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Abstract
The paper describes the displacement function approach first proposed by AJM Spencer for the formulation and solution
of problems in second-order elasticity theory. The displacement function approach for the second-order problem results
in a single inhomogeneous partial differential equation of the form E4c(x) = f (x), where E2 is Stokes’ operator and f (x)
depends only on the first-order or the classical elasticity solution. The second-order isotropic stress p(x) is governed by
an inhomogeneous partial differential equation of the form r2p(x) = g(x), where r2 is Laplace’s operator and g(x)
depends only on the first-order or classical elasticity solution. The introduction of the displacement function enables the
evaluation of the second-order displacement field purely through its derivatives and avoids the introduction of arbitrary
rigid body terms normally associated with formulations where the strains need to be integrated. In principle, the displa-
cement function approach can be systematically applied to examine higher-order effects, but such formulations entail
considerable algebraic manipulations, which can be facilitated through the use of computer-aided symbolic mathematical
operations. The paper describes the advances that have been made in the application of Spencer’s fundamental contribu-
tion and applies it to the solution of Kelvin’s concentrated force, Love’s doublet, and Boussinesq’s problems in second-
order elasticity theory.

Keywords
Second-order elasticity, Spencer’s displacement function, rubber-like elastic materials, Kelvin’s internal force problem,
Love’s doublet problem, Boussinesq’s problem

1. Introduction

Rubber-like elastic materials are characterized by their ability to sustain large strains without fracture
and damage. The seminal works of RS Rivlin and co-workers presented a comprehensive and systematic
approach to the description of hyperelastic materials, commencing with the formulation of constitutive
relations by appeal to the theory of invariants, the solution of benchmark problems involving homoge-
neous strains, inflation and eversion of annular regions, torsion and bending of prismatic bodies, and
performing experiments to validate the mathematical approach. References to these accomplishments
are also contained in the collected works of RS Rivlin edited by Barenblatt and Joseph [1] and well
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documented [2–20] in terms of the contribution of these works to the overall advancement of non-linear
continuum mechanics and, in particular, the development of constitutive equations for rubber-like elas-
tic materials [21–35].

When dealing with hyperelastic materials, it is essential to consider the mathematical formulations
and the relevant strain energy functions that can accommodate large strains in a consistent fashion. In
addition, the realm of application of the hyperelasticity theory is also important. For example, the form
of a strain energy function needed to model very large strains in biological tissues [36–43], and may have
little relevance to applications dealing with the mechanics of industrial rubber mountings that experience
moderately large strains and vice versa [44–51]. A case in point relates to the experiments reported by
Rivlin [52] on the torsion of a pure gum rubber cylinder measuring 53.85mm in diameter and 25.4mm
in length. With these dimensions, the problem is that of the torsion of a disk made of gum rubber and
the torque required to induce measurable large strains can be substantial, to the extent that tensile tear-
ing or even surface instabilities [53] can materialize.

The equations governing large strain behavior of rubber-like materials are highly non-linear and
unless recourse is made to computational approaches [54–59], the possibility of obtaining analytical
solutions to boundary value problems involving the complete non-linear hyperelasticity formulation
with generalized forms of the strain energy function is perhaps unrealistic. For this reason, the early
research applications in the area of finite elasticity also focused on developing solutions to problems
through the method of successive approximations, where the first-order solution corresponded to the
relevant classical elasticity solution. The mathematical developments in this area commence with the
studies by Signorini [60–62], Misxicu [63], Stoppelli [64], Rivlin [65], Sheng [66], and Grioli [67]. The
notion of higher-order theories of elasticity that can be obtained by the suitable expansion of the strains
in terms of a small parameter is also discussed by Murnaghan [68,69] but without the development of a
formal approach for the solution of boundary value problems. Also, it should be noted that the second-
order effects of interest to this paper result from the manifestations of large strains in the hyperelastic
medium as opposed to non-linearities that result from purely large deflections and large rotations of a
medium that maintains small strain elastic behavior (e.g., the elastica). An appraisal of the work of
Signorini is also provided by Capriz and Podio-Guidugli [70]. Reviews of the topic of second-order elas-
ticity are given in Truesdell and Noll [7], Green and Adkins [8], Spencer [9] and Rivlin [65], and exten-
sive developments and applications of the theory of second-order elasticity to boundary value problems
are documented in the literature cited. For example, Adkins et al. [71] presented a complete develop-
ment of the plane strain problem in finite elasticity in generalized curvilinear coordinates and with no
restriction on the form of the strain energy function. Complex variable techniques [72,73] were used to
solve certain benchmark plane strain problems. Adkins et al. [71] also discuss the application of the
method of successive approximations, where the first-order approximation relates to the plane strain
problem in classical elasticity and the second-order elasticity ensues. Green and Shield [74] continued
the developments in the Adkins et al. [71] generalized tensor formulation of the second-order problem
applicable to arbitrary forms of the strain energy function. A complex potential function approach was
then used to arrive at the relevant integral equations that can be used to examine problems of axial ten-
sion and torsion in prismatic bodies that included elliptical cylinders. Adkins and Green [75] presented
a complex variable approach to the study of two-dimensional problems in second-order elasticity
theory. Blackburn and Green [76] also used two complex potential functions for the analysis of the
second-order torsion problem and extended the studies to include bending of a cylinder. Blackburn [77]
subsequently extended the work to include the torsion of a region bounded by a single closed curve of a
transversely isotropic incompressible elastic material. The second-order bending of an isotropic incom-
pressible cylinder by terminal couples was also examined by Blackburn [78] who reduced the problem to
the solution of a single boundary value for two complex potential functions and the first-order problem
corresponded to the classical boundary value problem. The axial extension that occurs during the twist-
ing of cylinder was observed by Rivlin [52]. The problem was extended by Green [79] to include arbi-
trary forms of the strain energy function. The torsion problem was also examined by Sheng [66] using a
stress function technique. Green and Spratt [80] investigated the second-order effects in the deformation
of both compressible and incompressible elastic bodies and considered the torsion of a solid of revolu-
tion. A stress function is used to satisfy the incompressibility condition and equations of equilibrium for
second-order elasticity in the axial and radial directions give rise to an inhomogeneous bi-harmonic
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equation for the stress function. Specific results for the torsion of a cone were presented in exact closed
form and the second-order normal force generated during first-order torsion was evaluated explicitly.
Application of complex variable methods to the study of two-dimensional problems in finite elasticity is
discussed by Adkins et al. [81] and the use of the procedures to the formulation of problems in second-
order elasticity for both compressible and incompressible elastic solids is also briefly discussed. The
work of Carlson and Shield [82] continued the application of the successive approximation technique to
include third-order effects applicable to a general class of plane problems of hyperelastic solids and spe-
cific solutions to boundary value problems are given for materials with a strain energy function of the
Mooney–Rivlin type. Extensive use of complex variable methods is employed to develop the higher-
order solutions to a range of problems of engineering interest. Chan and Carlson [83] examined the
second-order incompressible elastic torsion and used, through several changes of the dependent vari-
ables, a direct procedure that reduces the second-order torsion problem to the solution of a two-
dimensional classical linear elasticity problem without a pseudo body force term. The procedure was
used to examine the second-order torsion of a bar with a square cross-section. Hill [84] re-examined the
approach proposed by Chan and Carlson [83] and proved that the technique is completely general if the
strain energy function for the incompressible elastic material is a symmetric function of the remaining
principal invariants.

The application of a displacement function approach for the analysis of the second-order problem for
incompressible elastic materials was first identified by Spencer in 1968 (see Appendix 1). A formal devel-
opment of the application of the displacement function technique to axisymmetric problems in second-
order elasticity for incompressible elastic materials was presented by Selvadurai and Spencer [85] and a
collection of applications to both axisymmetric and two-dimensional problems in incompressible elasti-
city were presented by Selvadurai [86]. The strain energy function that was adopted for the analysis of
problems in second-order elasticity was of the Mooney–Rivlin form and considering the expansion of
the response functions in the general constitutive relationship for isotropic incompressible elastic materi-
als, it can be shown that the Mooney–Rivlin form of the strain energy function is sufficient for describ-
ing the second-order effects in incompressible elastic materials. The basic methodology proposed by
Spencer was adopted to formulate plane strain problems in second-order elasticity theory [87,88], the
torsion of annular regions [89], and the axisymmetric loading of a rigid spherical inclusion in an elastic
solid of infinite extent [90]. The studies were extended [91] to include axisymmetric problems dealing
with spherical cavities and rigid spherical inclusions embedded in incompressible elastic media.

Other approaches have been used for the formulation and solution of problems in second-order elasti-
city theory. For example, Shield [92] used an energy method with second-order effects and applied it to
examine the response of bars composed of compressible hyperelastic materials and subject to the action of
torsion under an initial tension. Choi and Shield [93] used an inverse deformation approach to examine
the category of second-order elasticity problems involving both the indentation of half-space regions and
problems related to an infinite elastic solid containing a spherical cavity. Carroll and Rooney [94] utilize
procedures whereby the solution of the second-order elasticity problem can be further facilitated by adopt-
ing suitable representations of the second-order incompressibility condition. Carroll and Rooney [95] also
used the Strain Potential approach proposed by Love [96] to develop the second-order solution to Lord
Kelvin’s problem [97] (see also [98–105]), which was originally developed and formulated in terms of
Spencer’s displacement function by Selvadurai [86]. The second-order problem of the torsional indentation
of an incompressible elastic half-space by a bonded flat circular punch was considered in the paper by
Lindsay [106]. Goodman and Naghdi [107] adopt displacement functions that are similar to the Neuber–
Papkovich representations for the solution of problems in linear elasticity [98–105,108] to examine the use
of displacement functions in second-order elasticity theory for compressible elastic materials, and present
solutions to certain plane strain problems in second-order elasticity theory involving compressible elastic
materials. Lindsay [109] also considered the problem of the torsion of an incompressible slab; the problem
is formulated by recourse to Weber–Orr transforms that are numerically inverted to produce relevant
numerical results. Guo and Kaloni [110] have presented exact closed form solutions to the second-order
elasticity problem for a compressible elastic half-space, which is subjected to a non-uniform shear load.
The approach used involves the direct application of integral transform techniques to solve the analogous
first-order or classical elasticity problem. In addition to the application of the theory of second-order elas-
ticity to the study of three-dimensional problems, the method of successive approximations was applied by
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Kydoniefs and Spencer [111] to examine the finite inflation of a toroidal membrane. Similar successive
approximation techniques were used by Kydoniefs [112] to examine elastic membrane problems. The
scope of second-order elasticity in terms of potential applications to rubber-like materials in a technologi-
cal setting makes the development of analytical approaches a worthwhile exercise.

In this study, we illustrate the application of Spencer’s displacement function approach for the formulation
and solution of the second-order problem related to Kelvin’s fundamental problem, which deals with the
application of a concentrated force at the interior of an incompressible elastic medium of infinite extent. The
strain energy function for the elastic medium is assumed to be of the Mooney–Rivlin form. In the case of an
incompressible elastic medium, the similarity between Kelvin’s problem for the concentrated force acting at
the interior of an infinite space region and Boussinesq’s problem for a normal force acting at the surface of
an elastic half-space is well known [99–101,103,113,114]. The displacement function approach gives explicit
solutions to Kelvin’s problem and the methodology is also applied to develop a formal second-order solution
to Love’s doublet problem and Boussinesq’s problem for a concentrated normal force on the surface of a
half-space.

2. Governing equations

We follow the developments documented in Green and Adkins [8], Green and Spratt [80], Selvadurai
and Spencer [85], and Selvadurai [86] and adopt the presentation for axially symmetric problems in terms
of the displacement function approach. We denote particles in the reference configuration by (R,Y, Z)
and particles in the deformed configuration by (r, u, z). The matrix of deformation gradients in the direc-
tions of R,Y, Z is given by:

F=

∂r
∂R

0 ∂r
∂Z

0 r
R

0
∂z
∂R

0 ∂z
∂Z

0
@

1
A: ð1Þ

We consider incompressible elastic materials for which,

det F=
r

R

∂r

∂R

∂z

∂Z
� ∂r

∂Z

∂z

∂R

� �
= 1: ð2Þ

The matrix of physical components of the left Cauchy–Green strain tensor, referred to the (r, u, z)
coordinates, is:

B=FFT =

∂r
∂R

� �2
+ ∂r

∂Z

� �2
0 ∂r

∂R
∂z
∂R

+ ∂r
∂Z

∂z
∂Z

0 r2

R2 0
∂r
∂R

∂z
∂R

+ ∂r
∂Z

∂z
∂Z

0 ∂z
∂R

� �2
+ ∂z

∂Z

� �2

0
B@

1
CA: ð3Þ

and, using equation (2), the inverse of equation (3) can be written as:

B�1 =

r2

R2
∂z
∂R

� �2
+ ∂z

∂Z

� �2
h i

0 � r2

R2
∂r
∂R

∂z
∂R

+ ∂r
∂Z

∂z
∂Z

� �
0 ∂r

∂R
∂z
∂Z
� ∂r

∂Z
∂z
∂R

� �2
0

� r2

R2
∂r
∂R

∂z
∂R

+ ∂r
∂Z

∂z
∂Z

� �
0 r2

R2
∂r
∂R

� �2
+ ∂r

∂Z

� �2
h i

0
BBB@

1
CCCA: ð4Þ

The basis for the method of successive approximations is that the displacement field can be expanded
in a power series in terms of a small parameter, e, which would naturally evolve in the analysis of the
first-order problem; we assume that for axisymmetric states of deformation, the coordinates (r, u, z) can
be represented in the form:
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r = R + eu1 R,Zð Þ+ e2u2 R, Zð Þ+O e3
� �

,

u =Y,

z = Z + ew1 R,Zð Þ+ e2w2 R, Zð Þ+O e3
� �

,

ð5Þ

where the suffixes 1 and 2 refer to the first-order and second-order components, respectively. Using equa-
tion (5) in equation (2), we obtain the first- and second-order incompressibility conditions as follows:

∂u1

∂R
+

u1

R
+

∂w1

∂Z
= 0,

∂u2

∂R
+

u2

R
+

∂w2

∂Z
=

u2
1

R2
+

∂u1

∂Z

∂w1

∂R
� ∂u1

∂R

∂w1

∂Z
= G R,Zð Þ:

ð6Þ

For an isotropic incompressible elastic solid, the general form of the constitutive equation for the
symmetric contravariant stress tensor T [80] can be reduced to the form:

T= � pI+ F1B+ F�1B
�1, ð7Þ

where Fi(I1, I2)(i = 1, � 1) are the scalar functions of the principal invariants I1 and I2 of the strain ten-
sor B, p is a scalar pressure and, for incompressibility, I3 = 1. We assume that the isotropic stress and the
stress tensor can also be expanded in power series in terms of the parameter e in the forms:

p =
X‘

n = 1

enpn R,Zð Þ; T=
X‘

n = 1

enTn R, Zð Þ: ð8Þ

The first-order constitutive equation can be reduced to the forms:

T (1)
rr = � p1 + 2m

∂u1

∂R
,

T (1)
uu = � p1 + 2m

u1

R
,

T (1)
zz = � p1 + 2m

∂w1

∂Z
,

T (1)
rz = m

∂u1

∂Z
+

∂w1

∂R

� �
,

ð9Þ

where m( = 2(C1 + C2)) is the linear elastic shear modulus, and the constants C1 and C2 can be identified
with the material constants characterizing the Mooney–Rivlin form of the strain energy function:

W I1, I2ð Þ= C1 I1 � 3ð Þ+ C2 I2 � 3ð Þ: ð10Þ

The constitutive equations for the second-order stress components can be written as:

T (2)
rr = � p2 + 2m

∂u2

∂R
+ trr,

T (2)
uu = � p2 + 2m

u2

R
+ tuu,

T (2)
zz = � p2 + 2m

∂w2

∂Z
+ tzz,

T (2)
rz = m

∂u2

∂Z
+

∂w2

∂R

� �
+ trz,

ð11Þ

and the components trr , tuu, tzz, and trz are given by:
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trr = m
∂u1

∂R

� �2

+
∂u1

∂Z

� �2
" #

� 2C2 4
∂u1

∂R

� �2

+
∂w1

∂R
+

∂u1

∂Z

� �2
" #

,

tuu = m� 8C2ð Þ u1

R

� 	2

,

tzz = m
∂w1

∂Z

� �2

+
∂w1

∂R

� �2
" #

� 2C2 4
∂w1

∂Z

� �2

+
∂w1

∂R
+

∂u1

∂Z

� �2
" #

,

trz = m
∂u1

∂R

∂w1

∂R
+

∂u1

∂Z

∂w1

∂Z


 �
� 4C2

∂u1

∂R
+

∂w1

∂Z


 �
∂w1

∂R
+

∂u1

∂Z


 �
:

ð12Þ

For axial symmetry, the equations of equilibrium for the symmetric contravariant stress T referred to
the deformed coordinate system can be written as:

∂Trr

∂r
+

∂Trz

∂z
+

Trr � Tuu

r
= 0,

∂Trz

∂r
+

∂Tzz

∂z
+

Trz

r
= 0:

ð13Þ

Using the expansions in powers of e and noting the derivatives:

∂

∂r
= 1� e

∂u1

∂R

� �
∂

∂R
� e

∂w1

∂R

∂

∂Z
,

∂

∂z
= 1� e

∂w1

∂Z

� �
∂

∂Z
� e

∂u1

∂Z

∂

∂R
,

ð14Þ

the first-order equations of equilibrium take the forms:

∂T (1)
rr

∂R
+

∂T (1)
rz

∂Z
+

T (1)
rr � T (1)

uu

R
= 0,

∂T (1)
rz

∂R
+

∂T (1)
zz

∂Z
+

2T (1)
rz

R
= 0,

ð15Þ

and the second-order equations of equilibrium take the forms:

∂T (2)
rr

∂R
+

∂T (2)
rz

∂Z
+

T (2)
rr � T (2)

uu

R
= HR R, Zð Þ,

∂T (2)
rz

∂R
+

∂T (2)
zz

∂Z
+

T (2)
rz

R
= HZ R,Zð Þ,

ð16Þ

where:

HR R, Zð Þ= ∂u1

∂R

∂T (1)
rr

∂R
+

∂w1

∂R

∂T (1)
rr

∂Z
+

∂w1

∂Z

∂T (1)
zz

∂Z
+

∂u1

∂Z

∂T (1)
rz

∂R
+

u1

R2
T (1)

rr � T (1)
uu

� �
,

HZ R, Zð Þ= ∂u1

∂R

∂T (1)
rz

∂R
+

∂w1

∂R

∂T (1)
rz

∂Z
+

∂w1

∂Z

∂T (1)
zz

∂Z
+

∂u1

∂Z

∂T (1)
zz

∂R
+

u1

R2
T (1)

rz :

ð17Þ

The second-order equations of equilibrium can be expressed in the forms:
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� ∂p2

∂R
+ m 2

∂2u2

∂R2
+

∂2w2

∂R∂Z
+

∂2u2

∂Z2
+

2

R

∂u2

∂R
� 2u2

R2

� �
+

∂trr

∂R
+

∂trz

∂Z
+

trr � tuu

R
= HR R, Zð Þ,

� ∂p2

∂Z
+ m 2

∂2w2

∂Z2
+

∂2u2

∂R∂Z
+

∂2w2

∂R2
+

1

R

∂u2

∂Z
+

1

R

∂w2

∂R

� �
+

∂trz

∂R
+

∂tzz

∂Z
+

trz

R
= HZ R, Zð Þ:

ð18Þ

3. Spencer’s displacement functions

In the formulation of the first-order problem in incompressible elasticity, Spencer introduced the
approach involving Stokes’ stream function, which satisfies the incompressibility condition for any
choice of the function. This approach for the first-order problem bears a similarity with the problem of
slow viscous flow for Newtonian fluids in terms of Stokes’ stream function (Lamb [115], Happel and
Brenner [116], Langlois and Deville [117], Constantinescu [118]). This aspect has been observed by many
researchers including Lord Rayleigh [119], Goodier [120], Hill [121], Prager [122], Adkins [123], Collins
[124], and Richards [125]. The extension of the approach to the formulation of problems in second-
order elasticity for incompressible elastic materials is not straightforward and techniques have to be
developed to formulate the expressions for the second-order displacement field in terms of the second-
order displacement function in such way that the second-order incompressibility condition can be
satisfied.

Considering the first-order problem, we introduce a displacement function C1(R, Z) such that the
first-order displacement components u1(R, Z) and w1(R, Z) are given by:

u1 =
1

R

∂C1

∂Z
; w1 = � 1

R

∂C1

∂R
: ð19Þ

Considering these representations and first-order stresses (9) and the first-order equations of equili-
brium, we arrive at the following partial differential equations governing the first-order displacement
function C1(R, Z) and the first-order isotropic stress p1(R, Z), i.e.,

E4C1 R, Zð Þ= 0; r2p R, Zð Þ= 0, ð20Þ

where E2 and r2 are, respectively, Stokes’ operator and Laplace’s operator defined by:

E2 =
∂2

∂R2
� 1

R

∂

∂R
+

∂2

∂Z2
; E4 = E2E2,

r2 =
∂2

∂R2
+

1

R

∂

∂R
+

∂2

∂Z2
:

ð21Þ

The extension of the displacement approach to the formulation of the second-order problem requires
a representation that can exactly satisfy the second-order incompressibility condition given by equation
(6). Methods that involve other techniques in terms of displacement and stress functions were proposed
by Green and Spratt [80] and Chan and Carlson [83], but Spencer’s formulation retains the basic displa-
cement function approach adopted for the first-order problem; the representation of the second-order
displacement components in terms of the second-order displacement function have the forms:

u2 =
1

R

∂C2

∂Z
+

u1

2

∂u1

∂R
� ∂w1

∂Z

� �
; w2 = � 1

R

∂C1

∂R
+ u1

∂w1

∂R
: ð22Þ

As was indicated by Selvadurai and Spencer [85], there are other representations of the type (22) that
can satisfy the second-order incompressibility condition (6) and they are admissible without exception.
The second-order equations of equilibrium (18) can now be reduced to forms in terms of the second-
order displacement function C2(R, Z) and the second-order isotopic stress p2(R, Z) in the forms:
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� ∂p2

∂R
+ m

1

R

∂

∂Z
E2C2

� �� �
= FR R, Zð Þ,

� ∂p2

∂Z
� m

1

R

∂

∂R
E2C2

� �� �
= FZ R,Zð Þ,

ð23Þ

where:

FR R, Zð Þ= HR R,Zð Þ � ∂t0rr

∂R
+

∂t0rz

∂Z
+

t0rr � t0uu

R

� �
,

FZ R, Zð Þ= HZ R,Zð Þ � ∂t0rz

∂R
+

∂t0zz

∂Z
+

t0rz

R

� �
,

ð24Þ

and

t0rr = m u1

u1

R2
� 2

∂2w1

∂R∂Z

� �
+ 3

∂u1

∂R

� �2

+
∂u1

∂Z

� �2
( )

� 2C2 4
∂u1

∂R

� �2

+
∂u1

∂Z
+

∂w1

∂R

� �2
( )

,

t0uu = � 2m
u1

R

� 	 ∂w1

∂Z

� �
� 8C2

u1

R

� 	2

,

t0zz = m 2u1

∂2w1

∂R∂Z
+ 2

∂u1

∂Z

� �
∂w1

∂R

� �
+

∂w1

∂R

� �2

+
∂w1

∂Z

� �2
( )

� 2C2 4
∂w1

∂Z

� �2

+
∂u1

∂Z
+

∂w1

∂R

� �2
( )

,

t0rz = m u1

∂2u1

∂R∂Z
+

∂2w1

∂R2

� �
+ 2

∂u1

∂R

� �
∂w1

∂R

� �� 
+ 4C2

u1

R

∂u1

∂Z
+

∂w1

∂R

� �� 
:

ð25Þ

By successively eliminating p2(R, Z) and C2(R, Z) from equation (23), we obtain the following partial
differential equations:

E4C2 R,Zð Þ= R

m

∂FR

∂Z
� ∂FZ

∂R

� �
,

r2p2 R,Zð Þ= � ∂FR

∂R
+

FR

R
+

∂FZ

∂Z

� �
,

ð26Þ

which govern the axisymmetric second-order problem for an incompressible elastic material. For the
solution of specific boundary value problems, both traction and/or displacement boundary conditions
need to be specified on the deformed boundaries.

3.1. Boundary conditions

The development of solutions to the first-order problem is straightforward and either traction or displa-
cement boundary conditions could be specified on surfaces referred to the undeformed configuration.
In the case of the second-order problem, the displacement and traction boundary conditions have to be
specified in relation to surfaces that are prescribed on the deformed body. The components of the trac-
tion vector on a surface in the deformed body, resolved in the r� and z�directions are:

Fr = nrTrr + nzTrz; Fz = nrTrz + nzTzz, ð27Þ

where:

n2
r + n2

z = 1;
nr

nz

=
∂F
∂r
∂F
∂z

, ð28Þ
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and the traction boundary conditions are normally specified in relation to a surface in the deformed
body defined by:

F r, zð Þ= ~F R,Zð Þ= 0: ð29Þ

From equation (28), the normal to the deformed surface has components, n(1)
r + en(2)

r and n(1)
z + en(2)

z

to order e, where:

n(1)
r + en(2)

r

� �2
+ n(1)

z + en(2)
z

� �2
= 1,

n(1)
r + en(2)

r

n(1)
z + en(2)

z

=

∂~F
∂R
� e ∂u1

∂R
∂~F
∂R

+ ∂w1

∂R
∂~F
∂Z

� 	
∂~F
∂Z
� e ∂u1

∂Z
∂~F
∂R

+ ∂w1

∂Z
∂~F
∂Z

� 	 : ð30Þ

Using these relationships, the expressions (27) can be expressed as:

Fr = e n(1)
r T (1)

rr + n(1)
z T (1)

rz

� �
+ e2 n(1)

r T (2)
rr + n(1)

z T (2)
rz + n(2)

r T (1)
rr + n(2)

z T (1)
rz

� �
,

Fz = e n(1)
r T (1)

rz + n(1)
z T (1)

zz

� �
+ e2 n(1)

r T (2)
rr + n(1)

z T (2)
zz + n(2)

r T (1)
rz + n(2)

z T (1)
zz

� �
:

ð31Þ

4. Kelvin’s problem

The state of stress in an elastic solid of infinite extent subjected to a concentrated force of magnitude PK

applied at the origin of coordinates of a system of cylindrical polar coordinates was first solved by Lord
Kelvin [97] (Figure 1). When the line of action of the concentrated force coincides with the Z�axis of the
cylindrical polar coordinate system (R,Y, Z), the problem is axisymmetric and the solution to the first-
order or classical elasticity problem can be found in a variety of ways, which are summarized in texts on
classical elasticity and its applications [98–105]. For example, if Love’s strain potential approach is
applied to the solution of Kelvin’s problem with axial symmetry, the analysis requires the use of the
strain potential O(R, Z), which satisfies the bi-harmonic equation:

r4O R, Zð Þ= 0, ð32Þ

where the displacement and stress components are given by:

2mu1 = � ∂2O
∂R∂Z

; 2mw1 = 2 1� nð Þr2O� ∂2O
∂Z2

,

T (1)
rr =

∂

∂Z
nr2O� ∂2O

∂R2

� �
; T (1)

uu =
∂

∂Z
nr2O� 1

R

∂O
∂R

� �
; T (1)

zz =
∂

∂Z
(2� n)r2O� ∂2O

∂Z2

� �
,

T (1)
rz =

∂

∂R
1� nð Þr2O� ∂2O

∂Z2

� �
,

ð33Þ

and n is Poisson’s ratio.
A function that furnishes a solution to Kelvin’s problem is Love’s potential:

O R,Zð Þ= B R2 + Z2
� �1=2

, ð34Þ

where B is an arbitrary constant. Restricting the analysis to the case of an incompressible elastic mate-
rial, we can show that the first-order displacement and stress components take the forms:
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2mu1 = B
RZ

R2 + Z2ð Þ3=2
; 2mw1 = B

R2 + 2Z2

R2 + Z2ð Þ3=2
,

T (1)
rr = B �3

R2Z

R2 + Z2ð Þ5=2

 !
; T (1)

uu = 0,

T (1)
zz = B �3

Z3

R2 + Z2ð Þ5=2

 !
; T (1)

rz = B �3
RZ2

R2 + Z2ð Þ5=2

 !
:

ð35Þ

The constant B can be determined by calculating the resultant force acting on a cylindrical or spheri-
cal surface enclosing the origin. This gives:

B =
PK

4p
: ð36Þ

It is noted that the first-order displacement and stress fields reduce to zero as (R, Z)! ‘, and they are
singular as (R, Z)! 0. This is a constraint of the first-order solution for Kelvin’s problem. The only means
of maintaining the first-order solution bounded as (R,Z)! 0 is to physically exclude the origin of coordi-
nates through the provision of either a cavity or an inclusion of finite dimension. This approach was used
by Chadwick and Trowbridge [126], Selvadurai [90,127,128] and Selvadurai and Dasgupta [129] by includ-
ing either a rigid spherical or spheroidal inclusion at the origin and satisfying the appropriate displacement
and/or traction boundary conditions on the surface of the inclusion. A second-order elasticity problem of
the centrally loaded spherical rigid inclusion analogue of Kelvin’s problem was examined by Selvadurai
[90]. In order to develop the second-order solution to the localized Kelvin force problem, we utilize the first-
order solution given by equation (35). Avoiding details of lengthy algebraic manipulations, it can be shown
that the partial differential equation governing the second-order displacement function takes the form:

E4C2 = � 3P2
K

4p2m2

2C2

m
� 1

� �
ZR2

R2 + Z2ð Þ4
: ð37Þ

The particular integral of equation (37) can be obtained by converting the equation into a spherical
polar coordinate form, where:

R = S sinY; Z = S cosY; S = R2 + Z2
� �1=2

E2 =
∂2

∂S2
+

1

S2

∂2

∂Y2
� cotY

S2

∂

∂Y

� �
:

ð38Þ

Figure 1. Kelvin’s problem.
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It can be shown that the relevant expressions for the displacement and stress components derived
from the particular solution of equation (37) are:

u2p =
K2

R2 + Z2ð Þ3
2C2

m

� �
2R3 � 6RZ2
� �

+
1

2
�R3 + 3RZ2
� �� 

,

w2p =
K2

(R2 + Z2)3

2C2

m

� �
�4Z3 + 4R2Z
� �

� 2R2Z

� 
,

T (2)p
rr = K2m

2C2

m

� �
�14R4 + 68R2Z2 � 2Z4

R2 + Z2ð Þ4

 !
+

3R4 � 18R2Z2 + 3Z4

R2 + Z2ð Þ4

 !
+

R6 + Z6

R2 + Z2ð Þ5

 !( )
,

T
(2)p
uu = K2m

2C2

m

� �
2R2 � 2Z2

R2 + Z2ð Þ3

 !
+
�R2 + 4Z2

R2 + Z2ð Þ3

 !( )
,

T (2)p
zz = K2m

2C2

m

� �
6R4 � 56R2Z2 + 22Z4

R2 + Z2ð Þ4

 !
+
�4R4 + 20R2Z2

R2 + Z2ð Þ4

 !
+

R6 + 9R4Z2 + 12R2Z4 + 4Z6

R2 + Z2ð Þ5

 !( )
,

T (2)p
rz = K2m

2C2

m

� �
44Z3R� 40ZR3

R2 + Z2ð Þ)4

� �
+

17ZR3 � 10Z3R

R2 + Z2ð Þ4

 !( )
:

ð39Þ

where:

K =
PK

8pm
: ð40Þ

The displacement and stress components (39) satisfy the first- and second-order incompressibility con-
ditions in equation (6) and the second-order equations of equilibrium (2), where:

G R,Zð Þ= K2 �R2 + 3Z2

R2 + Z2ð Þ3

 !
,

HR R,Zð Þ= K2m
�42Z2R + 6R3

R2 + Z2ð Þ4

 !
; HZ R,Zð Þ= K2m

�36Z3 + 12ZR2

R2 + Z2ð Þ4

 !
,

ð41Þ

and

� p2 R,Zð Þ= K2m
2C2

m

� �
14Z2 � 2R2

R2 + Z2ð Þ3

 !( )
: ð42Þ

We note that the second-order solution is symmetric about Z = 0, with w2p(R, 0) = 0 and
T (2)p

rz (R, 0) = 0. Therefore, on any closed surface enclosing the origin, the resultant traction in the Z-
direction is zero, and there is no second-order contribution to PK .

It may be noted that the order of any singularities that may exist in the first-order solution [130–132] is
usually increased in the second-order solution (England [133]). The second-order plane strain problem of
an infinite plane containing an elliptic cavity was examined by Lianis [134] using the complex variable-
based methodology presented by Adkins et al. [71]. The study was extended by De Hoff [135] to include the
problem of an infinite plane containing an elliptical hole and subjected to an oblique uniaxial far field ten-
sion. The article by Varley and Cumberbatch [136] examines the elliptical cavity problem for a Fritz John-
type hyperelastic material from which the stress magnification for a crack can be recovered. Both analyses
indicate that in the limit of the elliptical cavity degenerating to a crack, the order of the singularity is
increased for the second-order solution. Similar conclusions are presented by Knesl and Semela [137] for
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the case of the second-order results for a Westergaard-type crack. The finite deformation of a crack into
the shape of a wedge is also treated by Blatz [138] and the stress states corresponding to the infinitesimal
and finite strain solutions are compared. A related problem of inhomogeneous deformations of hyperelastic
wedges is discussed by Rajagopal and Carroll [139]. A useful discussion of the limits of successive approxi-
mate techniques similar to that encountered in the Poincare–Lighthill–Kuo method in aerofoil theory was
presented by Tsien [140]. The mathematical modelling of cracks in hyperelastic materials was examined in a
series of elegant articles by Knowles and Sternberg [141–145] and Knowles [146]. Complimentary investiga-
tions of the plane crack problem were also discussed by Amazigo [147], Lo [148], Le and Stumpf [149],
Geubelle and Knauss [150] and Tarantino [151]. Finite deformation analyses at the crack tip located at a
bimaterial elastic interface consisting of hyperelastic materials were also developed by Knowles and
Sternberg [152]. Ravichandran and Knauss [153], Herrmann [154, 155], Geubelle and Knauss [156, 157],
Gao and Shi [158] and Gao [159] to investigate the oscillatory nature of the singularity at the tip of a crack
located in a bimaterial region under far-field stresses. The vanishing of the oscillatory stress singularity can
result from either the incompressibility constraint usually associated with hyperelastic materials and/or the
finite curvature that the crack tip can acquire from the finite deformation.

4.1. Solutions of the homogeneous equation

Considering the homogeneous equation (37), expressed in spherical polar coordinates, we can write:

E4C2h =
∂2

∂S2
+

1

S2

∂2

∂Y2
� cotY

S2

∂

∂Y

� �
∂2

∂S2
+

1

S2

∂2

∂Y2
� cotY

S2

∂

∂Y

� �
C2h = 0: ð43Þ

Considering the substitution r = cosY, equation (40) can be written as:

∂2

∂S2
+

(1� r2)

S2

∂2

∂r2

� �
∂2C2p

∂S2
+

1� r2ð Þ
S2

∂2C2p

∂r2

� �
= 0: ð44Þ

We seek solutions of equation (44) of the form:

C2p =
f rð Þ

S
, ð45Þ

which can be used to reduce equation (44) to:

1� r2
� � d2

dr2
+ 12

� �
1� r2
� � d2

dr2
+ 2

� �
f rð Þ= 0: ð46Þ

We note that the operators in equation (46) commute, i.e.,

1� r2
� � d2

dr2
+ 2

� �
1� r2
� � d2

dr2
+ 12

� �
f rð Þ= 0: ð47Þ

Solving the resulting ordinary differential equations (ODEs), we obtain the following homogeneous
solutions:

C2h = A
R2

R2 + Z2ð Þ3=2

 !
+ B

2Z

R2 + Z2ð Þ +
R2

R2 + Z2ð Þ3=2
loge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + Z2
p

+ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + Z2
p

� Z

 ! !
+ C

R2 R2 � 4Z2ð Þ
R2 + Z2ð Þ5=2

 !

+ D
26ZR2 � 4Z3

R2 + Z2ð Þ2
+

3R2 R2 � 4Z2ð Þ
R2 + Z2ð Þ5=2

loge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + Z2
p

+ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + Z2
p

� Z

 ! !
,

ð48Þ

where A,B,C, and D are the arbitrary constants. Evaluating the displacement and stress components
from equation (48) we note that, in order to maintain the second-order displacement component u2h
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and the second-order shear stress component T (2)h
rz to be bounded as R! 0, we require B = D = 0. The

remaining solutions give the following second-order displacement and stress components:

u2h = A � 3RZ

R2 + Z2ð Þ5=2

 !
+ C

2R3Z � 3RZ3

R2 + Z2ð Þ7=2

 !
,

w2h = A
R2 � 2Z2

R2 + Z2ð Þ5=2

 !
+ C

�2Z4 + 3Z2R2

R2 + Z2ð Þ7=2

 !
,

ð49Þ

and

T (2)h
rr = A

24R2Z � 6Z3

R2 + Z2ð Þ7=2

 !
+ C

�22R4Z + 46Z3R2 � 2Z5

R2 + Z2ð Þ9=2

 !
,

T (2)h
uu = A

6R2Z � 6Z3

R2 + Z2ð Þ7=2

 !
+ C

�2R4Z � 4Z3R2 � 2Z5

R2 + Z2ð Þ9=2

 !
,

T (2)h
zz = A

�18R2Z + 12Z3

R2 + Z2ð Þ7=2

 !
+ C

6R4Z � 48Z3R2 + 16Z5

R2 + Z2ð Þ9=2

 !
,

T (2)h
rz = A

�6R3 + 24Z2R

R2 + Z2ð Þ7=2

 !
+ C

2R5 � 36Z2R3 + 32Z4R

R2 + Z2ð Þ9=2

 !
:

ð50Þ

We observe that since u2h(R, 0) = 0 and T (2)h
zz (R, 0) = 0, the homogeneous solution will involve only

states of deformation and stress that are asymmetric about Z = 0, which can be caused only by resultant
forces similar in character to the Kelvin force and this includes higher-order singularities in both the dis-
placement and stress fields. The first-order displacement function for a concentrated force acting at the
interior of an elastic infinite space of infinite extent is given by:

C1ð ÞKelvin force = C�1
R2

R2 + Z2ð Þ1=2

 !
, ð51Þ

where C�1 is a constant. The first-order displacement potential for a doublet (see section 5), which consist
of two collinear Kelvin forces separated by a small distance d (Figure 2), is given by the partial derivative
of equation (51) with respect to Z, i.e.,

C1ð ÞDoublet = C�2
R2Z

R2 + Z2ð Þ3=2

 !
, ð52Þ

where C�2 is a constant. The first-order displacement potential for a combination of doublets (i.e., a
doublet in tension in close proximity to a doublet in compression) can be obtained by taking the partial
derivative of equation (52) with respect to Z, i.e.,

C1ð ÞDoublet = C�3
R2

R2 + Z2ð Þ3=2
� 3R2Z2

R2 + Z2ð Þ5=2

 !
, ð53Þ

where C�3 is a constant. The result (53) has a form similar to a homogeneous solution that can be
obtained by suitably adjusting the coefficients A and C in the reduced solution for equation (48).
Therefore, the second-order solutions derived from the homogeneous solution (45) become relevant
only if additional second-order local forces are applied in the vicinity of the Kelvin force. It can be con-
cluded that the second-order displacement and stress fields corresponding to the Kelvin force problem
are obtained from the particular solution of equation (37). These solutions agree with the results
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obtained by Carroll and Rooney [94] for the second-order Kelvin’s problem, using a Love Strain poten-
tial approach along with Signorini’s compatibility condition.

5. The doublet problem

Kelvin’s classical elasticity solution for the single point force acting at the interior of an elastic solid
of infinite extent can be successfully used to find novel solutions of the equations of classical elasti-
city corresponding to other singularities. One such problem, described by Love [96] as a ‘‘double
force without moment,’’ is obtained by superposing on the Kelvin force problem (the force denoted
by PD) a point force of equal magnitude, acting in the opposite direction but located at a small dis-
tance d from the origin, in the negative Z-direction (Figure 2). Since the second force is acting in the
opposite direction and considering d to be infinitesimally small, the first-order solutions to the doub-
let problem is obtained by replacing any term in the solution to Kelvin’s problem, e.g., f (R, Z) by
f + (∂f =∂Z)d (see, e.g., [99]).

For an incompressible elastic material, the first-order displacement and stress components for the
doublet problem can be written as:

u1 = ~C
�R3 + 2RZ2ð Þ
R2 + Z2ð Þ5=2

; w1 = ~C
2Z3 � ZR2ð Þ
R2 + Z2ð Þ5=2

,

T (1)
rr = 2~Cm

3R4 � 12R2Z2

R2 + Z2ð Þ7=2

 !
; T (1)

uu = 0,

T (1)
zz = 2~Cm

9R2Z2 � 6Z4

R2 + Z2ð Þ7=2

 !
; T (1)

rz = 2~Cm
6R3Z � 9RZ3

R2 + Z2ð Þ5=2

 !
,

ð54Þ

where:

~C =
PDd

8pm
: ð55Þ

Omitting details, the partial differential equation governing the second-order displacement function
C2(R, Z) takes the form:

Figure 2. The doublet problem.
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E4C2 =
~C

2

R2 + Z2ð Þ6
144

2C2

m

� �
R4Z � 4R2Z3
� �

� 27 3R4Z � 2R2Z2 + 5Z5
� �
 �

: ð56Þ

The second-order expressions for the displacement and stress components obtained from the particu-
lar solution of equation (56) can be written in the forms:

u2p =
~C

2

R2 + Z2ð Þ5
2C2

m

� �
�5R5 + 47R3Z2 � 20RZ4
� �

� 3

8
�4R5 + 52R3Z2 � 16RZ4
� �� �
 �

w2p =
~C

2

R2 + Z2ð Þ5
2C2

m

� �
�20R4Z + 44R2Z3 � 8Z5
� �

� 3

8
�24R4Z + 48R2Z3
� �� �
 �

T (2)p
rr =

~C
2

R2 + Z2ð Þ6
2C2 48R6 � 684R4Z2 + 528R2Z4

� �
+ m �12R6 + 324R4Z2 � 237R2Z4 + 12Z6

� �� �

T
(2)p
uu =

~C
2

R2 + Z2ð Þ6
2C2 72R4Z2 + 72R2Z4

� �
+ m 3R6 � 36R4Z2 � 27R2Z4 + 12Z6

� �� �

T (2)p
zz =

~C
2

R2 + Z2ð Þ6
2C2 �30R6 + 540R4Z2 � 618R2Z4 + 72Z6

� �
+ m 18R6 � 279R4Z2 + 300R2Z4 + 12Z6

� �� �

T (2)p
rz =

~C
2

R2 + Z2ð Þ6
2C2 240R5Z � 80R3Z3 + 216RZ5

� �
+ m �111R5Z + 402R3Z3 � 72RZ5

� �� �
:

ð57Þ

The second-order displacement and stress components (57) satisfy the second-order incompressibility
condition (6) and the second-order equations of equilibrium (23), where:

G R, Zð Þ= ~C
2 3R4 � 12R2Z2 + 12Z4

R2 + Z2ð Þ5

 !
,

HR R, Zð Þ= ~C
2 �54R5 + 162R3Z2 � 324RZ4

R2 + Z2ð Þ6

 !
,

HZ R, Zð Þ= ~C
2 �108R4Z + 216R2Z3 � 216Z5

R2 + Z2ð Þ4

 !
:

ð58Þ

6. Boussinesq’s problem

The solution to the problem of an isotropic elastic half-space that is subjected to a concentrated normal
force at the origin of coordinates is identified as Boussinesq’s problem (Boussinesq [160]) (Figure 3). The
solution to the linear elasticity problem can be obtained in diverse ways, including through the application
of integral transform techniques [98–105, 161–163] and through the successive applications of superposition
techniques involving Kelvin’s solution and Love’s strain potential technique [96]. The recent study [113]
develops a solution to Boussinesq’s problem using Kelvin’s solution and dimensional considerations in
choosing additional solutions required to render the surface of the half-space region traction free. While
methods have been developed to apply Boussinesq’s solution to examine the decay in the distribution of
stress in earth masses subjected to surface loads, the modifications proposed fail to satisfy the requirement
of classical elasticity, particularly in terms of satisfying the Beltrami–Michell compatibility conditions [114].

The application of the theory of second-order elasticity to Boussinesq’s problem is a natural extension
of the study dealing with Kelvin’s problem. The first-order solution for Boussinesq’s problem is identical
in form to Kelvin’s solution given by equation (35) and the arbitrary constant corresponding to equation
(36) is given by:
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B�=
PB

4p
: ð59Þ

The stress field given in equation (39) must satisfy the traction-free boundary conditions applicable
to the deformed surface of the half-space region. The equation of the deformed surface of the half-space
valid to order e is given by:

F r, zð Þ= z� ew1 R,Zð Þ= const: ð60Þ

The components of the unit normal in the r- and z-directions are given by:

n=
�e ∂w1

∂r
, 0, 1� e ∂w1

∂z

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 ∂w1

∂r

� �2
+ e2 1� e ∂w1

∂z

� �2
q , ð61Þ

which reduces to:

n= �e
∂w1

∂R
, 0, 1

� �
: ð62Þ

The traction-free boundary conditions for the second-order stress components on the deformed sur-
face of the half-space reduce to:

T (2)
rz �

∂w1

∂R
T (1)

rr = 0 on Z = 0,

T (2)
zz �

∂w1

∂R
T (1)

rz = 0 on Z = 0:

ð63Þ

Since T (1)
rr = T (1)

rz = 0 on Z = 0, the second-order stress field should satisfy the boundary conditions
T (2)

rz = T (2)
zz = 0 on Z = 0. The results from the particular solution (39) give:

T (2)
rz = 0 on Z = 0,

T (2)
zz =

3K2

R4
4C2 � mð Þ on Z = 0:

ð64Þ

The first boundary condition of equation (64) is identically satisfied by the expression for T (2)p
rz given by

equation (39). The second boundary condition needs to be satisfied by selecting a suitable solution of the
homogeneous equation of equation (37) that will have the correct distribution of T (2)h

zz (R, 0). The reduced
form of equation (48) will not provide the necessary solution. The alternative is to use Love’s stress function
approach and obtain the stress field that can satisfy the second boundary conditions of equation (64).
Selvadurai [86] showed that a solution based on the Hankel integral transforms (Lamb [161], Sneddon

Figure 3. Boussinesq’s problem.
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[162,163], Terezawa [164]) does not provide an approach to satisfy the required traction-free boundary condi-
tion. A direct integration of Boussinesq’s solution applicable to a half-space is a possible approach. For
example, the expression for the required homogeneous solution for the displacement u2h(R, Z) will give
results of the type

u2h R, Zð Þ=
ð2p

0

ð‘
0

CZ

8pm R0ð Þ4
R2 + R0ð Þ2 � 2RR cos u0
n o1=2

Z2 + R2 + R0ð Þ2 � 2RR0 cos u0
n o3=2

R0dR0du0: ð65Þ

While this approach is feasible, the divergent integrals can only be evaluated numerically, which is a
limitation. Also, consideration of a hemi-spherical inclusion at the surface of the half-space results in
the first-order solution that is a series in the Legendre polynomials, which cannot be manipulated easily
in constructing the second-order formulation. Subsequently, the second-order solution to Boussinesq’s
problem for a concentrated normal force was provided in a compact and closed form by Carroll and
Rooney [95], using the strain potential approach of Love [96].

7. Conclusion

The theory of second-order elasticity is a mathematically consistent theory for modeling hyperelastic
materials undergoing moderately large strains, as opposed to either media exhibiting large deflections and
rotations but with small strains or small deformations superposed on large. The expansion of the depen-
dent variables in terms of a small non-dimensional parameter forms the basis of the approach and if a
particular problem is formulated in a consistent manner, the small parameter will naturally evolve in the
formulation. The solution of problems in second-order elasticity theory also becomes meaningful in terms
of technological applications involving rubber-like elastic materials used as load bearing components or
mountings. Also, when the incompressibility constraint is introduced, the strain energy function of the
Mooney–Rivlin form can completely accommodate the second-order moderately large strain phenomena.
The formulation and solution of problems in second-order elasticity can be facilitated through the use of
complex potentials and complex variable theory, stress functions based on the adaptation of the functions
proposed by Love, Neuber–Papkovich, and integral transform techniques. Spencer’s displacement func-
tion approach is also a convenient method for the treatment of the second-order incompressible elastic
problem and reduces the governing partial differential equation for the function to a canonical linear
form. A similar result is obtained for the second-order component of the isotropic stress. The displace-
ment function approach is applied to develop solutions to certain axisymmetric localized loading prob-
lems of an infinite space and a half-space. The first-order problem corresponds to the classical elasticity
solution and the order of the stress singularities present in the first-order problems are generally increased
in the second-order problem. The issue of singularities in the first-order solution can be alleviated by
selecting suitable boundary conditions where the loads are applied over finite regions. The ensuing formu-
lations can involve algebraic complexity. In such cases the solution of the second-order problem entails a
great deal of routine mathematical operations and computer-aided symbolic mathematical manipulation
techniques can be used to solve the second-order problem with speed and accuracy.
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[114] Selvadurai, APS. On Fröhlich’s solution for Boussinesq’s problem. Int J Numer Anal Met 2014; 38: 925–934.
[115] Lamb, H. Hydrodynamics. Cambridge: Cambridge University Press, 1995.
[116] Happel, JR, and Brenner, H. Low Reynolds number hydrodynamics: with special applications to particulate media. Berlin:

Springer, 2013.
[117] Langlois, WE, and Deville, MO. Slow viscous flow. 2nd ed. Heidelberg: Springer, 2014.
[118] Constantinescu, VN. Laminar viscous flow. Berlin: Springer, 1995.
[119] Rayleigh, L. On the flow of viscous liquids, especially in two dimensions. Philos Mag 1893; 36: 354–372 (See also

Rayleigh, L. Scientific papers, vol. IV. New York: Dover Publications, pp. 17–93).
[120] Goodier, JN. An analogy between the slow motions of a viscous fluid in two dimensions and systems of plane stress.

Philos Mag 1934; 46: 554–576.
[121] Hill, R. On related pairs of plane elastic states. J Mech Phys Solids 1955; 4: 1–9.
[122] Prager, W. On conjugate states of plane strain. J Mech Phys Solids 1956; 4: 167–171.
[123] Adkins, JE. Associated problems in two-dimensional elasticity. J Mech Phys Solids 1956; 4: 199–205.
[124] Collins, WD. Note on displacements of an infinite elastic solid bounded internally by a rigid spherical inclusion. J Lond

Math Soc 1959; 34: 345–351.
[125] Richards, TH. Analogy between slow motion of a viscous fluid and the extension and flexure of plates: a geometric

demonstration by means of Moire fringes. Brit J Appl Phys 1960; 11: 244–254.
[126] Chadwick, P, and Trowbridge, EA. Oscillations of a rigid sphere embedded in an infinite elastic solid. II. Rectilinear

oscillations. Proc Camb Philos Soc 1967; 63: 1207–1227.

[127] Selvadurai, APS. The load-deflexion characteristics of a deep rigid anchor in an elastic medium. Géotechnique 1976; 26:
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Appendix 1

The origins of AJM Spencer’s development of the displacement function approach for problems in
second-order elasticity theory. The pages are excerpts taken from the hand-written notes of Tony
Spencer, which formed the basis for the studies [85] and [86] and the former was written during his visit
to the Center for the Application of Mathematics at Lehigh University in 1968.
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