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Epilepsy surgery

• Epileptogenic Zone (EZ): 
origin and propagation of the 
seizure Ö ictal state

• Lesional Zone (LZ) : 
morphological abnormalities

• Irritative Zone (IZ):  functional 
abnormalities between 
seizures (spikes) 
Ö interictal state

Ö Organisation as an epileptogenic network



5

Multimodal exploration of the epileptogenic network
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Validation Methodology

MICCAI 2003 tutorial, Montreal: 

Validation in Medical Image Processing
Pierre Jannin (IDM Lab, Rennes)
Slides available at: 

http://idm.univ-rennes1.fr/VMIP/miccai2003/
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Validation: engineer’s viewpoint
They develop it …

• How correct is the output of my software ?
• How robust is my software for the cases I did not take into account ?
• Are there any bugs in my software ?
• How is my software performance compared to other software ? …
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Validation: clinician’s viewpoint
They use it …

• How much can I rely on new information provided by the sofware ?
• Does the software improve the health and the quality of life of the patient ?
• Does the software make my daily work easier ?
• Which is the best similar software I can purchase ? …
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Validation-Evaluation Levels

from Fryback DG and Thornbury JR, Med. Decis. 
Making, 11, 1991

Efficacy of diagnostic imaging systems :
1) technical capacity, 
2) diagnostic accuracy, 
3) diagnostic impact (i.e. improvement of diagnosis), 
4) therapeutic impact (i.e. influence in the selection and delivery of the 

treatment), 
5) patient outcome (i.e. improvement of the health of the patient),
6) societal impact (e.g. cost effectiveness). 

Complexity and diversity of validation 
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Validation Methodology

Validation = Performance evaluation + analysis of evaluation results
in a clinical context with a precise objective

1. To identify the clinical context

2. To specify the validation objective

3. Definition of validation criteria:

9 Internal validity: accuracy

9 External validity: robustness

9 Reliability: precision 

4. Definition of validation metrics to assess 
those criteria (e.g., distance, ROC curves)
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Two main approaches

¾ Evaluation based on a comparison with a reference or a Gold Standard:
¾ Realistic simulation according to the validation objective: absolute Gold Standard

¾ Approximated Gold Standard: e.g. intra-cerebral EEG recordings

¾ Evaluation without any available reference: 
¾ Model comparison or model averaging
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Methodology for reference-based validation: 
comparison with a Gold Standard

Clinical context
Evaluation level
Validation criteria

Statistical 
Test

Validation
result

Validation

Computations 
according to the method 

to be validated

Computation of 
the Gold 
Standard

Performance evaluation

Comparison using
validation metrics

Validation data sets Parameters
Validation
Objective
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Validation Data Sets

/☺

• approximated Gold Standard or 
even no Gold Standard

• best realismClinical data sets

• “hard” and unusual cases 
• patient information
• update

• facilitate comparison of 
validation results

Reference data sets 
(Vanderbilt project, Visible Human)

• approximated Gold Standard
• no functional or metabolic information 

• realistic dataCadavers

• few of them are multimodal 
• approximated Gold Standard from 
dedicated protocols

• the whole image acquisition set up 
is taken into consideration

Physical phantoms

• realism of simulated data• perfect knowledge of the 
reference: absolute Gold 
Standard
• Better realism

Realistic simulations from 
clinical data sets

• realism of simulated data• perfect knowledge of the 
reference: absolute Gold 
Standard
• Fine tuning

Numerical simulations
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Requirements for Model definition and Validation 
Methodology

• Both require comparison
• Both deal with some prior information either about the solution 

or about the overall objective of the method
• Both require an estimation of the uncertainties



16

Overview

1. Clinical context: multimodal exploration of the epileptogenic network

2. Validation methodology

3. Realistic simulation of interictal spike EEG 

Ö Validation of EEG source localization methods

Ö Empirical Comparison between Bayesian inference and MEM

4. fMRI-constrained EEG source localization in epilepsy
Ö Preliminary results using model comparison

5. Conclusion and perspectives



17

EEG source localization : 
forward problem, inverse problem

• Inverse problem: estimation of the EEG sources (J) from  a measured signal (M) 

?

Measured signal on the scalp (M) Estimated sources on the 
cortical surface (J)

• Forward problem: physical model definition

Brain model (G)
+ source model (J)

Generated signal on the 
scalp (M)

?
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EEG source model is written as:

Equivalent Current Dipole (ECD):
- non linear problem: G?, J?
- number of sources ?
- what is an ECD ?

Distributed source method :
- Anatomical constraint 
Ö linear problem: J?

- p = 103 sources ~ n= 102 sensors         
Ö ill-conditioned problem

- regularization needed

EEG source localization:
Equivalent Current Dipole (ECD) vs Distributed source 

EGJM +=
Signal Brain 

Model 
Sources 
amplitude

Noise
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The EEG/MEG forward problem:
the distributed sources model



20

Gold Standard = Depth recordings fMRI negative resp.

Example of EEG source localization of an interictal
spike

Signal + Scalp Potentials Most likely ECD 
Combinations (Bénar et 
al. IEEE TBME 2005)

Distributed source 
(e.g., LORETA)

Single ECD
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• Depth recordings showed that interictal spike generators are rarely focal 
(Merlet et al. Clin. Neurophys. 1999)

• ECD are thought to represent the center of mass of such generators

• A minimum brain activated area of 6 cm2 is needed to generate a spike 
on the scalp (Ebersole J. Clin. Neurophys. 1997)

• Spike generators may be quite more extended than 6 cm2 (a whole lobe)

EEG source localization of interictal spikes

Ö What is the behaviour of distributed source 
localization methods in the presence of extended 

sources ?
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Validation model

• Clinical context: source localization of EEG interictal spikes
• Validation objective: « Are distributed source localization methods able 

to localize extended sources with good detection accuracy (i.e. > 80% 
good detections) ?»

• Reference: absolute Gold Standard provided by simulations of EEG 
interictal spikes

• Validation criteria: detection accuracy
• Validation metric: Area Under the ROC Curve (AUC) as a detection 

accuracy index
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Anatomical and 
Functional Models: 

Gold Standard =Jtheo

Physical model
to generate 

scalp potentials
G

Source 
Localization on 

simulated 
signals

Validation of distributed source localization methods 
using realistic simulations

Evaluation of the detection 
accuracy : 

Area under the ROC curve (AUC)

ROC Curves

se
ns

iti
vi

ty

1 – specificity = false negative rate
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Simulation of realistic EEG interictal spikes

Physical 
model of the 

head:
Forward 

problem: G 

Simulated spike M = G. Jtheo

M = simulated spike G. Jtheo
+ physiological noise

6 anatomical locations

8 levels of spatial extent

Time course of a spike

Realistic source 
configurations: Jtheo
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a : spherical model (analytical solution)
b : realistic surface model (BEM) → BrainStorm
c : realistic volume model (FEM)

The EEG forward problem: estimation of G
Head models and resolution approaches 
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Source localization methods to be evaluated: 
1. Bayesian framework (1/2)

• Model of the noise E pdf:  Gaussian(0,Var[E] = σE
2 In)

• Model of the prior source J pdf: Gaussian(0,Var[J] = σJ
2 (W WT)-1)

• Bayes’ rule:

• Likelihood: 

• Prior pdf: 

• MAP estimate: 
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Source localization methods to be evaluated: 
1. Bayesian framework (2/2)

• We evaluate the MAP estimates with commonly used prior

• The hyperparameter α was estimated using the empirical approach of the L-curve

• Minimum Norm (MN): W = Ip 

Ö H: all sources are independent and have the same power
• Weighted Minimum Norm (WMN): W(i,i) = 1 / MSP(i)

MSP : Multivariate Source Prelocalization (Mattout, Neuroimage 2005)

~ probability of activation of each source « from the data »

Ö H: all sources are independent and have a power linked to the probability of activation of 
each source

• Bayesian LORETA1: W = ∆ : discrete Laplacian computed on the cortical mesh

Ö H: the mean activity of a source is linked to its spatial neighborhood (spatial smoothness)

• Bayesian LORETA2 : Var[J] = σJ
2 (∆ ∆ T  + αMN Ip)-1) : additional MN regularization to 

limit numerical instabilities due to the computation of ∆ on a fully connected cortical 
mesh
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The EEG/MEG inverse problem:
The Maximum  Entropy on the Mean framework.

[ ] MXGJG
X

=⋅=⋅ pE

Data fit Reference measure

( ) ninformatio priori a→XXµ

→ The method aims at estimating the distribution pX
that  satisfies the two following constraints:

µX(X)

pX(X)p*
X(X)

( )( )XXX
X

µ;maxarg* pHp
Cp ∈

=

Relative entropy
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Source localization methods to be evaluated: 
2. Maximum Entropy on the Mean (MEM) (1/3)

• Estimating J as a realization of a random variable is equivalent to estimating its distribution:
dp(j) = P(J = j)

• Principle of the MEM: estimating dp that maximizes the missing information, given the data M

• Prior information: definition of a reference distribution : dµ

• Solution of the form: dp(j) = f(j) dµ(j), where f is a µ-density to be found such that it explains 
the data in average (noise being zero mean):

• We will note CM the set of all distribution dp verifying such constraint
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Source localization methods to be evaluated: 
2. Maximum Entropy on the Mean (MEM) (2/3)

• Maximum Entropy of the Mean solution: 

dµ(j)

dp(j)dp*(j)CM

• MEM Solution: unique solution, optimization in a n dimension space (n: number of sensors)
(see Amblard IEEE TBME 2004 for proof)
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Source localization methods to be evaluated: 
2. Maximum Entropy on the Mean (MEM) (3/3)

• K cortical parcels assumed to be independent (K ~ n)

• Each parcel is associated to an hidden state variable Si (Si = 1 : parcel active)

• If a parcel is active (Prob(Si =1) = αi), a gaussian distribution of J is assumed N(µi, Σi)

• MEM1: µi = 0, αi from the MSP

• MEM2: µi from MN solution, αi from the MSP

• MEM estimate: 

Definition of Prior Information : dµ
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Source localization methods to be evaluated: 
1. Methods deduces from Bayesian framework

Minimum energy

solution

Maximum of spatial

smoothness solution

Assumption 

for regularization

Minimum norm (MN) 

Hamalainen et al. Med Biol. Eng. Comput. 94

Weighted minimum norm (WMN)
Mattout et al. ISBI 2001

Low resolution electromagnetic 

tomography (LORETA)

Pascual-Marqui et al. Int. J. Psychophys. 94

Maximum entropy of the
mean (MEM) 

Amblard et al. IEEE TBME 2004

Source localisation

Method

Optimization

Function

Min ( ||M-GJ||2 + α ||J||2 )

Min ( ||M-GJ||2 + α ||WJ||2 )

Min ||∆J||2

under the constraint M = GJ
∆ : discrete spatial Laplacian

Solution 
with less assumption

regarding missing data

Max Entropy( PJ; Pprior)
under the constraint M = GJ 

on average
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Validation Metric to assess detection accuracy:
Area under the ROC curve

• Receiver Operating Characteristic (ROC) Curve 
Ö to study detection accuracy

• Generation of binary maps of activation :
– Estimated Ĵ Ö √ (Ĵ2) / √ (Ĵmax2) 

– Gold Standard : Jtheo = 1 if dipole activated, 0 otherwise

True
Positive

False
Negative

Jtheo = 1

False
Positive

True 
Negative

Jtheo = 0

Ĵ > tĴ < t• Construction of the ROC curve

– For each threshold t varying 

between 0 and 1, we estimate: 

– Sensitivity = True Positive Rate

– Specificity = True Negative Rate
ROC: sensitivity = f(1-specificity)
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Area under the ROC 
Curve (AUC) = 

probability of good 
detection when the same 
amount of points with and 

without activation are 
presented to the observer 

• Biased estimation: # active sources << # inactive sources 

• Adaptation to the context of distributed sources: randomly drawing the same 
number of fictive sources as the number active sources

• fictive sources drawn in the close neighborhood: AUC.close

• fictive sources drawn in local maxima located far from the patch: AUC.far

Validation Metric to assess detection accuracy:
Area under the ROC curve

ROC Curves
se

ns
iti

vi
ty

1 – specificity = false negative rate

Ö AUC = (AUC.close + AUC.far) / 2
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Validation Results: 2nd order spatial extent (5 cm2)

LORETA1 : AUC = 0.38WMN : AUC = 0.75

Gold Standard:

Temporo-Radial Source

MEM2 : AUC = 0.97 LORETA2 : AUC = 0.99
(= LORETA1 + MN regulariztion)

Gold Standard:

Temporo-Tangential Source

WMN : AUC = 0.80 MEM2 : AUC = 0.98 LORETA2 : AUC = 0.99
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Validation Results: 4th order spatial extent (14 cm2)

Gold Standard:

Temporo-Radial Source

WMN : AUC = 0.78 MEM2 : AUC = 0.93 LORETA2 : AUC = 0.99

Gold Standard:

Temporo-Tangential Source

WMN : AUC = 0.79 MEM2 : AUC = 0.93 LORETA2 : AUC = 0.96
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Validation Results: 7th order spatial extent (36 cm2)

Gold Standard:

Temporo-Radial Source

WMN : AUC = 0.74 MEM2 : AUC = 0.95 LORETA2 : AUC = 0.98

Gold Standard:

Temporo-Tangential Source

WMN : AUC = 0.73 MEM2 : AUC = 0.76 LORETA2 : AUC = 0.97
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Validation results: summary

• Most accurate methods  (AUC > 0.8): LORETA2 and MEM2
• Less robust method: LORETA

• Less false positive rate: WMN
Grova et al, Neuroimage, under revision

Distributions of AUC

(all locations + all spatial extents) 

Distributions of the min Euclidian distance

between the global maximum of energy and the 
simulated source



39

Overview

1. Clinical context: multimodal exploration of the epileptogenic network

2. Validation methodology

3. Realistic simulation of interictal spike EEG 

Ö Validation of EEG source localization methods

Ö Empirical Comparison between Bayesian inference and MEM

4. fMRI-constrained EEG source localization in epilepsy
Ö Preliminary results using model comparison

5. Conclusion and perspectives



40

Simultaneous EEG-fMRI acquisition: setup

Gotman, Bénar and Dubeau, J 
Clin Neurophys 2005

Multiple problems in recording the EEG inside the 
scanner: ballistocardiogram, movement, gradient
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10s

t

6 min

HRF model

Simultaneous EEG-fMRI acquisition: data analysis

X

Z map
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“Scénarios catastrophe”: motivations.

2. Un a priori statique pour un réseau dynamique.

1. Divergence entre l’activité bioélectrique (EEG)
et l’activation métabolique (IRMf BOLD).

??

vue par l’EEG
et par l’IRMf

vue par l’EEG
mais pas (ou mal)
par l’IRMf 
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A priori assumptions.

H1: “a priori, sources are independent and 
have the a power linked to the fMRI activation map”

H0: “a priori, sources are independent and 
have the same power”NON 

INFORMATIVE

INFORMATIVE

~
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Hierarchical Bayesian Model (cf. J. Daunizeau)

M

J

ε

H

σ2
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Inference by Maximum a Posteriori

1. Parameters

2. Hyperparameters

3. Pertinence of the a priori model
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Validation model

• Clinical context: source localization of EEG interictal spikes 
constrained by fMRI results

• Validation objective: « Is it possible to quantify the pertinence of an 
informative prior regarding the EEG data only?”

• Reference: absolute Gold Standard provided by realistic simulations:  
simulation of source of EEG interictal spikes and fMRI activation map: 
fMRI map= perturbation of the simulated EEG sources

• Validation criteria: Pertinence of using an informative prior

• Validation metric: assessing this pertinence with or without Gold 
Standard
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Validation metrics

→ Validation metric without Gold Standard (GS):
Bayes factors 

→ Validation metric with Gold Standard (GS): 
Sum of Square Errors (SSE), Area under the ROC curve (AUC)

γ = log(SSE1/SSE0),  γ > 0 : the estimate using the informative prior H1 generate more 
errors than the non informative one H0

β = log(AUC1/AUC0),  β > 0 : the estimate using the informative prior H1 has better 
detection accuracy than the non informative one

→ α > 0 : the informative prior H1 is more 
pertinent than the non informative one H0, 
regarding the EEG data only !
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Validation data sets: 

→ 50 EEG extended sources  simulated: Jeeg

• Perturbation of the fMRI map by noise: Zfmri = (Jeeg + noise) 2

• Discrepancy between the location of the EEG source Jeeg and the 
fMRI activation Zfmri, from a distance d (d = neighborhood order 
from 1 to 13)
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Effect of noise perturbation: Zfmri = (Jeeg + noise) 2

α (without GS) vs β (with GS) α (without GS) vs γ (with GS)

H1 
without 

GS

H0 
without 

GS

H1 with GSH0 with GS H1 with GSH0 with GS

Daunizeau, Grova et al, IEEE TSP, 2005, in press
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Effect of the discrepancy (distance d) 
between EEG source and fMRI map

α (without GS) vs d = log(d/ 2cm) γ (with GS) vs d = log(d/ 2cm)

H1 
without 

GS

H0 
without 

GS

H0 with
GS

H1 with
GS

d<2cm d >2cm d<2cm d >2cm

Daunizeau, Grova et al, IEEE TSP, 2005, in press
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Preliminary results on real epileptic data: Case 1

Average Spike on the 
scalp (42 sensors)

fMRI negative 
response (T<-3.1)

Interpolation of 
the fMRI map on 

the cortical 
surface

t1 t2

t1 t2

H0: non-
informative 

prior

H1: 
informative 
prior (fMRI)

α=11.2

Incomplete Gold Standard  = 
Intra-cerebral recordings
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Preliminary results on real epileptic data: Case 2

Average Spike on the 
scalp (43 sensors)

fMRI positive 
response (T>3.1)

Interpolation of the 
fMRI map on the 
cortical surface

t1

t1

H0: non-informative 
prior

H1: informative 
prior (fMRI)

α=0.69

Incomplete Gold Standard  = 
Intra-cerebral recordings
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Conclusion and perspectives

• Both validation and prior model should be defined regarding a precise 
clinical objective

• Realistic simulations provide an ideal framework to study many 
parameters of source localization methods

• Our evaluation study: pro’s and con’s for each method (e.g., WMN, 
LORETA, MEM) : they should be compared

• Hierarchical Bayesian Model: model selection and model comparison

• The link between fMRI and EEG sources is difficult and should be 
considered with caution even more in epilepsy: Bayesian model 
comparison may help !

• Validation on more real data is required

• Measuring the pertinence of the model within the MEM approach ?
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