Bioengineering Curriculum - Fall 2018
Stream 3 - Biomedical, Diagnostics and High Throughput Screening Engineering
Non-CEGEP Entry

1st Term (Fall) 15 credits Prerequisites/Co-requisites
CHEM 110 General Chemistry 1 4 P - College level mathematics and physics or permission of instructor
FACC 100 Introduction to the Engineering Profession 1 -
MATH 133 Linear Algebra and Geometry 3 P - A course in functions
MATH 140 Calculus 1 3 P - High school calculus
PHYS 131 Mechanics and Waves 4 C - Calculus course [MATH 140]

2nd Term (Winter) 15 credits Prerequisites/Co-requisites
BIOL 112 Cell and Molecular Biology 3 -
CHEM 120 General Chemistry 2 4 P - College level mathematics and physics or permission of instructor
MATH 141 Calculus 2 4 P - MATH 140
PHYS 142 Electromagnetism and Optics 4 P - PHYS 131 / C - MATH 141

3rd Term (Fall) 17 credits Prerequisites/Co-requisites
BIEN 200 Introduction to Bioengineering 2 -
BIOL 200 Molecular Biology 3 P - BIOL 112 / C - CHEM 212
CHEM 212 Introductory Organic Chemistry 1 4 P - CHEM 110 / C - CHEM 120
MATH 262 Intermediate Calculus 3 P - MATH 133, MATH 141
MATH 263 Ordinary Differential Equations for Engineers 3 C - MATH 262
MECH 210 Mechanics 1 2 P - PHYS 101 or PHYS 131 or equivalent

4th Term (Winter) 12 credits Prerequisites/Co-requisites
BIEN 210 Electrical and Optical Properties of Biological Systems 3 P - BIEN 200 / C - BIOL 112
BIOC 212 Molecular Mechanisms of Cell Function 3 P - BIOL 200
BREE 301 Biothermodynamics 3 -
COMP 208 Computers in Engineering 3 P - differential and integral calculus [MATH 140 and MATH 141] / C - linear algebra [MATH 133]
FACC 250 Responsibilities of the Professional Engineer 0 P - FACC 100 or BREE 250

5th Term (Fall) 14 credits Prerequisites/Co-requisites
BIEN 290 Bioengineering Measurement Laboratory 4 P - BIEN 200, PHYS 142
BIEN 310 Introduction to Biomolecular Engineering (TC Stream 3) 3 P - BIEN 200 or permission of instructor
BIEN 350 Biosignals, Systems and Control 4 P - MATH 263 or instructor permission
CHEM 267 Introductory Chemical Analysis (TC Stream 3) 3 P - MATH 133, MATH 140, or equivalent

6th Term (Winter) 12 credits Prerequisites/Co-requisites
CCEM 206 Communication in Engineering 3 -
CHEE 310 Physical Chemistry for Engineers 3 P - CHEE 220 or MIME 212 or BREE 301
MATH 264 Advanced Calculus for Engineers 3 P - MATH 262 / C - MATH 263

7th Term (Fall) 15 credits Prerequisites/Co-requisites
BIEN 390 Bioengineering Laboratory 3 P - BIEN 290
CIVE 281 Analytical Mechanics 3 C - MATH 262, MATH 263
BIEN 410 Computational Methods in Biomolecular Engineering (TC Stream 3) 3 P - BIEN 310 and COMP 208, or instructor permission
CHEE 314 Fluid Mechanics (TC Stream 3) 3 P - CHEE 204 or BIEN 200 / C - MATH 264
CHEE 367 Instrumental Analysis 1 (TC Stream 3) 3 P - CHEM 287, CHEM 297

8th Term (Winter) 15 credits Prerequisites/Co-requisites
BIEN 340 Transport Processes in Biological Systems 3 P - BIEN 200, MATH 263
FACC 300 Engineering Economy 3 -
PHYS 319 Introduction to Biophysics 3 P - BIOL 200, MATH 222 / 262, PHYS 230, and PHYS 232 / 253, or instructor permission
BIEN 482 Engineering Principles in Physiological Systems (TC Stream 3) 3 P - BIEN 350 or instructor permission
BIEN 530 Imaging and Bioanalytical Instrumentation 3 P - Permission of instructor

9th Term (Fall) 12 credits Prerequisites/Co-requisites
BIEN 470D1 Bioengineering Design Project 3 P - BIEN 390
ECSE 529 Computer and Biological Vision (TC Stream 3) 3 P - ECSE 304 or ECSE 306
PHYS 534 Nanoscience and Nanotechnology (TC Stream 3) 3 P - Instructor permission

10th Term (Winter) 12 credits Prerequisites/Co-requisites
BIEN 470D2 Bioengineering Design Project 3 P - BIEN 390
BIEN 471 Bioengineering Research Project 2 P - Instructor permission
FACC 400 Engineering Professional Practice 1 P - FACC 100, FACC 250**, and 60 program credits
BIEN 520 High Throughput Bioanalytical Devices (TC Stream 3) 3 P - Permission of instructor
BIEN 560 Biosensors (TC Stream 3) 3 P - Permission of instructor

*The Complementary Studies (CS) courses are Impact of Technology courses (Group A) and Humanities & Social Sciences, Management Studies and Law courses (Group B). Students must take one course (3 credits) from Group A and two courses (6 credits) from Group B. The curriculum above includes suggested terms during which these courses can be taken. These must be chosen from an approved list of courses/departments, found in the program list under "Complementary Studies" in the Faculty of Engineering Undergraduate section of the Programs, Courses and University Regulations publication (www.mcgill.ca/study) (see your program listing in the "Browse Academic Units & Programs" section).

**FACC 250 is not yet indicated as a prerequisite in the eCalendar course information (www.mcgill.ca/study) but it will be before FACC 400 is taken.

Elective courses (EC) can be chosen from any course at the 200-level or higher offered by the University, subject to permission of the offering department. Students are responsible for satisfying pre-/co-requisites and verifying with their department that they are meeting the requirements of their program.
Starting in the third year (second year for CEGEP students) (Year 2), students will need to take 36 credits of courses to upgrade their general knowledge of Bioengineering. While it is not mandatory, it is highly recommended that the students choose all courses in one of the three streams of bioengineering knowledge and practice: 1) Biological Materials and Mechanics (37 credits); 2) Biomolecular and Cellular Engineering (36 credits); or 3) Biomedical, Diagnostics and High Throughput Screening Engineering (36 credits) [as indicated above]. However, students may satisfy the Bioengineering Complementary Courses requirement by taking a minimum of 30 credits from the Engineering Science and Design Complementaries course list and 6 credits of any other courses in the Stream course lists.

Engineering Science and Design Technical Complementaries

For the official program listing, see the Programs, Courses and University Regulations publication (www.mcgill.ca/study).

Last update: May 17, 2018

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 310</td>
<td>Introduction to Biomolecular Bioengineering</td>
<td>3</td>
<td>P - BIEN 200 or permission of instructor</td>
</tr>
<tr>
<td>BIEN 320</td>
<td>Molecular, Cellular and Tissue Biomechanics (TC Stream 1)</td>
<td>3</td>
<td>P - BIOL 112, MECH 210</td>
</tr>
<tr>
<td>BIEN 330</td>
<td>Tissue Engineering and Regenerative Medicine</td>
<td>3</td>
<td>P - BIEN 200, BIOL 112, BIOL 200, and CHEM 212, or instructor permission</td>
</tr>
<tr>
<td>BIEN 350</td>
<td>Biosystems and Control</td>
<td>3</td>
<td>P - MATH 263 or instructor permission</td>
</tr>
<tr>
<td>BIEN 410</td>
<td>Computational Methods in Biomolecular Engineering</td>
<td>3</td>
<td>P - BIEN 310 and COMP 208, or instructor permission</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>Engineered Nanomaterials for Biomedical Applications</td>
<td>3</td>
<td>P - BIEN 200, CHEM 212, and BIOL 112, or instructor permission</td>
</tr>
<tr>
<td>BIEN 520</td>
<td>High Throughput Bioanalytical Devices</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>BIEN 530</td>
<td>Imaging and Bioanalytical Instrumentation</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>Biomolecular Devices</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>Biosensors</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>Active Mechanics in Biology</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>BIEN 590</td>
<td>Cell Culture Engineering</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>P - CHEE 204 or BIEN 200 / C - MATH 264</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>Elements of Biotechnology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEE 563</td>
<td>Biofluids and Cardiovascular Mechanics</td>
<td>3</td>
<td>P - CHEE 314 or MECH 331 or instructor permission</td>
</tr>
<tr>
<td>or MECH 563</td>
<td>Biofluids and Cardiovascular Mechanics</td>
<td>3</td>
<td>P - CHEE 314 or MECH 331 or instructor permission</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>Solid Mechanics</td>
<td>4</td>
<td>P - CIVE 205 or MECH 210</td>
</tr>
<tr>
<td>ECSE 415</td>
<td>Introduction to Computer Vision</td>
<td>3</td>
<td>P - ECSE 304 or ECSE 306 or ECSE 206</td>
</tr>
<tr>
<td>MECH 547</td>
<td>Mechanics of Biological Materials</td>
<td>3</td>
<td>P - MECH 210 and MIME 260 / 261, or instructor permission</td>
</tr>
</tbody>
</table>

30-37 credits from the following: