skeletal behaviour of the porous skeleton was made by Pariseau 
(1999), who examined the one-dimensional poroelasto-plastic consoli
dation of a saturated medium where the soil skeleton exhibits failure 
according to either a Mohr-Coulomb or Drucker-Prager relationship. 
Due to the one-dimensionality of the problem there is uncoupling of the 
solid deformation from the fluid flow. The fluid pressure satisfies the 
same form of a diffusion equation in both the elastic and elastic-plastic 
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domains, but the diffusion coefficient is different. The solution given by 
Pariseau (1999) has a benchmark quality that is intended to serve as a 
result for validating computational approaches. The studies by Selva
durai and Suvorov (2012, 2014) focus on similar studies applied to 
thermo-poro-elasto-plasticity problems involving (i) boundary heating 
of spheres and cylinders and (ii) the separate pressurization and heating 
of a fluid-filled cavity. 

3.2. Poroelasto-plastic behaviour of the soil skeleton under loading and 
unloading 

In this study we consider the poroelasto-plastic behaviour of the soil 
skeleton, under conditions of quasi-static loading-unloading. The 
constitutive responses that can be adopted for the study can be many and 
varied but for the purposes of demonstration, we adopt a Cam-Clay 
model (Schofield and Wroth, 1968; Desai and Siriwardane, 1984; 
Davis and Selvadurai, 2005; Pietruszczak, 2010) defined by the yield 
function 

(σ̃ − a)2
+(q/M)

2
− a2 = 0 (12)  

where q is the von Mises stress, a is the radius of the yield surface, ̃σis the 
mean effective stress, M is the slope of the critical state line and these are 
defined by 

q =

̅̅̅̅̅̅̅

3̃sij

√

s̃ij/2 ; σ̃ = − (σ̃kk/3); σij = σ̃ij − αuδij ; s̃ij = σ̃ij + σ̃ δij

(13) 

The center of the yield surface (a,0) in the (σ̃, q) plane can be 

expressed as 2a = σ̃0
c + σ̃c

(
εpl

kk

)
, where ̃σ0

c is the initial yield stress for the 

isotropic compression stress state and 

σ̃ = σ̃(εpl
kk) = σ̃0

c + σ̃c(εpl
kk) (14)  

is the hardening rule that prescribes the dependence of the isotropic 
stress on the volumetric plastic strain. The yield condition (12) can also 
be written as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ̃ −
σ̃o

c

2
−

σ̃c(εpl
kk)

2

√

)

2

+ (
q
M
)

2⩾
σ̃o

c

2
+

σ̃c(εpl
kk)

2
(15) 

To determine the incremental plastic strains, we specify an associ
ated flow rule of the type 

dεpl
ij = dλ

∂G
∂σ̃ij

; G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ̃ −
σ̃0

c

2
−

σ̃c(εpl
kk)

2

√

)

2

+ (
q
M
)

2
−

σ̃0
c

2
−

σ̃c(εpl
kk)

2
(16)  

where the hardening rule takes the form 

σ̃c = σ̃c(εpl
kk) = H(− εpl

kk) (17)  

where H is a positive constant. For completeness, we note that the plastic 
multiplier in (16) is given by 

dλ = − ∂G
∂̃σij

dσ̃ij

∂G
∂εpl

kk

∂G
∂̃σij

δij =

∂G

∂̃σij
Dijkldεkl

∂G
∂εpl

kk

∂G

∂̃σij
δij+

∂G

∂̃σij

Dijkl
∂G
∂̃σkl

(18)  

and Dijkl is the elasticity tensor for the skeletal material given by 

Dijkl =

(

KD −
2
3

GD

)

δijδkl +GD(δikδjl + δilδjk) (19)  

where KD and GD are, respectively, the skeletal values of the bulk 
modulus and the shear modulus. The incremental plastic strains are 
given by 

dεpl
mn = − ∂G

∂̃σmn

∂G
∂̃σij

∂G
∂εpl

kk

∂G

∂̃σij
δij d̃σij=

∂G

∂̃σmn

∂G

∂̃σij
Dijkldεkl

∂G
∂εpl

kk

∂G

∂̃σij
δij+

∂G

∂̃σij
Dijkl

∂G

∂̃σkl

(20)  

and the elastic-plastic constitutive tensor is defined by 

dσij = DEP
ijkldεkl (21)  

and can be expressed as 

DEP
ijkl = Dijkl − Dijrs

∂G
∂̃σrs

∂G
∂̃σmn

Dmnkl

∂G
∂εpl

kk

∂G
∂̃σij

δij +
∂G
∂̃σij

Dijkl
∂G
∂̃σkl

(22) 

It must be remarked that the choices of elasto-plastic models for an 
exercise of this nature are many and varied. Soils possess complex non- 
linear constitutive relationships that can be characterized by failure, 
hardening and plastic flow rules of the non-associative type that can 
account for dilatancy; these skeletal mechanical responses can have a 
significant influence on post-yield pore pressure generation. Accounts of 
these developments can be found in the articles cited previously. 

In addition to the elasto-plastic constitutive response for the porous 
skeleton, we assume that the fluid flow through the porous skeleton 
remains unchanged during yield and subsequent hardening of the 
porous skeleton. It is recognized that the internal damage during 
development of elasto-plastic effects, defect generation and void closure 
in consolidating and deforming media can contribute to alterations in 
the permeability of geomaterials (Selvadurai, 2004; Selvadurai and 
Głowacki, 2008, 2017). 

4. Poroelastic and poroelasto-plastic response of a one- 
dimensional column – Numerical results 

We consider the problem of a one-dimensional fluid-saturated col
umn that is saturated with an incompressible fluid and where the porous 
skeleton can possess either an elastic response characterized by Hooke’s 
law or an elasto-plastic constitutive response characterized by a soil 
plasticity model similar to the modified Cam Clay model with an asso
ciated flow rule and an isotropic hardening rule as described previously. 
The flow properties of the porous medium are defined by Darcy’s law 
with a constant hydraulic conductivity. The constitutive properties 
characterizing these models are given below. 

4.1. Poro-elastic Model: 

Skeletal Bulk Modulus= 25 GPa; Skeletal Poisson’s ratio = 0.30; 
Permeability of the porous skeleton = 9.85× 10− 18 m2; Incompressible 
solid phase KS→∞ ; nearly incompressible pore fluid. 

4.2. Modified Cam Clay Poroelasto-plastic Model: 

The material parameters applicable to the poroelastic model, are also 
applicable to the poroelasto-plastic model. In addition, the skeletal 
initial yield stress = 0.3 MPa and the elastic-plastic tangent bulk 
modulus = 10.1 MPa. The isotropic hardening rule described by (17) is 
selected such thatH = 10− 9 Pa 

The material parameters chosen are only intended to serve as plau
sible material models for the elastic and elastoplastic responses. This 
range of material parameters has been used in previous poroelasto- 
plastic investigations (Selvadurai and Suvorov, 2012, 2014). The task 
of developing an analytical approach for the problems discussed here is 
not feasible and in the interest of the basic objectives of the paper, it is 
prudent to use a computational approach, utilizing the ABAQUS™ finite 
element code. Both the ABAQUS™ finite element code and the COM
SOL™ Multiphysics code have been extensively used for modelling 
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Thermal (T), Hydraulic (H) and Mechanical (M) processes in geo
materials and to investigate coupled processes involving hydro- 
mechanical (HM) and thermo-hydro-mechanical (THM) problems. The 
constitutive models are implemented in a general purpose computa
tional multi-physics code and the initial boundary value problems are 
analyzed via a finite element technique with finite difference-based time 
integration scheme. The accuracy of the code is also verified by 
comparing the results obtained by the code for elastic, poroelastic and 
elasto-plastic problems. Several inter-code calibration exercises and 

comparisons with known analytical solutions have also been performed 
and reported in open literature. It should also be noted that the choice of 
the finite element modelling of the problem is largely dictated by in- 
house capabilities, although the use of finite-difference techniques 
could also be actively investigated. One-dimensional problems involving 
both linear and non-linear partial differential equations have been 
successfully treated using finite difference techniques. The application 
of such techniques to the class of problems that involve multiphysics, 
time-dependent diffusive processes and evolving material properties due 
to the development of failure and plastic flow merits further investiga
tion. From a fundamental mathematical perspective, issues related to 
the existence of solutions, convergence, stability, uniqueness need to be 
addressed in relation to the non-linear problem before finite difference 
techniques can be employed with confidence (Lapidus and Pinder, 1999; 
Tadmor, 2012; Polyanin and Zaitsev, 2012; Bartels, 2015; Baines and 
Sarahs, 2018). 

The surface of the one-dimensional column (Fig. 10) is subjected to a 
quasi-static normal traction with a triangular form, while maintaining 
zero pore pressure. The remaining lateral surfaces and the base region of 
the one-dimensional element are subjected to the conventional bound
ary conditions necessary and sufficient to create one-dimensional con
ditions: i.e. (i) zero shear tractions on the lateral surfaces and the base of 
the one-dimensional element, (ii) zero normal displacements on the 
lateral surfaces and the base of the element, (iii) null Neumann 
boundary conditions for the pore fluid pressure along the lateral surfaces 
and the base and (iv) zero pore fluid pressures at the surface of the 
element. The kinematic boundary condition at the base of the column is 
specified as normal displacement constrained to ensure that the rigid 

Fig. 10. The one-dimensional problem for a consolidation element and the surface loadings.  

Fig. 11. Time-dependent surface displacement of the one-dimensional element- 
Biot poroelasticity model. 
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body displacements of the modelled region are controlled. The traction 
boundary condition at the base will identically match the externally 
applied tractions, σzz(L, t) = σ′

zz(L, t) for ∀t⩾0 . The initial conditions for 
the effective stress, the pore water pressure and the displacement are 
assumed to be zero. The upper surface of the one-dimensional element is 
subjected to an effective stress that varies as quasi-static loading- 
unloading sequences involving either two or ten loading-unloading cy
cles. Each triangular loading cycle lasts approximately 5 days. The third 
loading history involves the application of the effective stress as a near 
Heaviside step function applied over a finite time interval. These loading 
histories are illustrated in Fig. 10. 

We first consider the response of the Biot poroelastic model (iden
tical to the Terzaghi model for defining the effective stress relationship 
since α = 1) for the three cases of surface loading histories. Fig. 11 il
lustrates the time-dependent variation in the axial surface displacement 
of the one-dimensional element. The displacement-time histories illus
trate the type of displacements that are consistent with the loading and 
unloading of the element. For all three loading histories, the complete 
unloading of the element results in the time-dependent complete elastic 
recovery of the deformations of the element. Fig. 12 illustrates the time- 
histories of the excess pore water pressures that develop at the base of 
the one-dimensional element. All three loading histories contribute to 
the development of positive excess pore water pressures at the base of 
the element during the loading-unloading sequence, and upon release of 
the external stress, give rise to the generation of negative excess pore 
water pressure. In the case of the Heaviside step function form of 

loading, the negative excess pore fluid pressure generated at the base of 
the element is identical to the positive excess pore fluid pressure 
generated during the application of the step function form of loading, 
indicative of the response suggested in Fig. 9 (i). At the end of the 
loading histories, the surface displacements are fully reversed and the 
excess pore fluid pressures reduce to zero. 

We next consider the response of the one-dimensional element where 
the skeletal response is defined by the Cam Clay elasto-plastic model 
discussed previously. Fig. 13 illustrates the axial stress vs. axial strain 
response for the porous skeleton. The fluid-saturated poroelasto-plastic 
one-dimensional element is subjected to the three loading histories 
shown in Fig. 10. The displacement and pore fluid pressure boundary 
conditions and the stresses applied to the surface of the one-dimensional 
element are identical to those used in the analysis of the poroelasticity 
problem (Fig. 10). Attention is restricted to the computational results for 
the axial displacement at the point of application of the one-dimensional 
axial stress and the pore fluid pressures observed at the base of the one- 
dimensional element. Fig. 14 illustrates the time-dependent variation in 
the surface displacement of the one-dimensional element. As is evident, 
all three loading histories contribute to irreversible deformations of 
varying magnitude in the one-dimensional element. The time-dependent 
evolution of deformation during loading is also distinctly different from 
the time-dependent recovery during the unloading phase indicative of 
the influence of the stiffnesses during the loading and the unloading 
phase on the elastic recovery. Fig. 15 shows the variation of excess pore 
fluid pressure at the base of the one-dimensional element with a Cam 
Clay-based poroelasto-plastic response. Again, negative excess pore 

Fig. 12. Pore pressure development at the base of the one-dimensional 
element-Biot poroelasticity model. 

Fig. 13. The one-dimensional skeletal stress strain behaviour of the Cam Clay 
elasto-plastic model. 

Fig. 14. The time-dependent surface displacement of the one-dimensional 
element-Cam Clay poroelasto-plastic model. 

Fig. 15. Pore pressure development at the base of the one-dimensional 
element-Cam Clay poroelasto-plastic model. 
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fluid pressure develops during instantaneous unloading but, unlike in 
the purely poroelastic case, the magnitude during unloading is different 
from the magnitude during loading. This phenomenon is a common 
observation in the testing of clay soils. The early experiments conducted 
by Tan (1966) clearly indicated the development of negative pore fluid 
pressures during unloading (Fig. 16). At the termination of the uncon
solidation process, the negative pore pressures for all three loading his
tories reduce to zero. 

5. Concluding remarks 

The concept of recoverability of skeletal deformation is entrenched 
in the application of the one-dimensional theory of consolidation pro
posed by Terzaghi and extended to three dimensions by Biot. Under very 
restricted monotonic loading conditions, the classical theory of consol
idation is an acceptable outcome of these basic approaches. When quasi- 
static loading cycles are encountered, the irreversibility of the skeletal 
deformations need to be accommodated. The absence of the discussion 
of irreversibility of skeletal deformations can lead to unacceptable 
interpretation of the pore pressure development within the consoli
dating element. The influence of irreversibility of skeletal deformations 
during a cycle of loading and unloading needs to be examined within the 
context of a computational approach. Such extensions are relatively 
straightforward and the inclusion of the basic findings of studies similar 
to those presented in this article will complete a much-needed 
addendum to Terzaghi’s theory of consolidation and place this key 
theory in the development of the subject of soil mechanics in the correct 
setting. The paper also points to new research directions where the 
consolidation of geomaterials can be examined in the context of bi- 
modulus behaviour of the geomaterial skeleton and subject to unilat
eral constraints imposed by soil reinforcement. 
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homogeneous layers. Géotechnique 17, 261–273. 

Gibson, R.E., Schiffman, R.L., Cargill, K.W., 1981. The theory of one-dimensional 
consolidation of saturated clays. II Finite non-linear consolidation of thick 
homogeneous layers. Can. Geotech. J. 18, 280–293. 

Gibson, R.E., Gobert, A., Schiffman, R.L., 1989. On Cryer’s problem with large 
displacements. Int. J. Numer. Analyt. Methods Geomech. 13, 251–262. 

Gibson, R.E., Knight, K., Taylor, P.W., 1963. A critical experiment to examine theories of 
three-dimensional consolidation. Proc. European Conf. Soil Mech. Foundation Eng., 
Wiesbaden, 69–76. 

Green, A.E., Adkins, J.E., 1970. Large Elastic Deformations. Clarendon Press, Oxford.  
Green, A.E., Mkrtichian, J.Z., 1977. Elastic solids with different moduli in tension and 

compression. J. Elasticity 7, 369–386. 
Green, A.E., Naghdi, P.M., 1965. A dynamical theory of interacting continua. Int. J. Eng. 

Sci. 3, 231–241. 
Green, A.E., Naghdi, P.M., 1967. Remarks on a paper by RM Bowen. Arch. Rational 

Mech. Anal. 27, 175–180. 
Harr, M.E., 1966. Foundations of Theoretical Soil Mechanics. McGraw-Hill Book Co, New 

York.  
Hill, J.M., Dewynne, J., 1987. Heat Conduction. Blackwell Scientific Publications, 

Oxford.  
Ichikawa, Y., Selvadurai, A.P.S., 2012. Transport Phenomena in Porous Media: Micro/ 

Macro Behaviour. Springer Verlag, Berlin.  
Jones, R.M., 1977. Stress-strain relations for materials with different moduli in tension 

and compression. Am. Inst. Aeronaut. Astronaut. J. 15, 16–23. 
Kelvin, Lord (W. Thompson), 1878. On the thermo-elastic, thermo-magnetic and 

pyroelectric properties of matter, Quart. J. Math., 1, 4–27. 
Kravtchenko, J., Sirieys, P.M. (Eds), 1966. Rheology and Soil Mechanics. Proceedings of 

the IUTAM Conference, Grenoble, 1964, Springer-Verlag, Berlin. 
Krynine, D.P., 1947. Soil Mechanics. Its Principles and Structural Applications. McGraw- 

Hill Book Co Inc., New York.  
Lamb Jr, G.L., 1995. Introductory Applications of Partial Differential Equations. With 

Emphasis on Wave Propagation and Diffusion. John Wiley and Sons Inc., New York.  
Lan, Q., Selvadurai, A.P.S., 1996. Interacting indenters on a poroelastic half-space. 

J. Appl. Math. Phys. (ZAMP) 47, 695–716. 
Lapidus, L., Pinder, G.F., 1999. Numerical Solution of Partial Differential Equations in 

Science and Engineering. Wiley-Interscience, New York.  
Lee, E.H., 1969. Elastic-plastic deformation at finite strains. J. Appl. Mech Trans. ASME 

36, 1–6. 
Lewis, R.W., Schrefler, B.A., 1998. The Finite Element Method in the Static and Dynamic 

Deformation and Consolidation of Porous Media. John Wiley, New York.  
Lubarda, V.A., 2004. Constitutive theories based on multiplicative decomposition of 

deformation gradient: Thermoelasticity, elastoplasticity and biomechanics. Appl. 
Mech. Rev. 57, 95–108. 
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