

Laboratory sustainability initiative: recycling glass and plastic wastes from research and teaching laboratories

Ali Akbari, Sai Chandrasekar, Siavash Isazadeh

http://www.mcgill.ca/sustainability/laboratory-sustainability-initiative-sp0131

Introduction

McGill is one of the leading research-intensive universities in the world

- Tons of plastic and glass wastes are discarded each year in research or teaching labs.
- Discarded plastic and glass wastes end's up in landfill.
- Laboratory glass and plastic wares that are **non-hazardous** could be recycled.

New Hampshire Town Struggles With Legacy Landfill

NON-HAZARDOUS glass and plastic items used in laboratories can be recycled !

Pilot-scale studies

- **To quantify** the amount of recyclable plastic and glass waste produced by labs.
- To promote a discussion on **recycling impacts** among McGill community.
- To **motivate students** to pursue sustainability initiatives on campus and appreciate their extent of impact.

Initial data collection to estimate generation rate of glass and plastic wastes

- Existing EHS chemical inventory data base
- Questionnaires from major labs
- Cost analysis and detailed design of bin number, volume and collection frequency
- Selection of places to install bins (16 labs, 5 departments)

Coordinating between different departments and people involved

• Waste management department, building managers, Department chairs, PIs, lab managers

Training of members of the labs covered by pilot project

Data acquisition (8 weeks)

Sharing the results with the faculties and stakeholder's.

Moving forward?

What could be recycled ?

<u>Empty Glass and Plastic</u>

- containers of following chemicals:
 - Acids,
 - Alcohols ethanol, methanol, isopropanol
 - Benzene, hexane, toluene, xylene
 - Ethers Petroleum ether, diethyl ether
 - Aldehyde Formaldehyde, glutaraldehyde
- <u>Falcon tubes</u> 15-50ml centrifuge tubes
- Plastic containers for solid chemicals
- <u>Pipette tip boxes and inserts</u>
- <u>Non-contaminated bottles</u> for cell-culture media
- Plastic bottles/tubes

- <u>Clear labels for waste collection</u> bins for plastic and glass wastes made and each bins were distinctively colored for better. identification.
- Free of chemical, biological and radioactive contamination.
- <u>**Triple rinsed**</u>, dry (no liquid drips out when the container is inverted), and uncapped are dropped in their respective bins.

"No item in the box should be Bio-hazardous, Radioactive, or Toxic"

Sample posters from the project

🐯 McGill

Recycling Plastic and Glassware in research laboratory

"Non-hazardous Glass Disposal"

Clean and Triple rinsed containers only NO BROKEN GLASS NO GARBAGE

http://www.mcgill.ca/sustainability/laboratory-sustainability-initiative-sp0131

 Sustainability Projects Fund

Recycling Plastic and Glassware in research laboratory

"Non-hazardous Plastic Disposal"

Clean and Triple rinsed containers only NO GARBAGE NO GLOVE

http://www.mcgill.ca/sustainability/laboratory-sustainability-initiative-sp0131

Recyclables generated

- A weekly average of nearly <u>118 lbs. of plastic</u> and <u>305 lbs. of glass</u> in 16 monitored labs
- Depending on the location of bins few locations had more waste generated compared to the others.

Results from pilot-scale studies

A <u>rough estimate</u> based on the total number of wet labs (~800) across campus would be more than: *130 tons of plastic 360 tons of glass waste* could be *recycled annually*

McGill, Chemical Engineering Department, 7th floor

1. Presenting and **<u>publicizing the results</u>** from pilot scale study among, students and PI's (main lab users) and stake holders to increase the awareness, brainstorm and motivate for recycling glass and plastics.

2. Perform a <u>Life cycle assessment</u> and Life cycle impact assessment for assess the environmental benefit/burden, saving in carbon footprint associated with recycling process compared to alternate options.

3. <u>Marketing the collected materials</u> to a potential customer or original vendors (Fisher Scientific, Sigma etc.) to obtain a sustainable solution for plastic and glass recycling.

4. A through <u>campus wide implementation</u> for collection of plastic and glass recyclables across campus.

Following the ISO 14040 Guidelines

Process boundaries for Life Cycle Analysis

	Edit View Insert Format Tools	Data Wir	ndow <u>H</u> elp									
Find	🔽 🖖 🍿 📄 👬 • 🔀 • 🔲 🖙			🗙 🖡 🛱	• 🎻 🖏 • @	- 🔬 🐴 🖁	ւ 🔒 🕢	晶 🧭 💼			2 📾 🖬 🕷	I R & F
50					B ~ (¥ 4)	•¥		A .				
917	Calibri 💽 11	• B /	<u>U</u> = ± :		<u>,</u> % %			<u>A</u> • •				
% re	ecovery rate for HDPE bags in the 💌 URL:							- (•	10 -		
7	▼ 3× ∑ =											
	A B	С	D	E	F	G	Н	I	J	К	L	М
1							1					
2	Mass flows and unit process scalin	g assumpti	ons									
3	.											
4	System assumptions	Value	Note					-				
5	HDDE regin transport distance (km):	0.02E+02	Une 9-liter I	HDPE groce	ry bag distance for c	homical prod		OT 2012)				
0	Box transport distance (km)	9.92E+02	U.S. average	shipment	distance for r	aperboard p	oducts (U.S.D	5 DOT 2013)	2)			٦
2	Packaged bag transport distance (km)	8.00F+02	US average	e shinment	distance for f	inished nlasti	c and rubbe	er products		2013)		-4
9	Waste collection distance (km):	3.30E+01	U.S. average	e waste coll	ection distan	ce (U.S. EPA 2	012)	in producto	(0.0.00)	2010)		
10	Mass fraction of bags collected:	1	0				,					
11	Mass fraction of box collected:	1										
12	Mass fraction of bags landfilled:	0.83	17% recove	ry rate for I	HDPE bags in	the United St	ates (U.S. E	PA 2012)				
13	Mass fraction of box landfilled:	0.38	62% recove	ry rate for p	paperboard in	the United S	tates (U.S. I	EPA 2012)				
14	Mass fraction of bags recycled:	0.17	Calculated a	is (1 – minu	is fraction to	andfill)						
15	Mass fraction of box recycled:	0.62	Calculated a	is (1 – minu	is fraction to	landfill)		_				
16												
		.										
17		Output req	uirement to r	meet refere	ence flow		-					
17		Output req Extracted	Processed	Extracted	Refined	Olefins	-	HDPE		Harvested		
17 18	Unit process	Output req Extracted natural gas	Processed natural gas	Extracted crude oil	Refined petroleum	Olefins (Ethylene)	HDPE resin	HDPE transport (t km)	HDPE	Harvested softwood	Container-	Corrugated
17 18	Unit process	Output req Extracted natural gas (kg)	uirement to r Processed natural gas (kg)	meet refere Extracted crude oil (kg)	ence flow Refined petroleum product (kg)	Olefins (Ethylene) (kg)	- HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugated
17 18 19	Unit process Extraction of natural gas Processing of natural gas	Output req Extracted natural gas (kg) 1.00E+00	Processed natural gas (kg)	meet refere Extracted crude oil (kg)	Refined petroleum product (kg)	Olefins (Ethylene) (kg)	- HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20	Unit process Extraction of natural gas Processing of natural gas	Output req Extracted natural gas (kg) 1.00E+00	Processed natural gas (kg) 1.00E+00	Extracted crude oil (kg)	Refined petroleum product (kg)	<u>Olefins</u> (Ethylene) (kg)	- HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Pafiniae of patroleum products	Output req Extracted natural gas (kg) 1.00E+00	virement to r Processed natural gas (kg) 1.00E+00	meet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg)	<u>Olefins</u> (Ethylene) (kg)	- HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene	Output req Extracted natural gas (kg) 1.00E+00	Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Qlefins (Ethylene) (kg)	- HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Olefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Qlefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg) 1.00E+00	HDPE transport (t-km)	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24 25 26	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery, bags	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Qlefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg) 1.00E+00	HDPE transport (t-km) 1.00E+00	HDPE bags (kg)	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24 25 26 27	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood baryest and transport	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Olefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg)	HDPE transport (t-km) 1.00E+00	HDPE bags (kg) 5.00E-03	Harvested softwood (kg)	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24 25 26 27 28	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood harvest and transport Production of containerhoard	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg)	Qlefins (Ethylene) (kg) 1.00E+00	- HDPE resin (kg) 1.00E+00	HDPE transport (t-km) 1.00E+00	HDPE bags (kg) 5.00E-03	Harvested softwood (kg) 4.72E-04	Container- board (kg)	Corrugate box (kg)
17 18 19 20 21 22 23 24 25 26 27 28 29	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood harvest and transport Production of corrugated bay	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg)	Olefins (Ethylene) (kg) 1.00E+00	- HDPE resin (kg) 1.00E+00	HDPE transport (t-km) 1.00E+00	HDPE bags (kg) 5.00E-03	Harvested softwood (kg) 4.72E-04	Container- board (kg) 3.72E-04	Corrugate box (kg)
17 18 19 20 21 22 23 24 25 26 27 28 29 30	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood harvest and transport Production of cortugated box Box transportation	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg)	Olefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg) 5.00E-03	Harvested softwood (kg) 4.72E-04	Container- board (kg) 3.72E-04	Corrugate box (kg) 3.35E-C
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood harvest and transport Production of corrugated box Box transportation Packaging	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet refere Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg)	Olefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg) 1.00E+00	HDPE transport (t-km) 1.00E+00	HDPE bags (kg) 5.00E-03	Harvested softwood (kg) 4.72E-04	Container- board (kg) 3.72E-04	Corrugate box (kg) 3.35E-C
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	Unit process Extraction of natural gas Processing of natural gas Extraction of crude oil Refining of petroleum products Production of ethylene Production of HDPE resin HDPE resin transport Production of HDPE grocery bags Wood harvest and transport Production of corrugated box Box transportation Packaging Distribution	Output req Extracted natural gas (kg) 1.00E+00	uirement to r Processed natural gas (kg) 1.00E+00	neet referc Extracted crude oil (kg) 1.00E+00	Refined petroleum product (kg) 1.00E+00	Olefins (Ethylene) (kg) 1.00E+00	HDPE resin (kg)	HDPE transport (t-km)	HDPE bags (kg) 5.00E-03	Harvested softwood (kg) 4.72E-04	Container- board (kg) 3.72E-04	Corrugate box (kg) 3.35E-0

Credit: Dr. Eric Masanet, Northwestern University

Eco- Indicator

Resource analysis Land-use analysis

Fate analysis

Acknowledgments:

- The McGill Office of Sustainability and the Sustainability Projects Fund (SPF) personnel
- The members of the SPF Working Group
- Heena Kumra, Marx Ruiz-Wilson and Mohan Basnet graduate volunteers during the course of the project.

Stakeholders

- Waste Management Program
- Trottier Institute for Sustainability in Engineering and Design
- Environmental Health & Safety
- Facilities Development and Operations

<u>Funding:</u> Sustainability Projects Fund (SPF) – SPF 0131 McGill University

Challenges in waste collection:

There were several challenges that we faced in different stages of the pilot scale projects.

- Educate students and advice facilities, lab mangers & faculties.
- Behavioral change resistance
- Ensuring the separation of hazardous and non-hazardous waste from collection bins
- Sometimes <u>labeled recycle bins</u> were misplaced by custodial staffs. Therefore, permanent labels on the locations (i.e., walls) was necessary to keep bins in place.
- In the labs without paper and cartons recycling bins, cardboard and other recyclable paper was end up in plastic and glassware bins

- According EHS, here at McGill with more than <u>800 wet labs</u> (labs that are using wet chemicals) accounting for thousands of individual chemical items in each lab annually (EHS, 2013).
- Labs were chosen to be <u>representative among each of the</u> <u>faculties</u> of Engineering, Science and Medicine.
 - <u>Active labs</u> were chosen based on the preliminary visits and information.
 - Accessibility was also another key selection criteria.
 - A <u>graduate representative</u> for the each departments were selected as a point of contact and to monitor the recycling facilities.

Locations for Pilot-scale

studies

- <u>5 major departments</u> at different labs (Science, Engineering and Medicine)
- 16 different locations for sampling and data acquisition

Map of Buildings participating in pilot recycling program

Weekly monitoring

Location of the bins

A <u>projected value</u> based on a conservative estimate from the total number of wet labs (~400) across campus would give us a whooping ~2000 lbs of plastic and ~5300 lbs of glass every week.

"This would be an enormous with over 100 tons of plastic and 275 tons of glass waste that could be recycled annually from these projects"

Recycling practices

- Implementing **recycling** of glass and plastic wastes generated from laboratories.
- Non-contaminated glass and plastic wastes are to be placed in appropriate disposal containers. But, not limited to test tubes, petri dishes, pipettes and pipette racks, boxes, trays, bottles and jars.
- Currently, these items are not accepted for recycling, partly out of concern that these materials may be hazardous.

Increase recycling practices and sustainability among McGill Community

Initial data collection to estimate generation rate of glass and plastic wastes

- Existing EHS chemical inventory data base
- Questionnaires from major labs
- Cost analysis and detailed design of bin number, volume and collection frequency
- Selection of places to install bins (16 labs, 5 departments)

Coordinating between different departments and people involved

• Waste management department, building managers, Department chairs, PIs, lab managers

Training of members of the labs covered by pilot project

Data acquisition (8 weeks)

Sharing the results with the faculties and stakeholder's.

Moving forward?