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A widely used procedure for interpreting results of hydraulic pulse tests involves an analysis that is based
on the piezo-conduction equation. In this paper, the range of applicability of the classical piezo-conduc-
tion equation is examined in the light of results derived from Biot’s classical theory of poroelasticity,
which takes into account complete coupling involving fluid flow and skeletal deformations along with
influences of grain compressibility. Comparisons are made between the two approaches by considering
typical low permeability rocks including Westerly Granite and Indiana Limestone, where the permeabil-
ities can vary by orders of magnitude. These studies are complemented by experiments performed on
samples of Stanstead Granite, the results of which were analyzed employing the different approaches.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Permeability of geomaterials can be determined using either
steady state or transient tests depending on the relative values of
the anticipated permeability. For low permeability geomaterials,
with permeabilities in the range K 2 (10�18, 10�22) m2, the accu-
rately verifiable steady flow rates that can be initiated in un-
stressed samples without causing damage (e.g. micro-mechanical
hydraulic fracture) to the porous fabric can be small. For this rea-
son, fluid transport characteristics of low permeability geomateri-
als are usually determined from transient flow tests. The use of
transient flow tests was pioneered by Brace et al. [1] and has been
successfully used to estimate the permeability of most low perme-
ability geomaterials. The theoretical expositions of the develop-
ment of the piezo-conduction equation are given by other
researchers [2–5] and relevant applications of the concepts are
demonstrated by [6–11]. Hydraulic pulse tests referred to previ-
ously have largely focused on axial flow configurations. The proce-
dures have also been applied in the area of well testing [12–15]
and in laboratory testing of radial flows in cylinders [16–18]. Satu-
ration of the geomaterial is an essential requirement for the con-
ventional modeling of the hydraulic pulse test. With low
permeability geomaterials, residual pressures can reside in a sam-
ple following a saturation sequence. The influence of such pressure
artifacts on the interpretation of hydraulic pulse tests has been
examined by Selvadurai [19].
The development of the theory for the piezo-conduction equa-
tion is carried out by imposing certain restrictions on the mechan-
ical response of the porous skeleton of the geomaterial. For
example, the theory can only account for compressibility of the
porous skeleton and that of grains composing the porous skeleton.
A more accurate development of fluid pressure decay in pulse tests
should take into consideration the influence of complete coupling
between a deformable porous skeleton and a compressible perme-
ating fluid. An example is the classical theory of poroelasticity pro-
posed by Biot [20] that takes into consideration elastic
deformations of the porous skeleton, the compressibility of the
material composing the porous skeleton and Darcy flow in the con-
nected pore space. The possible influences of the two approaches
for examining the results of hydraulic pulse tests on the interpre-
tation of permeability values have led to comparative investiga-
tions and two examples are provided by Walder and Nur [21]
and Hart and Wang [22] (see also Wang [23]). Both investigations
deal with hydraulic pulse tests conducted under one-dimensional
conditions with the first investigating the poroelastic phenomena
including a non-linear pore pressure diffusion associated with
large pore pressure gradients and the latter considering the
three-dimensional poroelastic influences that arise when modeling
the one-dimensional hydraulic pulse tests. It should also be noted
that the problem examined by Hart and Wang [22] relates to com-
putational modeling of the propagation of a hydraulic pulse to a
one-dimensional element that is hydraulically sealed at all surfaces
other than at the region subjected to pressure.

The objectives of the paper are as follows: (i) re-examine the
axial flow and radial flow hydraulic pulse tests in the context of
the piezo-conduction analyses (analytical) and the fully coupled
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theory of poromechanics (computational), (ii) evaluate the distinc-
tions that arise between the two approaches when the approaches
are used to examine hydraulic pulse tests that have been reported
in the literature (e.g. Indiana Limestone and Westerly Granite), and
(iii) use the two modeling approaches to interpret the permeability
characteristics of Stanstead Granite (Stanstead, QC, Canada) by
examining results of radial flow permeability tests and to use the
estimates for permeability to predict the pulse decay test con-
ducted at a circular patch located on the surface of a cylindrical
sample of Stanstead Granite.

2. Governing equations

The partial differential equations governing coupled fluid flow
and linear elastic deformation of a fluid saturated isotropic porous
medium were developed by Biot [20]. The theory is well docu-
mented in the literature and alternative expositions and represen-
tations of Biot’s theory are also presented in a number of key
articles including [24–27]. Reviews of the subject of isothermal
poroelasticity are also given in [28–33]. The classical theory of
poroelasticity takes into account Hookean isotropic elastic defor-
mation of the porous skeleton, the elastic deformation of the solid
material composing the porous skeleton, the compressibility of the
pore fluid and fluid flow behavior, which is characterized by
Darcy’s law. The dependent variables in the formulation consist
of the skeletal deformation u(x, t) and the pore fluid pressure
p(x, t) (p > 0 for compressive pore fluid pressure), where x is the
position vector and t is time. Considering only quasi-static pro-
cesses, the governing fully coupled partial differential equations
take the form

Gr2uþ Keff þ
G
3

� �
rðr � uÞ � arp ¼ 0 ð1Þ

K
l
r2p� S�

@p
@t
� a

@

@t
ðr � uÞ ¼ 0 ð2Þ

where G and Keff are, respectively, the shear modulus and the bulk
modulus of the porous skeleton, K is the permeability, l is the dy-
namic viscosity of the fluid and S⁄ and a are, respectively, a storativ-
ity term and the Biot coefficient defined by

S� ¼ nCw þ ða� nÞCs; a ¼ 1� Cs

Ceff

� �
ð3Þ

The partial differential equation governing flow of a compress-
ible fluid through the accessible pore space of a porous medium
with a skeletal compressibility Ceff (i.e. the inverse of Keff) and a
grain compressibility Cs was derived by Brace et al. [1] and takes
the form

K
l
r2p ¼ SB

@p
@t

ð4Þ

where

SB ¼ fnCw þ Ceff � ðnþ 1ÞCsg ð5Þ

When Cs reduces to zero, Eq. (5) reduces to the conventional
storativity term and gives rise to the piezo-conduction equation
used quite extensively in the interpretation of permeability in geo-
hydrological problems [2,3,5,19]; i.e.

SC ¼ ½nCw þ Ceff � ð6Þ

At the outset, it should be mentioned that the fully coupled the-
ory of poroelasticity requires the formulation of the initial bound-
ary value problem with precise conditions relevant to an
experimental configuration, where consistent initial and boundary
conditions are applied to all the dependent variables. The solution
of the conventional piezo-conduction equation requires the formu-
lation of an initial boundary value problem where consistent initial
and boundary conditions are prescribed only on the single depen-
dent variable, namely the pore fluid pressure.

3. Theoretical modeling

In this section we present, for completeness, the solution to the
initial boundary value problem governing hydraulic pulse tests con-
ducted under one-dimensional and radially symmetric conditions.

3.1. Analytical results

The piezo-conduction equation of the type (4) can be examined
for relatively simple geometries involving axial, radially symmetric
and spherically symmetric flow conditions. In the case of purely
axial diffusion of a pressure pulse applied to a fluid chamber of vol-
ume Vw in contact with the boundary of a semi-infinite fluid satu-
rated region, the initial boundary value problem has been
investigated quite extensively (see [19] for a presentation of the
relevant literature) and it is sufficient to record the relevant
boundary and initial conditions applicable to a semi-infinite do-
main. These are

pð0; tÞ ¼ �pðtÞ; �pð0Þ ¼ �p0 ð7Þ

U
@p
@z

� �
z¼0
¼ @p

@t

� �
z¼0

ð8Þ

pðz;0Þ ¼ 0 ð9Þ

where �pðtÞ is the position independent fluid chamber pressure,
which is a function of time only and �p0 is the chamber pressure at
the start of the axial flow pulse test and

U ¼ AK
lVwCw

� �
ð10Þ

In Eq. (10) A is the cross-sectional area of the one-dimensional
semi-infinite domain and Vw is the volume of the pressurized reser-
voir used in the test. One-dimensional pulse tests are invariably
conducted on low permeability materials of finite extent and it is
usually assumed that the far-field boundary has a limited influence
on the observed pulse decay. If this condition is satisfied, the solu-
tion to the piezo-conduction equation should also satisfy the regu-
larity condition, p(z, t) ? 0 as z ?1. The extent to which the
assumption of ‘infinite extent’ is valid for a finite sample tested in
the lab was analytically examined by Selvadurai and Carnaffan
[16] (it is not a requirement that this far field condition be satisfied
[9]; its inclusion, however, leads to a simplified result applicable to
a semi-infinite domain). Considering the above, the solution of the
initial boundary value problem can be expressed in the non-dimen-
sional form

�pðtÞ
�p0
¼ expðX2tÞ Erfcð

ffiffiffiffiffiffiffiffi
X2t

p
Þ ð11Þ

where

X ¼ Ux; x2 ¼ Sil
K

ð12Þ

and the storativities Si can be given values SB and SC that correspond
to the expressions (5) and (6), respectively.

A similar analysis can be applied to examine the purely radial
flow hydraulic pulse tests conducted through the pressurization
of a borehole located in a fluid saturated porous medium of infinite
extent over a borehole length H, containing the fluid volume Vw.
The details of the analysis are given in [12–14]. Applications of



Fig. 1. Geometry and boundary conditions assumed for the one-dimensional stress
hydraulic pulse test.

Fig. 2. Geometry and boundary conditions assumed for the one-dimensional strain
hydraulic pulse test.
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the radial flow technique to the measurement of permeability
characteristics of a cement grout cylinder measuring 152 mm in
diameter and granite cylinders measuring 450 mm in diameter
are given, respectively, in the articles by Selvadurai and Carnaffan
[16] and Selvadurai et al. [17]. More recently, Selvadurai and Jen-
ner [18] used the radial flow pulse test to determine the perme-
ability characteristics of a very low permeability argillaceous
Lindsay-Cobourg Limestone (K 2 (10�22 to 10�19 m2)). The bound-
ary conditions and initial conditions applicable to the purely radial
flow problem are

pða; tÞ ¼ ~pðtÞ; ~pð0Þ ¼ ~p0 ð13Þ

2paKH
l

@p
@r

� �
r¼a
¼ VwCw

@p
@t

� �
r¼a

ð14Þ

pðr;0Þ ¼ 0 ð15Þ

where ~pðtÞ signifies the position independent cavity pressure and ~p0

is pressure in the cavity at the start of the radial flow pulse test. In
addition, if the modeling is applicable to an infinite domain the
pressure field should satisfy the regularity condition, p(r, t) ? 0 as
r ?1. The decay of the pressure within the cavity is given by

~pðtÞ
~p0
¼ 8~a

p2

Z 1

0

expð�~bu2=~aÞ
uf ðu; ~aÞ du ð16Þ

where

f ðu; ~aÞ ¼ ½uJ0ðuÞ � 2~aJ1ðuÞ�
2 � ½uY0ðuÞ � 2~aY1ðuÞ�2 ð17Þ

J0 and J1 are, respectively, the zeroth-order and first-order Bessel
functions of the first kind and Y0 and Y1 are, respectively, the zer-
oth-order and first-order Bessel functions of the second kind. Also,
in Eq. (16), the non-dimensional parameters ~a and ~b are given by

~a ¼ pa2HSi

CwVw
; ~b ¼ pKHt

lVwCw
ð18Þ

Similarly, Si can be assigned the expressions defined by Eqs. (5)
and (6).

4. Computational modeling

The analytical treatment of the initial boundary value problem
in Biot’s theory of poroelasticity associated with the one-dimen-
sional axial flow and radial flow pulse tests is non-routine and to
the authors’ knowledge there are no analytical results that exam-
ine the pulse decay effects, which incorporate fully coupled influ-
ences of poromechanics. For this reason, the fully coupled
analysis of the one-dimensional axial flow and purely radial flow
pulse tests is conducted using a computational technique. Finite
element modeling of problems in poroelasticity is well established
and consistent formulation of initial boundary value problems is
described by Lewis and Schrefler [26]; these procedures have also
been implemented in several computational codes including ABA-
QUS™ and COMSOL™.

Detailed calibration exercises involving the COMSOL™ code are
presented by Selvadurai and Suvorov [34,35] and Selvadurai et al.
[36]. In these studies, the accuracy of the computational algo-
rithms for coupled transient problems has been validated through
comparisons with either known or newly developed analytical
solutions. The axial hydraulic pulse test was first examined using
a one dimensional axisymmetric domain as shown in Fig. 1. The
figure shows a fluid saturated porous region of radius a and length
l = 30a. The domain of the porous region is r 2 (0, a); z 2 (0, l) and
the plane boundary z = 0; r 2 (0, a) is in contact with a fluid reser-
voir of volume ð0:01pÞa3 for Westerly Granite and ð0:4pÞa3 for
Indiana Limestone. The external boundary of the reservoir is non-
deformable and encloses a fluid volume Vw. The computational
modeling of the one-dimensional hydraulic pulse test can be devel-
oped considering two approaches: (a) the state of stress is assumed
to be one-dimensional (Fig. 1) or (b) the state of strain is assumed
to be one-dimensional (Fig. 2). In addition, the pore fluid pressure
boundary condition should satisfy the no-flow boundary condition
on the cylindrical surfaces of the one-dimensional domain. For the
case (a), the boundary conditions applicable to the stresses, dis-
placements and pore fluid pressures are

rzzðr;0; tÞ ¼ 0; urð0; z; tÞ ¼ 0
rzzðr; l; tÞ ¼ 0; uzðr;0; tÞ ¼ 0
rrzðr;0; tÞ ¼ 0
rrzða; z; tÞ ¼ 0
rrzðr; l; tÞ ¼ 0
rrrða; z; tÞ ¼ 0
@p
@r

� �
r¼a ¼ 0; pðr; l; tÞ ¼ 0

ð19Þ

In addition, the initial conditions correspond to

uðr; z;0Þ ¼ 0; pðr; z;0Þ ¼ 0 ð20Þ

The hydraulic pulse test is initiated by the application of a pres-
sure pulse to the reservoir with a rigid boundary in contact with
the poroelastic medium. If the domain of the reservoir is denoted
by XR, the pore fluid pressure boundary condition at the reservoir
and reservoir–poroelastic medium interface are given by

pðr; z;0Þ ¼ �p0 ð21Þ

where p0 is the pressure in the reservoir at the start of the pulse
test.

Similarly, for the pulse test conducted under the one-dimen-
sional strain condition the boundary conditions corresponding to
Eq. (19) are

rrzðr;0; tÞ ¼ 0; urð0; z; tÞ ¼ 0
rrzða; z; tÞ ¼ 0; urða; z; tÞ ¼ 0
rrzðr; l; tÞ ¼ 0; uzðr;0; tÞ ¼ 0
rzzðr; l; tÞ ¼ 0
@p
@r

� �
r¼a ¼ 0; pðr; l; tÞ ¼ 0

ð22Þ



Fig. 3. Schematic view for the radially symmetric hydraulic pulse testing of an
infinitely extended rock mass.
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The initial conditions for the hydraulic pulse test conducted un-
der one-dimensional strain are identical to Eq. (20) and the pulse
test is initiated by a condition similar to Eq. (21).

Purely radial pulse testing was also examined (Fig. 3). The mod-
eled element has a fluid cavity radius of a and a height of H ¼ 20a
for Westerly Granite and H = 0.5a for Indiana Limestone. Unlike the
one-dimensional model, here the size of the cavity can change due
to cavity pressure changes. The corresponding boundary condi-
tions are:

rrrð0; z; tÞ ¼ 0; rrzð0; z; tÞ ¼ 0
rrrðR; z; tÞ ¼ 0; rrzðR; z; tÞ ¼ 0
uzðr;�H=2; tÞ ¼ 0; uzðr;H=2; tÞ ¼ 0
urð0; z; tÞ ¼ 0
pðR; z; tÞ ¼ 0; @p

@r

� �
r¼0 ¼ 0

@p
@z

� �
z¼�H=2 ¼ 0; @p

@z

� �
z¼H=2 ¼ 0

ð23Þ

The initial conditions for the purely radial flow pulse test are
again identical to Eq. (20) and the initiating pressure is

pðr; z;0Þ ¼ ~p0 ð24Þ

To further establish the accuracy of the fully coupled poroelastic
modeling of the hydraulic pulse test, the computational approach
was applied to examine the one-dimensional problem that was
examined by Hart and Wang [22]. The problem involves a cylinder
measuring 0.0254 m in radius and 0.0309 m in height. The sample
was sealed at the base and at the circumference such that no water
flow could take place through these surfaces. The upper surface
(r 2 ð0; aÞ; z ¼ l) was subjected to a unit constant pore pressure
pulse and the whole specimen was under constant total stress
for the duration of the experiment. Fig. 4 shows the geometry
and boundary conditions of the problem. The rock used was Berea
Sandstone with hydro-mechanical parameters as follows [22,23]:
the skeletal Young’s modulus (E) = 13 (GPa); the skeletal Poisson’s
Fig. 4. Comparison of the results obtained by Hart and Wang [22] with the results of the
and boundary conditions of the problem.
ratio (m) = 0.17; Biot coefficient (a) = 0.764; permeability
(K) = 1.91 � 10�19 (m2); porosity (n) = 5%; dynamic viscosity of
water at 20 �C (l) = 0.001 (Pa s); density of water (q) = 1000 (kg/
m3); compressibility of water (Cw) = 4.35 � 10�10 (Pa�1). The test
problem was modeled for a duration of 2500 s. The boundary
and initial conditions used by Hart and Wang [22], who employed
the ABAQUS™ code, are as follows:

rrrða; z; tÞ ¼ 0; rrzða; z; tÞ ¼ 0
rzzðr;0; tÞ ¼ 0; rrzðr;0; tÞ ¼ 0
rzzðr; l; tÞ ¼ 0; rrzðr; l; tÞ ¼ 0
urð0; z; tÞ ¼ 0; uzðr;0; tÞ ¼ 0
@p
@r

� �
r¼a ¼ 0; z 2 ð0; lÞ

@p
@z

� �
z¼0 ¼ 0; r 2 ð0; aÞ

ð25Þ

The identical boundary conditions were specified in the current
analysis, which was performed using the COMSOL™ code. Fig. 4
also shows a comparison between the results obtained by Hart
and Wang [22] and the current investigation; there is good corre-
lation between the two sets of data. A detail of the short term pres-
sure response at the sample end (i.e. z = 0) is also shown. This
figure also illustrates, for purposes of comparison, the results ob-
tained from the piezo-conduction equation presented by Hart
and Wang [22] along with the results of the piezo-conduction
modeling that (i) takes into consideration the influence of grain
compressibility and (ii) that omits grain compressibility. For pur-
poses of reference, we note that the piezo-conduction equation is
also modeled using COMSOL, although an analytical solution can
be developed using standard procedures (see e.g. [5,9,37]). The
general observation arising from the computational modeling of
the one-dimensional pulse test is that the influence of porome-
chanical coupling manifests only in the very early stages of the
pulse response; this is characteristically similar to the Mandel–
Cryer effect that gives rise to an increase in the pore pressure re-
sponse due to skeletal deformations that produce an additional
strain [38–41]. Also, when poromechanical coupling is omitted,
the Mandel–Cryer effect does not materialize. In terms of the rele-
vance of the observation to the interpretation of hydraulic pulse
tests, it could be noted that the results of pulse tests in the very
early stages of the pulse decay should not be used to estimate per-
meability. Similarly, the piezo-conduction equation modeling with
a storativity term that includes effects of grain compressibility is
expected to closely correlate with the results of the fully coupled
modeling involving Biot poroelasticity. The results of hydraulic
pulse test conducted on low permeability geomaterials can be ex-
current study. The figure also shows the detail of the initial 120 s and the geometry



Table 1
The mechanical, physical and hydraulic parameters applicable to Westerly Granite
and Indiana Limestone.

Rock type E (GPa) m a K (m2) n (%)

Westerly Granitea 37.5 0.25 0.47 4.0 � 10�19 1.0
Indiana Limestoneb 24 0.14 0.85 73.75 � 10�15 16.6

a Wang [23].
b Selvadurai and Selvadurai [45].

Fig. 5. Mesh configuration for modeling: (a) one-dimensional hydraulic pulse test
(25,028 elements) and (b) radially symmetric hydraulic pulse test (30,017
elements).

Fig. 6. Comparison of the pressure decay curves obtained from Biot’s theory of
poroelasticity with those obtained using the piezo-conduction equation for the one-
dimensional hydraulic pulse test.
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pected to produce differing responses depending on (i) the use of
fully coupled analyses, (ii) the piezo-conduction equation that uses
the conventional definition of storativity that includes compress-
ibilities of the pore fluid and the porous skeleton, (iii) the piezo-
conduction equation that takes into consideration the definition
of storativity that includes fluid compressibility, skeletal com-
pressibility and grain compressibility, and (iv) the state of defor-
mation and flow associated with the hydraulic pulse test (i.e.
axial flow, one-dimensional tests, radial flow well tests, etc.).

In order to examine the relative influences of factors (i)–(iv) on
the results of pulse tests, computational simulations were carried
out for hypothetical hydraulic pulse tests conducted on typical
rocks such as Westerly Granite and Indiana Limestone. The input
data used in the computational simulations is given in Table 1. Ta-
ble 2 shows the values for the compressibilities and storativity
terms used in the model. The computational results for the one-
dimensional and radial flow hydraulic pulse tests were conducted
using the boundary conditions and initial conditions defined by
Eqs. (19)–(25). Fig. 5 shows the mesh configuration used in the ax-
ial and radial flow models. The interface between the fluid cavity
and the rock was modeled using a very fine mesh to account for
the Heaviside step function-type discontinuous pressure gradients
that will be present at the start of the test, when the pore fluid
pressure in the saturated geomaterial is set to zero everywhere
within the porous medium. A Lagrange-quadratic element was
used in the finite element model.

Figs. 6 and 7 illustrate respectively the computational results
for one-dimensional and radial flow hydraulic pulse tests con-
ducted on Westerly Granite and Indiana Limestone.

The following observations can be made, although these are not
to be interpreted as results of a general nature.

4.1. One dimensional tests

(i) The results for hydraulic pulse tests conducted under one-
dimensional states of stress and strain and incorporating
Biot’s fully coupled theory of poromechanics give very close
results for one-dimensional Westerly Granite and relatively
close results for the Indiana Limestone (maximum discrep-
ancy of 1.3%).

(ii) The piezo-conduction equation analysis that also incorpo-
rates the influence of grain compressibility provides a closer
correlation to results obtained from a Biot poroelastic anal-
ysis with a one-dimensional stress condition. This is not an
unexpected result since the fully coupled Biot model takes
into account the influence of grain compressibility through
the inclusion of the a parameter.
Table 2
Storativity termsa for Westerly Granite and Indiana Limestone.

Rock type Ceff (Pa�1) Cs (Pa�1)

Westerly Granite 4.00 � 10�11 2.12 � 10�11

Indiana Limestone 9.00 � 10�11 1.35 � 10�11

a In all estimates for S, the compressibility of water is taken as 4.54 � 10�10 (Pa�1) (W
(iii) The pulse decay obtained from conventional hydraulic pulse
test modeling (i.e. no poromechanical coupling and no influ-
ence of grain compressibility) shows a faster decay in the
pressure pulse. This would imply an over estimation of the
permeability. For example, if the one-dimensional result
Sa (Pa�1) SP (Pa�1) SC (Pa�1)

1.43 � 10�11 2.31 � 10�11 4.45 � 10�11

8.46 � 10�11 1.50 � 10�10 1.65 � 10�10

hite [44]).



Fig. 7. Comparison of the pressure decay curves obtained from Biot’s theory of
poroelasticity with those obtained using the piezo-conduction equation for a
radially symmetric hydraulic pulse test.
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for Westerly Granite shown in Fig. 6 is chosen and the Biot
results are considered a true representation, the permeabil-
ity estimated from a piezo-conduction equation (without
grain compressibility) needs to be reduced by approximately
58.5% to match the Biot results.

4.2. Radial flow tests

(i) In general, the radial flow hydraulic pulse tests are less influ-
enced by fully poroelastic coupling when compared to the
one-dimensional axial flow hydraulic pulse tests. The results
for the fully coupled poroelastic hydraulic pulse decay com-
pare favorably with the piezo-conduction equation results
that incorporate grain compressibility.

(ii) The result from the conventional piezo-conduction equation
analysis tends to over-estimate the permeability of the
medium.

There is no simple non-dimensional parameter that would al-
low an identification of the discrepancy that might be expected be-
tween the fully coupled analysis and the conventional piezo-
conduction equation analysis (with or without consideration of
grain compressibility). It would appear that the discrepancies be-
tween the fully coupled analysis of the hydraulic pulse test and
the result derived from the conventional piezo-conduction equa-
tion with storativity defined by Eq. (6) will become noticeable as
the permeability of the material decreases.

4.3. Effect of aspect ratio

It is well known that under certain conditions the pressure
diffusion equation (i.e. Eq. (2)) decouples from the skeletal
deformation (i.e. a @
@t ðr � uÞ ! 0). Two of these conditions are the

irrotational displacement in the finite or semi-finite domains (e.g.
radially symmetric hydraulic pulse testing in an infinite medium)
and the limit of the relatively compressible pore fluid [27]. It
should, however, be noted that in such limiting cases the pore
pressure decay obtained from the piezo-conduction equation is
not equal to that obtained from Biot’s poroelasticity formulation,
since the estimate for storativity are different in the two formula-
tions. The effect of the sample dimensions on the coupling param-
eters in Biot’s poroelasticity has been studied by a number of
researchers [27,42]. Since slender samples were utilized in the pre-
viously cited computational treatments, the influence of the aspect
ratio on the decay of the hydraulic pulse was briefly investigated.
The size of the cavity was kept constant for both one-dimensional
and radial flow hydraulic pulse tests and either the length or the
outer radius of the porous domain was changed. The hydraulic
pulse tests were modeled for different sample sizes using the linear
equations of poroelasticity and also for the piezo-conduction equa-
tion, with or without taking into account the compressibility of so-
lid grains. The problem was modeled for each geometry for the first
50% reduction in the cavity pressure obtained from Biot poroelas-
ticity formulation and then re-examined using the piezo-conduc-
tion equation over the same time duration. Finally, the cavity
pressure at the end of each modeling exercise was compared with
the poroelasticity solution to obtain the percentage error
(d ð%Þ ¼ 100� ðpp�c � pBiotÞ=pBiot) in the estimation of cavity pres-
sure using the piezo-conduction equation. Figs. 8 and 9 show the
calculated percentage error for, respectively, the one-dimensional
and radially symmetric hydraulic pulse tests. It is evident that for
both one-dimensional and radially symmetric problems the
piezo-conduction equation provides results close to Biot’s poro-
elasticity solution and, for smaller aspect ratios, the discrepancy
between the results obtained from the two solutions becomes
negligible.
5. Hydraulic pulse tests on Stanstead Granite

In this section we use the developments presented in the previ-
ous sections to examine the results of hydraulic pulse tests con-
ducted on Stanstead Granite. The Stanstead Granite is described
as a light gray coarse textured granite with grain sizes that range
from 1 mm to 5 mm. The geomechanical properties of the Stan-
stead Granite were measured in the current study and compared
with the studies by Iqbal and Mohanty [43]. The parameters used
in the modeling were as follows: drained Young’s modulus
(E0) = 56 (GPa); drained Poisson’s ratio (m0) = 0.13 (measured in
accordance with ASTM D7012-04); Biot coefficient (a) = 0.44;
porosity (n) = 0.5–1.26% (measured in accordance with ASTM
D4404-84); dynamic viscosity of water at 20 �C (l) = 0.001 (Pa s)
[44]; density of water (q) = 1000 (kg/m3); compressibility of water
(Cw) = 4.54 � 10�10 (Pa�1) [44]. The value of the dynamic viscosity
(l) was adjusted to account for the actual water temperature re-
corded for each test [44]. Two types of hydraulic pulse tests were
conducted on the granite. The first involved pulse testing cylindri-
cal samples of the granite under purely radial flow conditions and
the second used a patch pulse test.

The cylindrical samples used in the experimental investigations
measured 15.24 cm in diameter and 14.76 cm in height. The cylin-
drical surfaces of the samples were cored from a larger sample and
the plane ends were machined smooth to accommodate a sealing
gasket. The central cavity was prepared using a 2.54 cm diameter
diamond drill and the surface of the cavity was air-blown to re-
move any debris that might be embedded on the surface of the cav-
ity that could impede fluid flow by clogging the pore space.



Fig. 8. Comparison of the computational results obtained from Biot poroelasticity equations with the piezo-conduction equation for one-dimensional constant stress and
constant strain hydraulic pulse testing for different aspect ratios.
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5.1. Radial flow hydraulic pulse testing

Radial flow hydraulic pulse testing involves the application of a
pressure pulse to a central cavity drilled into the rock specimen.
The sample was vacuum saturated for a period of 7 days to ensure
that the pore space was saturated. There are no assurances that the
entire pore space would be saturated but experience from previous
experimental investigations involving cement grouts [16], Barre
Granite [17] and Indiana Limestone [19] using such techniques
have resulted in reliable results concerning saturation. The plane
surfaces of the hollow cylinder were sealed with an epoxy to en-
sure that the flow pattern corresponds to radial flow. A schematic
view of the experimental faculty is shown in Fig. 10. It consists of a
test frame to provide a seal between the centrally cored Stanstead
Granite specimen and a stainless steel ‘‘permeameter’’ that has a
water inflow, an outlet and a connection to a pressure transducer.
This arrangement is similar to the devices used by Selvadurai and
Carnaffan [16] when performing hydraulic pulse tests on cementi-
tious grout and by Selvadurai and Selvadurai [45] when perform-
ing steady state patch permeability tests. The permeameter has
provisions for extracting air from the central cavity that could
influence the performance of the hydraulic pulse test. Fig. 11
shows the details of the permeameter.

The procedure for performing the radial flow pulse test in-
volves a preliminary test that is performed on a hollow aluminum
cylinder to test the efficiency of seals used to maintain radial
flow. In these trial tests, the cavity in the aluminum cylinder
should maintain the pressure with negligible decay (0.5% pressure
decay in 2000 s and 7% decay in 50,000 s). The sealing is achieved
through a set of O-rings located between the permeameter and
the epoxy-covered surface of a hollow aluminum cylinder. Radial
flow pulse tests were performed by subjecting the central cavity
to a pressure pulse that is applied for a duration of less than
60 s. This time interval can be regarded as representative of a
hydraulic pressure pulse of a delta function-type. Fig. 12 shows
the results for time-dependant pressure decay obtained during
10 pulse tests conducted on the Stanstead Granite. The interpre-
tation of pulse tests for estimating the permeability can be per-
formed in a variety of ways and the most convenient procedure
is to develop a set of pulse decay curves that can be used to
‘‘bound’’ the value of permeability. The bounding procedure for
obtaining a range of values for K is considered to be more realis-
tic than obtaining a specific value. The bounding data was deter-
mined from three different approaches: (i) the conventional
piezo-conduction equation analyses (Kpc), (ii) the conventional
piezo-conduction equation analyses, which also accounts for the
compressibility of grains (Kpcc), and (iii) a fully coupled analysis
of the radial flow pulse decay problem (Kfc). The bounding curves
shown in Fig. 12 are only estimations based on the approach (i)
while Table 3 summarizes the permeability ranges estimated
from all three methods. There are only marginal differences be-
tween the three estimates.



Fig. 9. Comparison of the computational results obtained from Biot poroelasticity
equations with the piezo-conduction equation for radially symmetric hydraulic
pulse testing for different aspect ratios.

Fig. 11. Components of the permeameter used to perform hydraulic pulse tests on
fully drilled samples.
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5.2. Patch pulse test

We next consider the problem of pulse loading applied at a
patch located on the plane surface of a cylinder of Stanstead Gran-
ite. The patch pulse tests have been successfully used for estimat-
ing the permeability characteristics of rocks such as Berea
Sandstone [46] and Indiana Limestone [45]. Here we present an
application that investigates transient behavior of a hydraulic
pulse applied at a circular opening located at the axis of the sealed
plane surface of a cylindrical sample of Stanstead Granite. The seal-
Fig. 10. Experimental faculty for measuring the pe
ing between the permeameter and the granite cylinder is achieved
by applying an axial stress of 1.5 MPa. The pressure pulses applied
within the opening are kept to a maximum of 150 kPa to eliminate
any leakage at the sample–rubber gasket interface. The procedure
adapted to constrain the gasket during its compression is similar to
that used by Selvadurai and Selvadurai [45] and has provided a
successful sealing technique. A schematic view of the test arrange-
ment is shown in Fig. 13. The annular region of the plane surface of
the cylinder is maintained in a sealed and submerged condition
and initially a vacuum is applied to remove any trapped air. The
residual pore pressure fields created during saturation of the sam-
ple under vacuum are allowed to dissipate over a 7 day period. The
rmeability of low permeability geomaterials.



Fig. 12. Results of hydraulic pulse tests performed on a fully drilled Stanstead Granite cylinder (sample SD). The analysis of data was done using the piezo-conduction
equation and neglecting the compressibility of the solid grains.

Table 3
Permeability values for Stanstead Granite.

Sample Kfc (m2) Kpcc (m2) Kpc (m2)

SU (1.2–1.7) � 10�20 (1.2–1.7) � 10�20 (1.1–1.6) � 10�20

SD (6.0–7.7) � 10�20 (6.0–7.7) � 10�20 (5.5–7.0) � 10�20
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fluid cavity is subjected to a pressure pulse to initiate the pulse
tests. Fig. 14 shows the results of surface pulse tests derived from
10 tests conducted on the cylindrical sample. These results have
been interpreted on the basis of the three sets of permeability
estimates obtained in Section 5.1. The pore pressure boundary
condition applicable to the patch pulse testing that uses the
piezo-conduction equation analysis (with and without influences
of grain compressibility) is shown in Fig. 15(a) and the pore
pressure, displacement and traction boundary condition needed
Fig. 13. Components of the permeameter used to perform hydraulic pulse tests on
undrilled samples.
to perform a fully coupled analysis are shown in Fig. 15(b). The
results derived from the three sets of theoretical estimates for
the permeability predicted the correct trends for the pulse decay,
although the numerical predictions show deviation from the
experimental data. The likely causes for the discrepancies are not
readily evident. The likely causes for the discrepancies seen be-
tween the experimental observations and theoretical predictions
for the patch pulse tests could be due to several factors including
leakage, damage during sample fabrication, dissolved air and
transverse isotropy influences of permeability. The first two factors
can be eliminated since this would have resulted in faster decay
rates than those presented in Fig. 14. Air entrapment in the system
was minimized through vacuum saturation protocols that were
also adopted for the purely radial flow pulse tests. The presence
of permeability transverse isotropy could be a likely cause for a less
than perfect correlation in the pulse decay results. There is little
information on the estimation of permeability anisotropy of the
Stanstead Granite. Literature on fracture toughness testing sug-
gests the presence of some anisotropy in the fracture toughness
properties [47]. As a parametric exercise, hydraulic pulse test
behavior was modeled with hydraulic transverse isotropy main-
taining the range of values of the radial hydraulic conductivity esti-
mated from the purely radial flow tests. It is estimated that the
permeability in the axial direction should be 20 times smaller than
the permeability in the radial direction in order to achieve a corre-
lation between the computational predictions provided by the fully
coupled analysis and the experimental data. This conclusion, how-
ever, requires further study.

6. Concluding remarks

In this paper, the range of applicability of the piezo-conduction
equation used for estimating the hydraulic properties of low per-
meability rocks was examined using Biot’s poroelasticity theory.
The results indicate that the prediction for the pressure decay
can be influenced by both the model used to interpret the test
and the test configuration; this in turn can influence the interpre-
tation of the permeability of the porous medium. The conventional
modeling of the test that uses the piezo-conduction equation does
not account for the compressibility of the solid grains and this fac-
tor can have an influence on the estimation of the permeability of
geomaterials with small Biot coefficients. A further consideration is
the influence of generalized deformations of the porous skeleton;
this can be accommodated for by modeling the piezo-conduction
equation by appeal to Biot’s classical theory of poroelasticity. The



Fig. 14. Results of hydraulic pulse tests performed on an undrilled Stanstead Granite cylinder (sample SU). The analysis of data was done using the piezo-conduction equation
and neglecting the compressibility of the solid grains.

Fig. 15. Sample SU: (a) geometry and boundary conditions used for the piezo-conduction equation and (b) geometry and boundary conditions used for Biot’s poroelasticity
equations.
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incorporation of the generalized deformations can also influence
the interpretation of test results. The performance of the two
modeling techniques is demonstrated by examining the pulse de-
cay observed in two typical geologic media that have been investi-
gated in the literature. Finally, the results of hydraulic pulse tests
performed on two Stanstead Granite samples were analyzed by
employing the separate approaches. Comparisons show that,
although the permeability obtained from different approaches
change, the order of magnitude is consistent for the performed
tests. Also, the computational studies performed show that the
choice of a modeling technique influences one-dimensional
hydraulic pulse test analysis more than radially symmetric test
configurations. In general, the most complete approach to analyze
the hydraulic pulse test results is to use Biot’s poroelasticity the-
ory, which accounts for deformability of the solid grains and mod-
els the coupled interaction of porous skeleton deformation and
pressure change. This technique, however, is complicated and time
consuming to employ. For simplicity, the permeability parameter
can be estimated using the piezo-conduction equation that ac-
counts for grain compressibility.
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