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Abstract

This paper studies the possibility of endogenous fluctuations caused by activities of financial inter-

mediaries. Risk-averse agents borrow from banks and invest in a risky two-state capital technology.

The probability of success with the technology is assumed to be decreasing in the amount of capital

invested. In a complete information setting with intermediation, the efficient loan contract achieves

complete risk sharing but the amount invested in the risky project is smaller than the loan size. This

“income effect” is responsible for the endogenous generation of complex dynamics. In the absence of

intermediation, the economy studied cannot exhibit any cyclical fluctuations.
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1 Introduction

It is now virtually undisputed that banks and financial intermediaries play a crucial role in the savings-

investment process. A relatively large literature has also emerged that successfully connects banking

activity with the propagation and amplification of output fluctuations in modern economies. Within the

context of this large canvas, this paper asks a simple question: can banks introduce output fluctuations

in an economy where there were none in their absence? While we applaud banks for promoting growth

in output, are they to be blamed for introducing output volatility in an otherwise calm economy?

More specifically, this paper examines the possibility that in a complete information world, an econ-

omy’s financial setup may itself be the raison d’etre for endogenous cyclical fluctuations. It establishes

that efficient risk-sharing by financial intermediaries may expose an economy to a wide variety of en-

dogenous fluctuations. On the contrary, in the complete absence of intermediaries, the economy studied

exhibits a smooth monotonic transition to a stationary state of real activity, and is hence immune to

cyclical fluctuations.

The economy we study is similar in some respects to the one explored in Azariadis (1993). In par-

ticular, the setting is a production economy of the Diamond (1965) variety inhabited by overlapping

generations of risk-averse agents. There is a single final good produced according to a standard neo-

classical production function using capital and labor as inputs. In contrast to the specifications of the

standard Diamond model however, there is one major modification. Here, the output technology is a

two-state (success and failure) stochastic process and the probability distribution of uncertain future

output depends on the amount of capital invested by the agent. Capital has a dual role: on the one

hand, more capital investment decreases the probability of success with the output technology (hence-

forth “project”), while on the other hand, through standard channels, more capital increases output in

the success state.

In such an environment where risk-averse agents face idiosyncratic income shocks, it is natural to
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think that financial intermediaries would arise to intermediate savings, and assured by the law of large

numbers, achieve complete risk sharing.1 However, the fact that project success or failure is dependent

on the amount of capital invested, and the fact that limited liability protects borrowers in case of

default, jointly necessitate some kind of control the bank has to exert on the capital investment process.

Following Holmstrom and Tirole (1997), we assume the existence of an active intermediation regime,

one characterized by intermediaries that lend only to borrowers who accept restrictions on their own

actions as stipulated by the intermediary within the context of a contractual arrangement. Agents seek

to borrow funds in order to make capital investments on their projects. At the same time, they make

deposits with the intermediary which promises them a safe default-free rate of return. We prove that

efficient risk sharing will require that an agent invests less than the entire amount of the loan he receives.2

In other words, the agent is provided with sufficient funds not only to carry out the entrepreneurial

activity, but also to hedge his bet. This may be explained as follows. On the one hand, provision of

complete insurance requires disbursement of a loan of sufficient size such that the recipient can achieve

full consumption smoothing across different states of nature. On the other hand, because of limited

liability, a big loan may prompt “overinvestment” in the capital technology thereby reducing the chance

of success. One way the efficient contract trades off these two conflicting concerns is by making the loan

size high and stipulating a low capital investment. Thus the agent is provided additional resources for

use in the first period of his life which is the source of what we label the “income effect”. An interesting

property of our model is that the functional relationship between the size of the loan and the size of the

1 Intermediaries have been argued to perform several other important functions, delegated monitoring, screening, etc.,

to name a few. A fuller description of these functions is available in Pagano (1993). In this paper, we focus exclusively on

the risk-sharing function of financial intermediaries.
2 It is important to emphasize that we abstract away from issues of moral hazard and adverse selection here. In other

words, capital investments by agents are fully observable and the probability distribution of uncertain future output is the

same across all agents. In particular, we assume that financial intermediaries can perfectly observe, costlessly monitor and

provide verifiable evidence (to courts of law) of the capital investments of borrowers.
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capital investment (as part of the efficient contract) can be locally non-monotone. Indeed, the strength

of this income effect can change over time and this has important consequences.

We go on to establish that under some conditions on the probability distribution and its elasticity

with respect to the amount of capital invested, the aforementioned “income effect” is strong, and this

causes the law of motion for the aggregate capital stock to be non-monotonic. By means of numerical

examples, we are also able to demonstrate the existence of a large class of endogenous output fluctuations

of varying periodicity. Indeed, the possibility of development traps and aperiodic (chaotic) dynamical

equilibria also arises. Furthermore, to bring out the contrast sharply, we prove that our economy in the

absence of any form of intermediation, much like a non-pathological Diamond model, cannot produce

any fluctuations in output.

A few words on the underlying nature of these fluctuations are in order. Focus on a starting

situation where the capital stock in the economy is relatively high. Then, the wage rate in the economy

is high, and so are saving and desired investment as fractions of wage income. Left unfettered, if actual

investment in the risky capital technology were high, the riskiness of that technology would be very

high, and overall expected return would be very low. The bank, recognizing the problem, steps in and

disburses a large loan and dictates a low actual investment so as to keep the riskiness low, and expected

return high. So, the amount invested in the capital technology is low and the amount invested in the

safe deposits with the bank is high. The output in the following period is then low (given the low actual

investment). Then next period’s wage rate is low, and so are saving and desired investment as fractions

of wage income. In the absence of the bank, a low wage income would imply a low desired investment

and hence low riskiness but low expected return. Under our assumptions on the success probability

function, the bank may be able to avoid this bad situation by disbursing a small loan and stipulating a

high actual investment. The high investment may raise the expected return to investing in the capital

technology, and raise output next period, and so on.
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It is also important to emphasize that these cycles emerge in a relatively standard economy; in

particular, we do not take recourse to elements like limited market participation, imperfect competition,

multiple sectors etc. which have been shown to contribute to cyclical fluctuations (see Boldrin and

Woodford (1990) for a survey). We do however emphasize the role of the “income effect” in the

generation of cyclical fluctuations, although it should be noted that the nature of the income effect

we describe is very different from the one explored in Azariadis (1981) or Grandmont (1985). These

authors stipulate exogenous restrictions on preferences that generate a sufficiently strong income effect

which, in turn, produces “backward-bending” savings/labor-supply functions. In our setup, the income

effect is endogenously generated as a by-product of efficient risk sharing in the presence of limited

liability.

The possibility that financial intermediation, in and of itself, may expose an economy to endogenous

fluctuations has long been recognized.3 Such a link was at the heart of John Mills’ 1867 celebrated

paper entitled “On Credit Cycles and the Origin of Commercial Panics” as well as at the center of

a prolonged debate between the Currency School and the Banking School in England in the early-

to-mid 19th century.4 Taking his cue from these debates, Friedman (1960) in fact advocated 100%

reserve requirements on financial intermediaries as a sure step towards eliminating “excessive economic

fluctuations”. Friedman’s concern was criticized by Sargent and Wallace (1982) who constructed a

model in which unfettered intermediation leads to endogenous fluctuations that are Pareto optimal.

Smith (1991) reconsidered Friedman’s proposal in a world with financial intermediaries and nominal

assets. Our work differs from these abovementioned investigations in that our focus is entirely on real

fluctuations as opposed to volatility in the price level.

3Friedman and Schwartz (1963) provide compelling evidence that most of the pre-World War II recessions were asso-

ciated with major transfers of resources out of the banking system (“disintermediation”) and into various other assets,

thereby suggesting that the financial system may itself have been the source of the economic volatility.
4See Smith (1988) for an insightful and modern discussion.
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It is important to note that our question and setup are quite different from much of the exist-

ing literature that connects financial development and output variability. First, unlike Bernanke and

Gertler (1989), Bachetta and Caminal (2000), among others, we are interested in demonstrating how

banking activities may create the possibility of cyclical fluctuations, rather than how they propagate

or amplify existing output disturbances. Second, our focus is different from a large class of models that

rely on the “cycle of overlending” to explain the recent financial crises crippling Asia and Latin Amer-

ica.5 Third, unlike all of this literature, we deal with a complete information world in which risk-averse

agents confront a risk-neutral lender; in particular, there is no moral hazard ex-ante or ex-post, unlike

Williamson (1987), or Aghion, Banerjee, and Piketty (1999), or adverse selection as in Azariadis and

Smith (1996). Den Haan, Ramey, and Watson (2003) consider long-term lending relationships that are

subject to moral hazard and other non-informational frictions. They establish a complementarity be-

tween financial intermediation and investment (somewhat similar in spirit to ours) which cause multiple

Pareto-ranked equilibria to emerge in their framework. However, their focus is on magnification and

propagation under moral hazard which we abstract away from.

The plan for the rest of the paper is as follows. In the next section, we describe the model’s

environment, i.e., agents’ preferences and technology, and then we set up the goods and labor markets.

In Section 3, we derive the efficient financial contract between a risk-averse borrower and a bank that

can control the borrower’s actions. In Section 4, we define a general competitive equilibrium in our

economy and go on to study stationary and non stationary equilibria. Here, we demonstrate by means

of numerical examples that our economy exhibits complex dynamics, and also prove that our economy

absent banks, is incapable of generating any endogenous output variability. Section 5 concludes. Proofs

of certain important results are contained in the appendices.

5For example, according to Kaminsky and Reinhart (1996), “a financial crisis occurs as an economy enters a recession

that follows a prolonged boom in economic activity fueled by credit creation and surges in capital inflows.”
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2 The Model

2.1 Environment

We study a simple production economy that is inhabited by an infinite sequence of two-period lived

overlapping generations, plus an initial old generation. Time is discrete and is indexed by t = 1, 2, ....

In each period, a new generation comprising a continuum of agents with measure one is born. Each

generation is identical in size and composition.

Only the initial old is endowed with a capital stock of K1 > 0. All other agents are endowed with

one unit of time only when young. Agents do not value leisure; as a result, every agent supplies one

unit of labor inelastically to the labor market when young, at the going wage rate, wt. There is a single

perishable good in the economy.

The preferences of all agents are summarizable by an atemporal additively-separable utility function,

U, where

U(c1, c2) = u(c1) + v(c2) (1)

and cj , j = 1, 2 refers to consumption of the good in the jth period of life. The functions u and v are

strictly increasing, strictly concave, and smooth. All individuals are risk-averse. Additionally,

Assumption 1

−c2v
00(c2)

v0(c2)
≤ 1 (2)

holds, i.e., the Arrow-Pratt measure of relative risk-aversion is less than or equal to unity. This

assumption ensures that optimal saving is non-decreasing in its rate of return. Its importance will be

evident in Section 4 below.

Agents can transfer income across time periods by investing in one of two possible assets. The first is

a riskless asset, where a unit of the good invested at t returns a gross amount rt+1 at the start of t+1 for
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sure. The exact nature of this asset will be described below. The second avenue for the intertemporal

transfer of income is investment in a commonly accessible risky output technology. This technology

is summarized by a constant returns to scale neoclassical production function F (.) that employs labor

(N) and capital (K) as inputs. We let xt ≡ Kt
Nt
denote the capital to labor ratio, and f(xt) ≡ F (Kt

Nt
, 1),

denote the associated intensive production function. The function f(.) is assumed to satisfy f(0) = 0,

f 0 > 0 > f 00, and standard Inada conditions. Capital depreciates 100% between periods.

We modify the standard Diamond (1965) formulation by postulating that a capitalist must invest

before he hires labor. If the investment turns out to be “successful”, then labor is hired, and subsequent

production of the final good takes place. If an investment “fails”, then the net output is zero, and no

labor is hired. The amount that an individual invests in period t is denoted byKt+1. The outcome of the

investment is subject to a idiosyncratic random event. The probability that an individual is successful

is assumed to be dependent on the amount he invests, and is denoted by p(Kt+1). The probability

that his project is a failure is therefore given by 1− p(Kt+1). At the start of t + 1, the idiosyncratic

uncertainty is resolved, and each old capitalist then knows whether his investment project is a success

or a failure. By “failure”, we mean that the amount invested, Kt+1, becomes useless to him, and to

all others, and he will not hire any worker. Given the above characterization, it may be convenient to

think of the project as an R&D activity. For any given individual i, the expected output from investing

Ki is p(Ki)F (Ki, ·). For the economy as a whole, however, there is effectively aggregate certainty, and

the aggregate effective capital stock is p(K)K, giving rise to the certain output F (p(K)K,N).

We make the following assumptions about the function p.

Assumption 2 a) 1 ≥ p(0) > 0, and p(K) ∈ (0, 1) ∀K > 0

b)

p0(K) < 0 ∀K > 0 (A.1)

and p0(0) <∞.
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This assumption on p0 is somewhat analogous to those made by de Meza and Webb (1999, 155).6

In plain English, the chance of forfeiting everything is higher when one invests more in the project.7

We do not claim that this is a typical description of all types of investment projects. However, it

seems reasonable that large investment projects, especially of the R&D type, involve high degrees of

complexity and therefore carry with them a greater probability of failure.

It is also important to note that even under Assumption A.1, the aggregate production function

F (p(K)K, ·) ≡ Q(K) can be standard, increasing and concave inK, as is usually assumed. For example,

if F (K,N) = KαN1−α and p(K) = e−βK , with β > 0, then Q(K) = Kαe−αβK , and it is easily checked

that 0 < Q0(K) and Q00(K) < 0 for K < β−1.8

For future reference, define the elasticity of success probability with respect to capital (henceforth

“success elasticity”) as:

η(K) ≡ Kp0(K)
p(K)

The usefulness of the following assumption on η will be readily apparent in Section 4 below.

Assumption 3 The “success elasticity” lies in the open interval (−1, 0) for all K > 0 :

−1 < η(K) ≤ 0, η(0) = 0 (A.2)

Moreover,

0 < η0(K) <∞ (A.3)

6 In de Meza and Webb (1999), projects with a high “risk characteristic” yield higher return in the event of success, but

have lower probability of success.
7The assumption that all is lost in the event of failure is stronger than what we need. We have checked that if capital

depreciates less than 100%, and if undepreciated capital does not enter the p(.) function, then all our subsequent results

(suitably modified) go through only at the cost of additional notation.
8There is a more technical reason for making Assumption A.1. It is easily verified that under the opposite assumption,

p0(K) > 0, the expected private output function p(K)F (K, .) exhibits increasing returns to scale, thereby precluding a

competitive environment. The assumption (A.1) is therefore crucial to our results.
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Condition (A.2) of Assumption 3 implies that 1 + η(Kt+1) > 0 for all K > 0, or that the success

probability function is mildly elastic with respect to capital invested.9 Condition (A.3) further strength-

ens the effect; the success probability function responds more positively to capital investment for higher

capital stocks than for lower capital stocks.

2.2 Markets

2.2.1 Labor Market

If the project is a success, the old capitalist will go to the labor market to hire labor at the given

wage rate wt+1, and his firm’s output is Yt+1 = F (Kt+1,Nt+1). Given Kt+1, the owner of the successful

project will choose Nt+1 to maximize his profit, by equating marginal product of labor to the market

wage rate wt+1 This implies that his firm’s capital labor ratio x satisfies

f(xt+1)− f 0(xt+1) · xt+1 = wt+1 (3)

which implicitly defines10

xt+1 = φ(wt+1), φ0(.) > 0. (4)

After making payments to labour, the successful entrepreneur gets the residual Π, where

Π ≡ f 0(φ(wt+1))Kt+1. (5)

In the absence of any aggregate uncertainty, each entrepreneur invests the same amount Kt+1, and

then the measure of successful entrepreneurs is exactly p(Kt+1). After individual entrepreneurs observe

their idiosyncratic random events, the economy’s overall capital-labor ratio is [p(Kt+1)Kt+1/1] implying

that

xt+1 = p(Kt+1)Kt+1/1 (6)
9As an example, consider the function p(K) = β

1+K
, β > 0. Then p0(.) < 0, and 0 > η(K) = −K/ (1 +K) > −1.

10For example, if F (K,N) = AKαN1−α, then it readily follows that xt+1 = [wt+1/A(1− α)]1/α = φ(wt+1) or that

wt+1 = A(1− α)xαt+1.
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or, equivalently,

p(Kt+1)Kt+1 = φ(wt+1) (7)

Given the investment level Kt+1 undertaken by all entrepreneurs, the market-clearing wage rate in

period t+ 1 is then uniquely determined. Alternatively, from (7) and (3),

wt = φ0−1 [p(Kt)Kt] = f [p(Kt)Kt]− f 0 [p(Kt)Kt] [p(Kt)Kt] ≡ ψ(Kt) (8)

It is immediate from Assumption A2 that ψ0(Kt) > 0. (Note that if F (K,N) = AKαN1−α, then it read-

ily follows that ψ(Kt) = (1−α) [p(Kt+1)Kt+1]
α and ψ0(Kt) = (1−α) [p(Kt+1)Kt+1]

α−1 [p0(Kt)Kt + p(Kt+1)] >

0 .)

2.2.2 Goods and financial markets

In the scenario described above, it is apparent that financial intermediaries can arise to provide risk and

consumption smoothing. In our competitive context, financial intermediaries (FIs) can be thought of as

coalitions of young agents that create borrowing and lending opportunities to maximize the expected

utility of the representative depositor. The FIs take advantage of the law of large numbers and lend to a

large number of young capitalists. They offer a riskless interest rate (r) to depositors. The representative

young individual in period t borrows Bt from the FIs, so that his available fund is wt+Bt. He allocates

this fund among three uses: consumption when young, Cy
t , investment in his project, Kt+1, and deposits

in FIs, Dt. The first period budget constraint of a young capitalist is then given by

Cy
t = wt +Bt −Kt+1 −Dt.

The investment in the risky activity may turn out to be a success, or a failure, as has been discussed

above.

We now turn to the problem of how investment decisions are made. If the risky project turns out

to be a success, (i.e., the state of nature is “good”) the entrepreneur will have to pay the FIs the
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contracted amount Rt+1Bt where Rt+1 is the gross rate of interest per unit on the loan. If the project is

unsuccessful, (i.e., in the bad state) he will pay the FIs nothing (this reflects the limited liability feature

of the loan contract). The individual’s second period consumption in the “good state” is

CoG
t+1 = rt+1Dt + f 0(φ(wt+1))Kt+1 −Rt+1Bt

(where the superscript o indicates the old age consumption, and G indicates the good state). In the

“bad state”, under our assumption that all investments in the risky technology are lost, and that (under

limited liability) he pays the FIs nothing, we have

CoB
t+1 = rt+1Dt.

Note that if wt, wt+1, rt+1,Kt+1, Rt+1 and Bt are taken as given, the consumer’s choice of Dt must

maximize

u [wt +Bt −Kt+1 −Dt] + [1− p(Kt+1)] v [rt+1Dt] + p(Kt+1)v
£
rt+1Dt + f 0(φ(wt+1))Kt+1 −Rt+1Bt

¤
This maximization problem yields the function

D∗t = D [wt, wt+1, rt+1,Kt+1, Rt+1, Bt] ∈ (0, wt)

which summarizes the agent’s optimal deposit behavior.

3 Loan contracts

The FIs lend to the entire body of entrepreneurs, and the expected return from each unit of funds lent

is p(Kt+1)Rt+1. They also pay depositors the safe rate rt+1 for each unit of goods deposited in period

t. Then, the zero profit condition for the FIs is given by

p(Kt+1)Rt+1 = rt+1
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from which it follows that Rt+1 > rt+1 must obtain. We now turn to the equilibrium determination of

these returns.

The problem faced by the FIs is as follows. Suppose a FI lends a certain amount to each potential

capitalist and they, in turn, invest either nothing or a tiny amount in their projects. Recall that the

probability of success of any project is inversely linked to the amount invested. Under limited liability,

the borrowers are protected, and therefore, the FI cannot break even. Therefore, it is evident that for

FIs to survive, they must be able to induce the borrower to invest the “right” amount. Under our

assumption of complete transparency and perfect information, this requires that the FIs must have the

ability to perfectly monitor, observe, and control the actions of the borrowers.

We now proceed to derive the optimal loan contract that FIs offer to the entrepreneurs under the

assumption of complete control. In other words, the FI that lends to an entrepreneur actively monitors

him (in the sense of Holmstrom and Tirole, 1997), and observes and dictates the amount Kt+1 that he

invests in the risky project. As is well-known, the efficient contract must maximize the expected utility

of the representative borrower, given the limited liability constraint, and the “participation constraint”

of the FI.

Formally, given wt, wt+1, rt+1, the design of the efficient contract solves the following problem:

choose Dt, Kt+1, Bt, Rt+1 to maximize an entrepreneur’s expected utility

U = u [wt +Bt −Kt+1 −Dt]+[1− p(Kt+1)] v [rt+1Dt]+p(Kt+1)v
£
rt+1Dt + f 0(φ(wt+1))Kt+1 −Rt+1Bt

¤
subject to the lender’s participation constraint:

p(Kt+1)Rt+1 = rt+1 (9)

Forming the Lagrangian,

£ = U + λ [p(Kt+1)Rt+1 − rt+1]
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The first order necessary conditions for an interior solution are11:

(i) w.r.t. Dt

−u0(Cy
t ) + rt+1p (·) v0

£
CoG
t+1

¤
+ rt+1(1− p (·))v0 £CoB

t+1

¤
= 0 (10)

(ii) w.r.t. Kt+1

−u0(Cy
t ) + p0 (·) v £CoG

t+1

¤
+ p (·) v0 £CoG

t+1

¤
f 0(φ(wt+1))− p0 (·) v £CoB

t+1

¤
+ λp0 (·)Rt+1 = 0 (11)

(iii) w.r.t. Bt

u01 (C
y
t )−Rt+1p (·) v0

£
CoG
t+1

¤
= 0 (12)

(iv) w.r.t. Rt+1

p (·) v0 £CoG
t+1

¤
Bt − λp (·) = 0 (13)

From (10) and (12), it follows that

rt+1p (·) v0
£
CoG
t+1

¤
+ rt+1(1− p (·))v0 £CoB

t+1

¤
= Rt+1p (·) v0

£
CoG
t+1

¤
From (13), a positive Bt implies λ > 0. Thus, (9) is binding. Then, Rt+1p (·) = rt+1 holds, implying

p (·) v0 £CoG
t+1

¤
+ (1− p (·))v0 £CoB

t+1

¤
= v0

£
CoG
t+1

¤
or,

p (·)©v0 £CoG
t+1

¤− v0
£
CoB
t+1

¤ª
=
©
v0
£
CoG
t+1

¤− v0
£
CoB
t+1

¤ª
Since p(·) < 1, this implies

CoG
t+1 = CoB

t+1. (14)

In other words, second period consumption is independent of the state of nature. This is a standard

result: the risk-neutral FI provides complete insurance to the risk-averse consumer. An immediate

11As is true with similar problems in much of this literature, it is not immediate that the function U(B,K,D,R) is

strictly concave in its arguments.
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consequence of eq. (14) is that the ratio of the loan to the amount of capital invested in the risky

project is equal to the ratio of (ex-post) marginal product of capital to the gross interest rate on the

risky loan:

Bt

Kt+1
=

f 0(φ(wt+1))

Rt+1
(15)

It remains for us is to describe the relationship between rt+1 and Kt+1, summarized in the next lemma.

Lemma 1 Given wt+1 and the safe rate of return rt+1, the efficient contract specifies a unique invest-

ment amount Kt+1. This amount equates the expected rate of return, modified by the success elasticity,

to the safe rate of return:

rt+1 ≡ r(Kt+1) = p(Kt+1)f
0(φ(wt+1)) [1 + η(Kt+1)] (16)

Under condition (A.2) of Assumption 3, it follows from (16) that the safe rate of return is lower

than the expected rate of return from investing in capital. From the zero-profit condition, eq. (9), it

follows that

Rt+1 = f 0(φ(wt+1)) [1 + η(Kt+1)]

which using (15) yields

Kt+1

Bt
= 1 + η(Kt+1)⇔ Bt > Kt+1∀ Kt > 0. (17)

The fact that the efficient contract requires the intermediary to disburse a loan of size greater than

the amount the borrower invests (in the risky capital project) is important. The underlying reason is

that since the borrower is risk-averse and might forfeit all of his investment in the event of a failure, he

will not invest the entire amount of the loan in the capital technology.

Condition (17) implies that Bt can be expressed as a function of Kt+1:

Bt = Bt(Kt+1) =
Kt+1

1 + η(Kt+1)
(18)
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Define

Zt ≡ Bt(Kt+1)−Kt+1 ≡ Z(Kt+1) (19)

as the excess of the loan over the capital investment. The variable (Zt) plays a key role in our set-

up because it captures the “income effect” that is ultimately responsible for generating endogenous

fluctuations in our economy.

In passing, we quickly establish certain useful properties of the optimal safe deposits D. Using (19)

and (16), we can simplify condition (10) to read

−u0 [wt + Zt −D∗t ] + rt+1v
0 [rt+1D∗t ] = 0

which implicitly defines

D∗t = D [wt, rt+1, Zt] .

Straightforward differentiation reveals that

Dw ≡ ∂D

∂wt
=
1

∆
u00 > 0, ∆ ≡ u00 + (rt+1)2v00 < 0,

Dr ≡ ∂D

∂rt
= − 1

∆

£
v0 +Co

t+1v
00¤ ≥ 0,

because of Assumption 1, and finally,

Dz ≡ ∂D

∂Zt
=
1

∆
u00 > 0.

This last result ties in well with our earlier observation that the excess of the loan amount over the

capital invested shows up in higher investment by the agent in the safe asset.

4 General Equilibrium

We require that the loan market be in equilibrium, therefore the deposits Dt with the FIs must be equal

to the loans the FIs make to entrepreneurs:

D [wt, rt+1, Zt] = Bt (20)
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Using (8) and (16), (20) may be written as

D [ψ(Kt), r(Kt+1), Z(Kt+1)] = Bt(Kt+1) (21)

This first-order, (potentially) non-linear difference equation summarizes all the competitive dynamical

equilibria in the economy. Given Assumptions 1-3, starting from any K1 > 0, equation (21) generates a

solution sequence {Kt} from which every endogenous variable in the model can be computed. We now

proceed to study equation (21) in some detail, starting with a study of steady states.

4.1 Stationary equilibria

Stationary equilibria are time-invariant sequences {K} that satisfy (21). Straightforward differentiation

of (18) reveals that the right hand side of (21) may be upward or downward sloping, or that

B0(K) =
1

[1 + η(K)]2
£
1 + η (·)−Kη0 (K)

¤
R 0 (22)

where, recall that (A.3) states that η0 (K) > 0. Similarly, recall that ψ0(K) = 1
φ0 [p

0(K)K + p(K)] > 0.

The slope of the left hand side of (21) is given by

Dwψ
0(K) +Drr

0(K) +Dz

£
B0(K)− 1¤ .

where Dr ≥ 0 by Assumption 1. We note that B0(K) ≶ 0 can obtain, and thus the left hand side

of (21), much like the right hand side, may be upward or downward sloping. In other words, the

relationship between the size of the loan and the stipulated capital investment may be non-monotonic

as a consequence of Assumption A.3. This is true even if Dr = 0. If u0(0) = v0(0) =∞, then K = 0 is

definitely a steady state. (Note that B(0) = 0, ψ(0) = 0, and Z(0) = 0).

Example 1 Let u = lnCy and v = lnCo. Then (21) reduces to

ψ(K) =

·
2 + η (·)
1 + η (·)

¸
K. (23)
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Choose f(p(K)K) = [p(K)K]α , and set α = 0.36. Also, choose p(K) = 1/[1 + ln(1 +K)]. It is easy

to verify that Assumptions (A.1)-(A.3) are met. Then (23) has a unique non-trivial steady state,

K∗ = 0.1429.

It is quite possible that there are multiple interior steady states, just as in the standard Diamond

(1965) model. We now proceed to study the dynamics of the model, paying special attention to the

possibility of existence of cyclical equilibria.

4.2 Dynamic equilibria

Using (21), we can obtain the slope as

dKt+1

dKt
=

−Dwψ
0(Kt)

DZ [B0(Kt+1)− 1] +Drr0(Kt+1)−B0(Kt+1)
(24)

Clearly, the numerator of the right-hand side of (24) is negative. The denominator is ambiguous in sign,

because B0(.) and r0(.) are of ambiguous sign under Assumption 2.12 It bears emphasis here that even

if Dr = 0, the denominator of the right-hand side of (24) is ambiguous in sign. It follows that there

may exist points at which the denominator of (24) changes sign, i.e., the locus of points (Kt,Kt+1) that

satisfy (21) may well be a correspondence Kt = χ(Kt+1): for a given Kt+1, there may exist more than

one value of Kt but for a given Kt, there is only one value of Kt+1. Then, we can implicitly define a

function Kt+1 = G(Kt) representing the standard backward dynamics.

Lemma 2 The slope of the locus Kt+1 = G(Kt) changes sign only at a point K̂ where

DZ

h
B0(K̂)− 1

i
+Drr

0(K̂)−B0(K̂) = 0.

12Since we have assumed that, for positive K, 1 > 1+ η > 0, it follows that B is always positive and greater than K for

all K > 0. Thus it is not possible to have B0(Kt+1) < 0 for all K; nevertheless, it is possible that B0(Kt+1) < 0 over some

intervals where η0 is positive and sufficiently large.
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Suppose Dr = 0 holds, then K̂ satisfies

B0(K̂) = − u00 (·)h
r(K̂)

i2
v00 (·)

< 0

As is well-known (see Azariadis, 1993, Chapter 8), a necessary (but not sufficient) condition for the

map G to exhibit cyclical fluctuations in the standard Diamond model is Dr < 0. Our goal in this paper

is to prove the possibility of cyclical equilibria in an otherwise Diamond-like economy, augmented only

by an active financial intermediation sector. To that end, our claim that our model generates periodic

equilibria is best supported by “tying our hands behind our back” and focusing on examples where in

fact Dr = 0 holds.

4.2.1 An example with logarithmic preferences and Cobb Douglas technology

Henceforth, we focus exclusively on analyzing the prototype logarithmic utility case. If u = lnCy and

v = lnCo, then it is easily checked that the difference equation (21) simplifies to

ψ(Kt) =

·
2 + η (·)
1 + η (·)

¸
Kt+1 ≡ γ(Kt+1) (25)

For future reference, we define G(.) ≡ γ−1(ψ(·)), implying once again that Kt+1 = G(Kt). If p(K)K

approaches zero as K tends to zero, and if w goes to zero as x tends to zero, then (25) has (0, 0) as a

stationary point. Furthermore, from (25) it follows that

dKt+1

dKt
=

ψ0(Kt)

2 + η (·)
1 + η (·) −

η0 (·)Kt+1

[1 + η (·)]2
(26)

Recall that, for the Cobb-Douglas production function, under (A.3),

ψ0(Kt) = (1− α) [p(Kt+1)Kt+1]
α−1 £p0(Kt)Kt + p(Kt+1)

¤
> 0

holds. As stated earlier, a necessary (but not sufficient) condition for periodic equilibria (including two-

period cycles) is that dKt+1

dKt
be negative (locally near the steady state); a necessary (but not sufficient)
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condition for complex dynamics (cycles of higher order, and even aperiodic equilibria) is that dKt+1

dKt

change sign.13 These aforementioned necessary conditions therefore reduce to the condition that the

denominator of (26) be negative or change sign.

It follows from (26) that dKt+1

dKt
changes sign only once if and only if there exists a unique value

K̂ > 0 that satisfies h
1 + η(K̂)

i h
2 + η(K̂)

i
= K̂η0(K̂) (27)

Under (A.3) and (A.2), the left hand side of (27) starts off at 2 [with slope 3η0 (·)] and is non-decreasing

in K. Define ε ≡ Kη00(K)
η0(K) . Then, clearly a sufficient condition for (27) to yield a unique K̂ is that the

slope of the right hand side of (27) be always greater than the slope of the left hand side, or that

ε > 2 [1 + η(·)] ∀K > 0. (A.4)

Under (A.4), the map G has a possible configuration of the type illustrated in Figure 1f. In this

case, there are exactly two steady states, K∗
a and K∗

b with K∗
a < K̂ < K∗

b . Next, we compute a pre-

cise example of an economy which satisfies Assumptions (1)-(3) and also exhibits a cycle of periodicity 2.

******************* FIGURES 1 - 6 HERE ****************************

Example 2 (Two-period cycle) Let K > 7 and choose

p(K) =
0.32eK

1.2 + 1.901885eK −K3
.

Choose f(p(K)K) = 28 [p(K)K]0.33. From the loci for p(.), ψ(.), η (·) , and η0 (·) , drawn in Figures

1-4, it is clear that Assumptions (1)-(3) are verified. Then, the equation ψ(Kt) = γ(Kt+1), defined in

(25), and illustrated in Figure 5, has two stationary solutions, K∗
a = 8.94 and K

∗
b = 10.89. Additionally,

dKt+1

dKt
|K=K∗a = −1.00 implying that there exists a stable two-period cycle in a neighborhood around K∗

a ,

as illustrated in Figure 6.
13See Appendix C for a technical discussion of periodic equilibria.
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A few words on the underlying nature of these two-period cycles are in order. For clarity of exposi-

tion, consider an economy where agents care only about second-period consumption. Focus on a starting

situation where the capital stock in the economy is relatively high. Then, the wage rate in the economy

is high, and so are saving and desired investment as fractions of wage income. Left unfettered, if actual

investment in the risky capital technology were high, the riskiness of that technology would be very

high, and overall expected return would be very low. The bank, recognizing the problem, steps in and

disburses a large loan and dictates a low actual investment so as to keep the riskiness low, and expected

return high.14 So, the amount invested in the capital technology is low and the amount invested in the

safe deposits with the bank is high. The output in the following period is then low (given the low actual

investment). Then next period’s wage rate is low, and so are saving and desired investment as fractions

of wage income. In the absence of the bank, a low wage income would imply a low desired investment

and hence low riskiness but low expected return. Under our assumptions on the success probability

function, the bank may be able to avoid this bad situation by disbursing a small loan and stipulating a

high actual investment. The high investment may raise the expected return to investing in the capital

technology, and raise output next period, and so on.

Under our assumptions on the success probability function, the size of the loan relative to what

the bank stipulates as capital investment varies with capital. This difference is what we have labeled

the “income effect”. We have shown that the strength of this income effect can either be decreasing

or increasing with the bank’s stipulation of capital investment. This is because of the assumed effect

14To assess the empirical plausibility of such phenomena, at least as a first pass, one can study whether the correlation

between private investment and the premium of commerical paper over a safe T-bill rate is negative. Indeed, for the

United States and for the period 1986-1997, the correlation between the premium of 3-month commercial paper rate over

the 3-month Treasury constant maturity rate and Gross Private Domestic Investment (all at the quarterly frequency) was

-0.11. The data was taken from the FRED-II website [http://research.stlouisfed.org/fred2/] of the Federal Reserve Bank

of St. Louis. We thank the editor for suggesting the above exercise.
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of capital on the success probability. If capital invested is high, success probability is low and, under

our assumptions on elasticities, expected return is falling for low K and after a threshold, starts to rise

with K. Hence, the non-monotone income effect, and hence the cycles in special circumstances.

An interesting possibility that arises, especially in inverted-U shaped maps, is that the low capital

stock steady state can be locally stable. In other words, economies that start off in a neighborhood

of this low-activity steady state may find themselves “stuck” in a development trap. Such paths will

display damped endogenous oscillations along the way. The next example contains such a development

trap.

Example 3 (Development Trap) Let K > 5 and choose

p(K) =
0.1eK

1.5 + 1.5eK −K2.5
.

Choose f(p(K)K) = 28 [p(K)K]0.2. As before, it can be verified that Assumptions (1)-(3) are verified.

Then, the map G defined in (25) has two stationary solutions, K∗
a = 6.27 and K∗

b = 9.9. Additionally,

dKt+1

dKt
|K=K∗a = −0.11 implying that orbits that start off in a local neighborhood around K∗

a experience

damped oscillations but eventually converge to it.

The implication of the above example is clear. Consider two economies, identical in every respect,

except for the size of their initial capital stock. Then, one of them converges to a low-level of real

activity and cannot escape from there. Moreover, it encounters endogenous oscillations, albeit damped

ones, along the path to that trap. The other one approaches a high-level of real activity but cannot

sustain it indefinitely.

The possibility arises that some dynamical equilibria may exhibit undamped oscillations. To see

this, consider the particular configuration of G(·) as illustrated in Figure 7. Define K̆ by G0(K̆) = 0

and K̃ by G(K̃) = G(K∗
a) with G0(K̃) < 0.
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Proposition 1 Suppose K∗
a is a repelling point and K̃ > G(K̆). Then, in every neighborhood of K∗

a ,

there are infinitely many distinct periodic points; indeed, equilibrium cycles of periodicity 2i exists for

i = 1, 2, 3...

The condition K̃ > G(K̆) implies the existence of a homoclinic orbit or that K∗
a is a snap-back

repellor in the sense of Devaney (1989, pg. 122). An additional variety of non-convergence can now

be observed. Consider two otherwise identical economies. Depending on the initial capital stock, one

may approach K∗
b and the other may get infected by cycles of all even order all along the path to K

∗
a ,

approaching it but never getting permanently stuck at the low level of real activity at K∗
a .

******************* FIGURES 7-8 HERE ****************************

Example 4 (Cycles of all even order) Let K > 5 and choose

p(K) =
0.25eK

1 + 3eK −K3
.

Choose f(p(K)K) = 33 [p(K)K]0.33. As before, it can be verified that Assumptions (A.1)-(A.3) are

verified. Then, the map G defined in (25) has two stationary solutions, K∗
a = 7.61 and K∗

b = 9.58.

Additionally, dKt+1

dKt
|K=K∗a = −1.58 implying that the low capital stock steady state is a repellor. This

economy possesses a homoclinic orbit. Then, in every neighborhood of K∗
a , there are infinitely many

distinct periodic points.

Finally, it is possible that our economy generates an equilibrium displaying a three-period cycle, as

illustrated in Figure 8. If that is the case, then from the well-known Li-Yorke theorem, as discussed

in Azariadis (1993, Ch. 9) and Appendix C, it is clear that cycles of all order, even or odd exist;

additionally aperiodic or chaotic equilibria also exist. In short, if the configuration in Figure 8 is

achieved, then the existence of topological chaos is established. This last observation creates a third

source of non-convergence in our model. Two economies that are intrinsically identical may “look alike”

initially and even for some time, but will never “look the same” eventually.
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4.3 Absence of financial intermediaries

In the previous sub-section, we have demonstrated the real possibility that the presence of financial

intermediaries, specifically their tight control over capital investment, opens the door for development

traps and a variety of complex dynamics, including high-order cycles. In order to clinch this argument,

we now undertake a quick study of the dynamical equilibria in an environment identical to the one

studied above, except that, for exogenous reasons, financial intermediaries are totally absent. In such

a situation, risk-averse individuals simply decide how much to invest in the risky capital technology.

Also, there are no safe assets.

The representative entrepreneur chooses Kt+1 to maximize his expected utility:

EU = u1 [C
y
t ] + p (Kt+1) v2

£
CoG
t+1

¤
+ [1− p (Kt+1)] v2

£
CoB
t+1

¤
(28)

where

Cy
t = wt −Kt+1, CoG

t+1 = ρt+1Kt+1, CoB
t+1 = 0 (29)

Agents takes the gross real return on capital (ρ) and the wage rate as given. Then,

EU = u1 [C
y
t ] + p (Kt+1) v2

£
CoG
t+1

¤
The first order necessary conditions with respect to Kt+1 for a solution in the interior are given by

u01 [C
y
t (θ)] = p0 (Kt+1) v2

£
CoG
t+1

¤
+ p (Kt+1) v

0
2

£
CoG
t+1

¤ £
ρt+1

¤
(30)

In a general equilibrium, from the standard factor pricing relationships described earlier, we have

ρt+1 = f 0(xt+1), wt = w (xt)

where xt ≡ p(Kt)Kt.Then (30) implies

u01 [w (xt)−Kt+1] = p0 (Kt+1) v2
£
f 0(xt+1) ·Kt+1

¤
+ p (Kt+1) v

0
2

£
f 0(xt+1) ·Kt+1

¤ £
f 0(xt+1)

¤
(31)

24



Proposition 2 Suppose Assumptions 1,2 and 3 hold, and that in addition, p00(.) < 0 holds. Then, for

the case of Cobb-Douglas technology, f(K) = AKα, α ∈ (0, 1) , there is no possibility for cycles in the

economy with no banks (and no safe asset).

In other words, (31) implicitly defines a monotonic relationship between the capital stock this period

and the next, thereby precluding the possibility of any endogenous fluctuations. The upshot is that it

has to be the activities of the banks (especially the fact that the amount they dictate be invested in

capital is less than the size of the loan they offer) is what is fundamentally responsible for the output

volatility.

5 Conclusion

This paper focuses on the possibility of endogenous fluctuations caused by activities of financial in-

termediaries within the context of a simple overlapping generations model. Risk-averse agents face

idiosyncratic income losses, the probability of which they can affect through their own capital invest-

ments. We showed that in the economy with intermediation under full observability, the optimal loan

contract achieves complete risk sharing but the amount invested in the risky project is smaller than the

loan offered. This last fact alone creates an income effect which is responsible for the endogenous gener-

ation of cycles and complex dynamics. The analysis indicated that in the absence of any intermediation,

the economy studied would not exhibit any fluctuations of any kind.

In the set-up studied above, problems of moral hazard and adverse selection were assumed away.

Doubtless these omissions are important departures from reality, and should be addressed by future

research. Another worthwhile extension would be to study alternative formulations of the probability

function, including those in which not all is lost in the event of failure.
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Appendix

A Proof of Lemma 1

Using (14), (11), (12) and (13), we get

rt+1 = pf 0(φ(wt+1)) +BtRt+1p
0 (·) (32)

Using (15) in (32), we get

rt+1 = pf 0 (·) +Kp0 (·) f 0 (·) (33)

which immediately yields (16).¥

B Proof of Proposition 2

For future reference,

∂xt
∂Kt

=
£
p0(Kt)Kt + p(Kt)

¤
∂xt+1
∂Kt

=
£
p0(Kt+1)Kt+1 + p(Kt+1)

¤ ∂Kt+1

∂Kt

Recall from Assumption 3 that
Kp0(K)
p(K)

+ 1 > 0

Then,

∂xt
∂Kt

=
£
p0(Kt)Kt + p(Kt)

¤
= p(K)

·
Kp0(K)
p(K)

+ 1

¸
> 0

∂xt+1
∂Kt

=
£
p0(Kt+1)Kt+1 + p(Kt+1)

¤ ∂Kt+1

∂Kt
= p(K)

·
Kp0(K)
p(K)

+ 1

¸
∂Kt+1

∂Kt

Then, it follows from (31) that

u001 (·)
·
w0 (xt)

∂xt
∂Kt

− dKt+1

dKt

¸
= p00 (Kt+1) v2 (·) dKt+1

dKt
+ p0 (Kt+1) v

0
2 (·)

·
f 00(xt+1)

∂xt+1
∂Kt

Kt+1 + f 0(xt+1)
dKt+1

dKt

¸
+p0 (Kt+1)

∂Kt+1

∂Kt
v02 (·) f 0(xt+1) + p (Kt+1) f

0(xt+1)v002 (·)
·
f 00(xt+1)

∂xt+1
∂Kt

Kt+1 + f 0(xt+1)
dKt+1

dKt

¸
+p (Kt+1) v

0
2 (·) f 00(xt+1)

∂xt+1
∂Kt
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Expanding, we get

u001 (·)w0 (xt)
∂xt
∂Kt

− u001 (·)
dKt+1

dKt

= p00 (Kt+1) v2 (·) dKt+1

dKt
+ p0 (Kt+1) v

0
2 (·)

£
f 00(xt+1)

©
p0(Kt+1)Kt+1 + p(Kt+1)

ª
Kt+1 + f 0(xt+1)

¤ dKt+1

dKt

+p0 (Kt+1)
∂Kt+1

∂Kt
v02 (·) f 0(xt+1) + p (Kt+1) f

0(xt+1)v002 (·)
£
f 00(xt+1)

©
p0(Kt+1)Kt+1 + p(Kt+1)

ª
Kt+1 + f 0(xt+1)

¤ dKt+

dKt

+p (Kt+1) v
0
2 (·) f 00(xt+1)

£
p0(Kt+1)Kt+1 + p(Kt+1)

¤ ∂Kt+1

∂Kt

Then, rearranging terms yields

dKt+1

dKt
=

u001 (·)w0 (·) ∂xt
∂Kt

< 0

p00 (·) v2 (·) + p0 (·) v02 (·) [f 00(·) {p0(·)Kt+1 + p(·)}Kt+1 + f 0(·)] + p0 (·) v02 (·) f 0(·)+

p (·) f 0(·)v002 (·) [f 00(·) {p0(·)Kt+1 + p(·)}Kt+1 + f 0(·)] + p (·) v02 (·) f 00(·) [p0(·)Kt+1 + p(·)] + u001 (·)

Focus on the denominator from now on. We find that

p00 (·) v2 (·) + p0 (·) v02 (·)
£
f 00(·)©p0(·)Kt+1 + p(·)ªKt+1 + f 0(·)¤+ p0 (·) v02 (·) f 0(·)| {z }

<0

+p (·) f 0(·)v002 (·)
£
f 00(·)©p0(·)Kt+1 + p(·)ªKt+1 + f 0(·)¤+ p (·) v02 (·) f 00(·)

£
p0(·)Kt+1 + p(·)¤| {z }
<0

+u001 (·)| {z }
<0

It follows that if [f 00(·) {p0(·)Kt+1 + p(·)}Kt+1 + f 0(·)] > 0 and p00 < 0, the denominator would be

negative. For Cobb-Douglas technology, we have

f 00(·)K
f 0(·) =

K ·Aα (α− 1)Kα−2

AαKα−1 = (α− 1) .

Then it is easy to check that £
f 00(·)©p0(·)Kt+1 + p(·)ªKt+1 + f 0(·)¤

= f 00(·)Kt+1

p(·)
½
p0(·)Kt+1

p(·) + 1

¾
| {z }

>0

+

µ
1

α− 1
¶

| {z }
<0

 R 0
Recall from Assumption 3 that −1 < η(K) ≤ 0. Then, it follows that

f 00(·)Kt+1

p(·)
η(K) + 1| {z }

<1

| {z }
<1

−
µ

1

1− α

¶
| {z }

>1

 > 0
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Then, the denominator is given by

p00 (·) v2 (·) + p0 (·) v02 (·)
£
f 00(·)©p0(·)Kt+1 + p(·)ªKt+1 + f 0(·)¤| {z }

<0

+ p0 (·) v02 (·) f 0(·)| {z }
<0

+ p (·) f 0(·)v002 (·)
£
f 00(·)©p0(·)Kt+1 + p(·)ªKt+1 + f 0(·)¤| {z }

<0

+ p (·) v02 (·) f 00(·)
£
p0(·)Kt+1 + p(·)¤| {z }
<0

+u001 (·)| {z }
<0

Then, if p00 < 0, dKt+1

dKt
> 0 will hold, and there will be no possibility of any cyclical equilibria.

C Periodic and Chaotic Equilibria

Let X be a closed and convex subset of the real number line. Let G be a continuous function that

maps X into X. The pair (X,G) is called a dynamic system. Let Gn denote the nth iterate of G. A

point k∗ is called a periodic point of (X,G) with period m (where m is an integer), if Gm(k∗) = k∗ but

Gn(k∗) 6= k∗ for n = 1, 2, ...,m− 1.The point k∗ is then said to generate period-m cycles.

A subset Y of X is called a scrambled set of the dynamic system (X,G) if Y has the following

properties:

(a) Y has an uncountable number of points,

(b) Y does not contain any periodic points of the dynamic system (X,G),

(c) for any u, v ∈ Y , where u 6= v,

lim
i→∞

sup kGi(u)−Gi(v)k > 0 and lim
i→∞

inf kGi(u)−Gi(v)k = 0,

(d) for any periodic point k∗ ∈ X and any u ∈ Y

lim
i→∞

sup kGi(u)−Gi(k∗)k > 0.

If a dynamic system (X,G) has a scrambled set, we say that the dynamic system is chaotic.

Property (d) means that the orbit generated by any point in the scrambled set does not converge to

a limit cycle. Property (c) means that any two points from the scrambled set will generate two paths

that will eventually get very close together in one sense, yet remain far apart, in another sense.

The following theorem by Li and Yorke (see Rasband, 1990) states the connection between chaos

and the existence of period 3 cycles:

Theorem: If there is a point x ∈ X such that

G3(x) ≤ x < G(x) < G2(x) or G3(x) ≥ x > G(x) > G2(x) (34)

then (i) for every positive integer m, there is a periodic point of period m, (ii) there is a scrambled set

Y in X.
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Figure 1: Example 2, p versus K
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Figure 2: Example 2, y(.) versus K
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Figure 3: Example 2, h(.) versus K
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Figure 4: Example 2, h’(.) versus K
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Figure 8: A three-period cycle


