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Poroelastic properties of rocks 
with a comparison of theoretical 
estimates and typical experimental 
results
A. P. S. Selvadurai1* & A. P. Suvorov2

The paper develops theoretical estimates for the parameters that describe the classical theory of 
poroelasticity for a fluid-saturated porous medium, with a porous elastic skeleton that can exhibit 
imperfect grain contacts. The results for the poroelastic properties predicted from the modelling are 
compared with experimental results available in the literature.

The classical theory of poroelasticity proposed by M.A.  Biot1 is  recognized2–10 as a key development in the 
description of the continuum theory of fluid-saturated porous media. The scope of poroelasticity and related 
advances has found applications far beyond the originally envisaged topic of geological materials and soil 
mechanics. Developments in this area are too vast to cite in their entirety, and applications to diverse topics 
such as (1) mechanics of  bone11, (2) hyperelastic soft  tissues12–15 (3) poroelastic media experiencing fracture, 
damage, failure and irreversible  processes16–20, (4) geologic sequestration and ground  subsidence21–27, (5) thermo-
hydro-mechanics and geoenvironmental  processes28–36, (6) contact and inclusion  problems37–42, and (7) in the 
methodologies for the estimation of the material properties of Biot  poroelasticity43–52, are briefly documented 
in the cited articles.

The estimation of the poroelasticity parameters can be a challenging exercise particularly when the rock 
has low permeability, when saturation of an initially dry pore space requires an inordinate amount of  time49. 
Also, there are no assurances that the entire pore space becomes saturated during a saturation process and the 
presence of unsaturated regions can lead to erroneous estimates of the poroelastic parameters. Examples where 
alternative approaches can be adopted, for example, for the estimation of the permeability or the Biot coefficient 
of low permeability rocks are discussed  in49–53. Therefore, any theoretical procedure that can be used to estimate 
poroelasticity properties of rocks will enhance the applicability of the theory.

Analytical concepts
The classical theory of poroelasticity for an isotropic medium involves the skeletal deformability properties 
characterized by the skeletal or effective shear modulus ( Geff  ), the skeletal or effective bulk modulus ( Keff  ), the 
Biot coefficient α and the permeability k . We develop analytical estimates for these isotropic poroelastic rocks 
and compare the estimates with experimental estimates of these properties for various rocks such as sandstones, 
limestones and granites-marbles that can be obtained  from43,44 and are presented in Tables 1 and 2, respectively. 
Missing properties in Table 2 are computed from available results using well known relationships applicable 
to isotropic elastic  solids54,55. For example, the Biot modulus  N in Table 2 is computed using the relationship

where B is Skempton’s pore pressure  coefficient56. Analytical estimates of material properties of rocks can also 
be obtained using the microstructural models presented  in57,58 (see  also59,60) . In the microstructural models, the 
porous rock consists of non-porous solid grains, typically spherical in shape, and the space between the grains is 
identified as the pore space. The porosity of rock is denoted by φ . The interface between the neighboring grains 
is assumed imperfect and characterized by a normal contact stiffness kn  and a tangential stiffness kt , which can 
be developed by appeal to the classical studies by  Mindlin61 and Mindlin and  Deresiewicz62. Schematic views 
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of the idealized concepts relating to the definitions of the granular assembly, porosity, contact stiffnesses and 
hydraulic aperture at grain contacts are shown in Fig. 1.

References to these studies and other relevant expositions on contact mechanics can be found in the 
 studies63–68. Applications with special reference to geomaterials are given  in69–71. The interfaces are considered 
to be very thin and are assumed to have no influence on the overall porosity φ . Denoting the vector normal 
to the interface by n , the traction vector acting on the interface is denoted by T , the displacement jump at the 
interface is denoted by [u] and the pore pressure is denoted by p . We can write the constitutive equations for the 
interface in the form

Table 1.  Poroelastic moduli for various rocks. Data is taken  from44. [The elastic moduli are expressed in GPa. 
Permeability k is expressed in  m2].

Rock Geff Keff ν Ku νu Km α B N φ k

Ruhr sandstone 13 13 0.12 30 0.31 36 0.65 0.88 41 0.02 1.97E-19

Tennessee marble 24 40 0.25 44 0.27 50 0.19 0.51 81 0.02 9.87E-22

Charcoal granite 19 35 0.27 41 0.30 45 0.27 0.55 84 0.02 9.87E-22

Berea sandstone 6.0 8.0 0.20 16 0.33 36 0.79 0.62 12 0.19 1.87E-16

Westerly granite 15 25 0.25 42 0.34 45 0.47 0.85 75 0.01 3.94E-21

Weber sandstone 12 13 0.15 25 0.29 36 0.64 0.73 28 0.06 9.87E-19

Ohio sandstone 6.8 8.4 0.18 13 0.28 31 0.74 0.50 9.0 0.19 5.53E-18

Pecos sandstone 5.9 6.7 0.16 14 0.31 39 0.83 0.61 10 0.20 7.89E-19

Boise sandstone 4.2 4.6 0.15 8.3 0.31 42 0.85 0.50 4.7 0.26 7.89E-16

Table 2.  Poroelastic moduli for various rocks. Data is taken  from43. [Elastic moduli are expressed in GPa].

Rock Geff Keff Km α B N φ

Sandstone 6.3086 8.3 34.1 0.7566 0.67 14.9063 0.19

Sandstone 5.1506 6.7 26.3 0.7452 0.85 20.8484 0.19

Sandstone 5.6262 5.7 25.4 0.7756 0.76 13.6047 0.19

Sandstone 5.4703 6.7 30.1 0.7774 0.81 18.8520 0.19

Sandstone 5.1358 5.6 28.7 0.8049 0.68 10.4514 0.19

Limestone 11.0496 20.5 70.7 0.7100 0.49 21.6953 0.13

Limestone 13.0563 22.0 74.4 0.7043 0.42 18.6304 0.13

Figure 1.  The idealized porous medium.
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where Tt = T− (T.n)n and ut = u − (u.n)n . Hence, if the interface is permeable or open, the fluid pressure 
contributes to the normal component of the traction vector, and if the interface is impermeable or closed, the 
fluid pressure has no influence at the interface. The fraction of open interfaces is denoted by r . Thus, r = 0 if all 
the interfaces are closed, and r = 1 if all the interfaces are open. Since the porosity measure utilizes only intra-
granular spaces, (Fig. 1) the porosity is expected to have no influence on the interface stiffnesses kn and kt.

In addition, we can consider the stress ⌢T acting on a grain Gi at the interface between the grains Gi and Gj . 
We can also relate this stress to the displacement jump [u] . Let the coefficients of proportionality in these rela-
tions for the normal and tangential components of the stress vector ⌢T be denoted by Kn  and Kt , respectively. It 
is  shown57 that

Estimates of the elastic properties are obtained from a self-consistent method that is applicable to particulate 
aggregates developed  in72–74 and summarized  in75. The following normalized quantities are introduced

where R is the radius of the grain. Experimental values for the grain sizes of most rocks is provided by granulo-
metric data. In what follows, we make the assumption that the grains are rigid. In this case, the self-consistent 
estimate of the shear modulus can be obtained by solving the following cubic equation:

Once the normalized shear modulus M  is known, the self-consistent estimate of the bulk modulus can be 
obtained from

From the above relationship, we have

Therefore, if the effective shear modulus Geff  and the effective bulk modulus Keff  are known from experi-
ments, one can determine the constant M from (6) and consequently estimate the ratio ρ = kt/kn using (4): i.e.

It should be  noted76,77 that self-consistent schemes are not without flaws and should be judiciously applied 
when extreme limiting cases are being considered.

Numerical results for deformability behaviour
Figure 2 shows estimates of interface stiffness ratio ρ = kt/kn plotted against the porosity φ . The estimates 
are obtained from (7), based on the values of bulk and shear moduli listed in Table 144 and Table 243. It can be 
observed that the ratio ρ ranges between 0.3 and 0.6 for sandstones and is approximately equal to 0.1 for lime-
stones and granites-marbles.

It is also instructive to plot the ratio ρ as a function of the parameter (Geff /Keff ) = (M/K) . Figure 3 shows 
the ratio ρ  plotted against (M/K) . It turns out that ρ  is approximately a linear function of the parameter (M/K).

The interfacial stiffness KnR  can be obtained from the definition of M  (3), i.e.,

Using (6), we also obtain the ratio of the interfacial stiffness KnR to the effective bulk modulus as follows:

Figure 4 shows the variation in the normalized interfacial stiffness (KnR/K
eff ) with porosity φ . It can be seen 

that this dependency can be conveniently approximated by a linear relationship.
When the grains are rigid, the estimate for the Biot coefficient α can be obtained in the form
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where r is the fraction of open or permeable interfaces, 0 ≤ r ≤ 1 . Using the expression for the constant M given 
by (6), we can represent the Biot coefficient as

(10)α = 1−
3K

2
(1− r)

Figure 2.  Ratio of interface stiffnesses ρ versus porosity.

Figure 3.  Ratio of interface stiffnesses ρ versus compressibility parameter (Geff /Keff ) = (M/K).
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If the Biot coefficient is known from experimental  data10,43,44,50,51,78,79, the fraction of open interfaces r  can 
be estimated from (11) as

Figure 5 shows estimates for the parameter r for rocks given in Tables 1 and 2. The parameter r is plotted as 
a function of the porosity φ and the value of r is obtained from (12) by matching the Biot coefficient α with the 
experimental values, indicated in Tables 1 and 2. The grains are modelled as nearly spherical shapes and the pore 
space is also modelled as a nearly spherical shape. The results can be influenced by the shape of the pores and 
this was addressed in a previous  study53.

In Fig. 6 we indicate the dependency of the Biot coefficient α on the porosity φ . This figure demonstrates 
that by properly choosing the microstructural parameters M (or K ), ρ and r  it is possible to exactly match the 
elastic constants Keff  , Geff  and α with the experimental data. It can be observed from Fig. 6 that, on average, for 
sandstones and limestones the Biot coefficient is equal to 0.75 and for the marbles-granite group the Biot coef-
ficient can be lower and in the range 0.2 to 0.5. This observation is consistent with results obtained recently for 
the Lac du Bonnet granite recovered from the Canadian  Shield79.

The self-consistent estimate of Biot modulus N can be obtained from the  relationship57

When the estimates for the Biot modulus N  obtained from the relationship (13) are compared with the 
experimental values of N there is a large discrepancy. To eliminate this discrepancy, the compressibility of the 
fluid phase must be taken into account, which gives another expression for the Biot modulus
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Figure 4.  Normalized interfacial stiffness (KnR/K
eff ) versus porosity.
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Figure 5.  Fraction of open interfaces r versus porosity. [The limestones data points are easy to identify by the 
porosity value of 0.13. Keeping two types of rocks (sandstones and limestones) in one group seems possible in 
this case because they have similar values for fraction of open interfaces].

Figure 6.  Biot coefficient α versus porosity.
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where Kf  is the bulk modulus of the fluid. The interface stiffness KnR was estimated first from Eq. (9). This value 
is then substituted into (13) or (14) to estimate the Biot modulus N . Thus, a knowledge of the grain size radius 
is not required.

Figure 7 shows experimental values of the Biot modulus N and the corresponding theoretical estimates for N 
obtained from (14). Theoretical values are obtained by setting the bulk modulus of the fluid Kf = 2 GPa , which 
is typically applicable to water. An acceptable agreement between the theoretical and experimental values is  
obtained by choosing this constant value of Kf .

Estimates for permeability
The self-consistent estimate of permeability k is obtained as

where η is the interface permeability, which can be related to the aperture of the contact through the usual paral-
lel plate  model55,80–83. i.e.

 Here e is the spacing between two neighboring grains (joint opening) and R is the grain radius. By substituting 
(16) into (15) we obtain

The result (17) contains the additional factors that can influence permeability, including the grain size, bulk 
porosity and a measure of the fraction of open interfaces. If these parameters can be accurately estimated, the 
result gives an added perspective for estimating permeability. Since the equation for permeability (17) is used as 
an equality constraint in the optimization problem and the solution to the optimization problem exists, then the 
proper choice of grain radius and joint opening allows us to match the permeability obtained from theoretical 
estimates (17) with the experimental data.

It should be noted that the definition of the hydraulic aperture does not account for any fine particles that 
can be present in sandstone and carbonate rocks. As has been  suggested84, an average value for the joint opening 
can be set as e = 0.5 µm and for the radius R = 50 µm . It should be noted that these assigned values are typical 
of tight sandstones and should not be construed as an “average value”. They fulfil the function of normalizing 
values. However, by using these particular values it is not possible to match experimental values of permeability, 
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Figure 7.  Biot modulus N versus porosity.
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presented in Table 1, with the theoretical estimate (17). Thus, we can introduce the following quantities, which 
represent deviations from established values

When the results (18) are substituted into (17), we obtain

We can rewrite (19) as an equality constraint in terms of variables Rn and e3n : i.e.

 Here k is the value of permeability measured experimentally. As the objective function to be minimized, we can 
take the sum of deviations of variables Rn and en from unity i.e.,

 We note that Rn and e3n must be positive, which constitutes inequality constraints.
Solution to this non-linear optimization problem for the rocks presented in Table 1 is shown in Table 3. The 

solution was obtained with the help of MATLAB function fmincon. It may be observed that Rn and en are close 
to unity only for Berea sandstone and Boise sandstone. For other sandstones, the radius R can be twice 50 µm 
and the spacing between neighboring grains can be 5–7 times smaller than the normative value of 0.5 µm . The 
largest deviations are observed for the granite-marble group. Here, the grain radius R is about 5 to 6 times larger 
than the normative value of 50 µm , and e is , on average, 20 times smaller than 0.5 µm.

Concluding remarks
The estimation of the poroelasticity properties of rocks can proceed along two avenues; the first involves their 
direct evaluation from experimental data and the second approach is to utilize the theories developed for mul-
tiphasic composites to arrive at estimates for the poroelasticity parameters. Both approaches have their advantages 
and disadvantages. The purely experimental approach is void of consideration of the micro-mechanical input to 
the poroelastic parameters but provides the data set that can be used in the engineering calculation of poroelastic 
responses. The approaches based on multiphasic theories have to rely on idealized theoretical assumptions that 
lead to parameter estimates but adds a new dimension by introducing the properties of the fabric that compose 
the poroelastic material. The prudent option is to rely on both approaches and to take advantage of the merits of 
each approach to provide the validations that will enable the assignment of poroelastic parameter estimates. The 
results of the paper provide correlations between (1) porosity of a poroelastic solid and the grain-grain contact 
stiffnesses at the particulate level, (2) the interface stiffness ratio and effective shear to bulk modulus ratio, (3) 
open interface fraction and porosity, (4) the variation of the Biot coefficient and Biot modulus on porosity and 
(5) the dependency of permeability on microstructural properties. The research utilizes the material data avail-
able in the literature and provides the summary related to (1) to (4) in terms of the basic rock types relevant 
to sedimentary (sandstones, limestones) and igneous (granite, basalt) rocks. The data presented enables the 
preliminary identification of poroelastic parameters, which can be complemented by a rigorous program of 
laboratory tests. In the absence of experimental data for poroelastic properties of a particular rock, the findings 
of the research can be treated as a data set for preliminary geosciences calculations that requires recourse to the 
theory of linear poroelasticity. Since the original experimental data does not contain ranges or error estimates, 
the study can provide only firm values of the parameters. The measurement of the properties of saturated rocks 
with low permeability is generally a challenging task in the laboratory since it is difficult to ensure that the sam-
ple is fully saturated during testing. Such theoretical approaches can have practical applications in geotechnical 
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3
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Table 3.  Deviations of radius of the grain R and joint opening e from their nominal values of 50 µm, and 
0.50 µm, respectively.

Rock Rn en

Ruhr sandstone 2.269007 0.146912

Tennessee marble 5.960993 0.055916

Charcoal granite 6.638004 0.050212

Berea sandstone 1.000000 0.836472

Westerly granite 5.510982 0.060483

Weber sandstone 1.544066 0.215891

Ohio sandstone 1.176403 0.283350

Pecos sandstone 2.055110 0.162203

Boise sandstone 1.000000 1.052523
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engineering and rock mechanics. Finally, the paper presents a canonical methodology for including additional 
parameters in the development of concepts for examining poroelastic parameters. In efforts of this nature, the 
microstructural parameters are introduced within the framework of a plausible concept. The progress of the 
modelling will require novel experimental methodologies, in the area of geomechanics and material science for 
accurately estimating the parameters arising from the developments.

Received: 31 January 2022; Accepted: 15 June 2022
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