1st Semester (Fall)
15 credits
- CHEM 110 General Chemistry 1
- 4
- FACC 100 Introduction to the Engineering Profession
- 1
- MATH 133 Linear Algebra and Geometry
- 3
- MATH 140 Calculus 1
- 3
- PHYS 131 Mechanics and Waves
- 4
- C - MATH 140

2nd Semester (Winter)
15 credits
- CHEM 120 General Chemistry 2
- 4
- MATH 141 Calculus 2
- 4
- P - MATH 140
- PHYS 142 Electromagnetism and Optics
- 4
- P - PHYS 131 / C - MATH 141

3rd Semester (Fall)
15 credits
- CS
- Complementary Studies Group B (HSSML) - 1
- 3

4th Semester (Winter)
15 credits
- CHEM 233 Topics in Physical Chemistry
- 3
- C -
- MATH 262 Intermediate Calculus
- 3
- P - MATH 141, MATH 133
- MECH 289 Design Graphics
- 3
- MIME 250 Introduction to Extractive Metallurgy
- 3
- C - CCOM 206
- MIME 261 Structure of Materials
- 3

5th Semester (Summer)
3 credits
- MATH 263 Ordinary Differential Equations for Engineers
- 3
- C - MATH 262

6th Semester (Fall)
17 credits
- CS
- Complementary Studies Group A (Impact)
- 3

7th Semester (Winter)
2 credits
- MIME 280 Industrial Training 1
- 2
- P - 40 program credits

8th Semester (Summer)
15 credits
- CS
- Complementary Studies Group A (Impact)
- 3

9th Semester (Fall)
15 credits
- MATH 264 Advanced Calculus for Engineers
- 3
- P - MATH 262 / C - MATH 263
- MIME 311 Modelling and Automatic Control
- 3
- P - MIME 356
- MIME 352 Hydrochemical Processing
- 3
- P - CHEM 233, MIME 250, MIME 212, MIME 360
- MIME 356 Metallic and Ceramic Powders Processing
- 3
- P - MIME 360

10th Semester (Winter)
15 credits
- MIME 467 Electronic Properties of Materials
- 3
- P - MIME 261, MATH 263
- MIME 442 Analysis, Modelling and Optimization in Mineral Processing
- 3
- P - MIME 341
- MIME 455 Advanced Process Engineering
- 3
- P - MIME 356

11th Semester (Summer)
2 credits
- MIME 380 Industrial Training 2
- 2
- P - MIME 280

12th Semester (Fall)
2 credits
- MIME 480 Industrial Training 3
- 2
- P - MIME 380

13th Semester (Winter)
17 credits
- CS
- Complementary Studies Group B (HSSML) - 2
- 3

Technical Complementary courses are selected from an approved list given on the next page.

The Complementary Studies (CS) courses are Impact of Technology courses (Group A) and Humanities & Social Sciences, Management Studies and Law courses (Group B). These must be chosen from an approved list of courses/departments, found in the program list under "Complementary Studies" in the Faculty of Engineering Undergraduate section of the Programs, Courses and University Regulations publication (www.mcgill.ca/study) (see the Academic Programs section).

Students are responsible for satisfying pre/co-requisites and verifying with their department that they are meeting the requirements of their program.
Technical Complementary Courses - Materials Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 512</td>
<td>Advanced Civil Engineering Materials</td>
<td>3</td>
<td>P - CIVE 202</td>
</tr>
<tr>
<td>MECH 530</td>
<td>Mechanics of Composite Materials</td>
<td>3</td>
<td>P - MECH 321</td>
</tr>
<tr>
<td>MIME 410</td>
<td>Research Project</td>
<td>3</td>
<td>P - Recommendation of instructor</td>
</tr>
<tr>
<td>MIME 470</td>
<td>Engineering Biomaterials</td>
<td>3</td>
<td>P - MIME 261</td>
</tr>
<tr>
<td>MIME 512</td>
<td>Corrosion and Degradation of Materials</td>
<td>3</td>
<td>P - MIME 261 and MIME 352</td>
</tr>
<tr>
<td>MIME 515</td>
<td>Material Surfaces: A Biomimetic Approach</td>
<td>3</td>
<td>P - (CHEM 233 and MIME 261 and MIME 317) or (CHEE 310 and CHEE 380)</td>
</tr>
<tr>
<td>or CHEE 515</td>
<td>Material Surfaces: A Biomimetic Approach</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>MIME 542</td>
<td>Transmission Electron Microscopy</td>
<td>3</td>
<td>P - MIME 341</td>
</tr>
<tr>
<td>MIME 544</td>
<td>Analysis: Mineral Processing Systems 1</td>
<td>3</td>
<td>P - MIME 341</td>
</tr>
<tr>
<td>MIME 545</td>
<td>Analysis: Mineral Processing Systems 2</td>
<td>3</td>
<td>P - MIME 341</td>
</tr>
<tr>
<td>MIME 551</td>
<td>Electrochemical Processing</td>
<td>3</td>
<td>P - MIME 352</td>
</tr>
<tr>
<td>MIME 556</td>
<td>Sustainable Materials Processing</td>
<td>3</td>
<td>P - Permission of instructor</td>
</tr>
<tr>
<td>MIME 558</td>
<td>Engineering Nanomaterials</td>
<td>3</td>
<td>P - MIME 260 or MIME 261, MIME 362</td>
</tr>
<tr>
<td>MIME 559</td>
<td>Aluminum Physical Metallurgy</td>
<td>3</td>
<td>P - MIME 360, MIME 362</td>
</tr>
<tr>
<td>MIME 560</td>
<td>Joining Processes</td>
<td>3</td>
<td>P - MIME 250, MIME 360</td>
</tr>
<tr>
<td>MIME 561</td>
<td>Advanced Materials Design</td>
<td>3</td>
<td>P - MIME 362</td>
</tr>
<tr>
<td>MIME 563</td>
<td>Hot Deformation of Metals</td>
<td>3</td>
<td>P - MIME 360, MIME 362</td>
</tr>
<tr>
<td>MIME 565</td>
<td>Aerospace Metallic-Materials and Manufacturing Processes</td>
<td>3</td>
<td>P - MIME 260 or MIME 261</td>
</tr>
<tr>
<td>MIME 568</td>
<td>Topics in Advanced Materials</td>
<td>3</td>
<td>P - MIME 362</td>
</tr>
<tr>
<td>MIME 569</td>
<td>Electron Beam Analysis of Materials</td>
<td>3</td>
<td>P - MIME 317</td>
</tr>
<tr>
<td>MIME 571</td>
<td>Surface Engineering</td>
<td>3</td>
<td>P - MIME 362</td>
</tr>
<tr>
<td>MIME 572</td>
<td>Computational Thermodynamics</td>
<td>3</td>
<td>P - MIME 212</td>
</tr>
</tbody>
</table>

Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 504</td>
<td>Biomaterials and Bioperformance</td>
<td>3</td>
<td>Restriction: Year 3 students</td>
</tr>
<tr>
<td>CHEM 574</td>
<td>Introductory Polymer Chemistry</td>
<td>3</td>
<td>P - CHEM 233</td>
</tr>
<tr>
<td>CHEM 585</td>
<td>Colloid Chemistry</td>
<td>3</td>
<td>P - CHEM 345, MATH 233, MATH 315, PHYS 241, PHYS 242</td>
</tr>
<tr>
<td>PHYS 558</td>
<td>Solid State Physics</td>
<td>3</td>
<td>Restriction: Year 3 students</td>
</tr>
</tbody>
</table>

Last update: February 14, 2013

For the official program listing, see the Programs, Courses and University Regulations publication (www.mcgill.ca/study).