Aviation Safety Regulation

Paul Stephen Dempsey
McGill University Institute of Air & Space Law
Some slides from Singapore CAA, France BEA, US FAA, ICAO and various websites.
The Chicago Convention of 1944 created the International Civil Aviation Organization [ICAO] and gave it quasi-legislative authority to promulgate standards and recommended practices [SARPs] as Annexes to the Chicago Convention. These standards are binding upon member States that fail to notify ICAO of the differences in their domestic law.
* Article 12 of the Convention requires every contracting State to keep its regulations uniform, to the greatest extent possible, with those established under the Convention.

* Article 37 attempts to achieve uniformity in air navigation, by requiring that every contracting State cooperate in achieving the “highest practicable degree of uniformity in regulations, standards, procedures, and organization in relation to aircraft personnel, airways and auxiliary services in all matters in which uniformity will facilitate and improve air navigation.”

* The sentence that follows provides, “[T]o this end [ICAO] shall adopt and amend from time to time . . . international standards and recommended practices and procedures” addressing various aspects of air navigation.

* Therefore, ICAO’s 191 member States have an affirmative obligation to conform their domestic laws, rules, and regulations to the international leveling standards adopted by ICAO.

* **Uniformity of Law**
Annex 1 (Personnel Licensing), Annex 6 (Operation of Aircraft), and Annex 8 (Airworthiness of Aircraft) require ICAO’s member States to promulgate domestic laws and regulations to certify airmen, aircraft, and aircraft operators as airworthy and competent to carry out safe operations in international aviation.

Subject to the notification of differences under Article 38 of the Convention, the legal regime effectively assumes that States are in compliance with these safety mandates.

Under Article 33, States are obliged to recognize the validity of the certificates of airworthiness and personnel licenses issued by the State in which the aircraft is registered, so long as the standards under which such certificates or licenses were rendered are at least as stringent as those established under the Chicago Convention.

Certificates of Airworthiness
Aircraft Certification

Design
- Type Certificate validation or acceptance

Production
- Approval of Modifications & Repairs of Aircraft Parts

Registration
- Certificate of Registration

Airworthiness
- Certificate of Airworthiness

Maintenance
- Operator’s Maintenance Program
<table>
<thead>
<tr>
<th>Aircraft Operator Certification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>** Organisation, Staffing & Training**</td>
<td>Flight and cabin crew scheduling</td>
</tr>
<tr>
<td>** Facilities & Equipment**</td>
<td>Operational control & flight dispatch</td>
</tr>
<tr>
<td>** Flight Safety Documentation**</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>** Operations Manual**</td>
<td>Ground handling arrangements</td>
</tr>
<tr>
<td>** Aircraft Operating Information**</td>
<td>Authorization for the transport of dangerous goods by air</td>
</tr>
<tr>
<td>** Routes & Aerodromes Manual**</td>
<td>Authorization for aircraft lease, charter and interchange</td>
</tr>
<tr>
<td>** Air operator accident prevention and flight safety programme**</td>
<td>Aircraft operation security measures</td>
</tr>
<tr>
<td>** Training Programmes**</td>
<td>Safety Management Systems</td>
</tr>
</tbody>
</table>
* MAINTENANCE ORGANIZATION CERTIFICATION *

- Facility & Personnel Requirements
- Certifying Staff
- Equipment, Tools & Materials
- Maintenance Data
- Certification of Maintenance
- Maintenance Records
- Reporting of unairworthy conditions
- Safety Management System
- Maintenance Procedures & Quality System
Flight Crew
- Pilot Licence
- Ratings

Aircraft Maintenance Engineers
- Aircraft Maintenance Engineer License
- Ratings

Air Traffic Controllers
- Air Traffic Controller License
- Ratings
Aerodrome Certification

<table>
<thead>
<tr>
<th>Organisation, Staffing & Training</th>
<th>Aerodrome lights, markings, markers & signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical & administrative guidance & equipment</td>
<td>Aerodrome maintenance</td>
</tr>
<tr>
<td>Aerodrome manual</td>
<td>Aerodrome operating procedures</td>
</tr>
<tr>
<td>Provision of aerodrome data & coordination</td>
<td>Safety management systems</td>
</tr>
<tr>
<td>Aerodrome physical characteristics, facilities and equipment</td>
<td></td>
</tr>
</tbody>
</table>

REGULATION OF AERODROMES

- Aerodrome Certification
- Organisation, Staffing & Training
- Aerodrome lights, markings, markers & signs
- Technical & administrative guidance & equipment
- Aerodrome maintenance
- Aerodrome manual
- Aerodrome operating procedures
- Provision of aerodrome data & coordination
- Safety management systems
- Aerodrome physical characteristics, facilities and equipment
Airworthiness

- Aircraft/Parts Design and Manufacturers
 - Aircraft Type Design Approvals
 - Certificate of Registration (CoR)
- Design Organisation (SAR 21)
- Production Organisation (SAR 21)
- Maintenance Training Org (SAR-147)

- Certificate of Airworthiness (CoA)
 - Issued by State of Registry
 - Undertaken by Air Maintenance Organisations (SAR-145)
 - Must possess a valid
 - Maintains
 - Aircraft
 - Operates

Flight Operations

- Air Operator (AOC holder)
 - Supports flight operations
 - Issued by State of Operator
 - Supports flight operations
 - Aviation Training Org
 - Provision of Training
 - Flying Training Org (FTO)
 - Type Rating Training Org (TRTO)

- Flight Crew
 - Provision of Training
 - Air Traffic Controllers
 - Air Traffic Services Provider

- Ground Handling Agent
- Aerodrome Operator

- Supports flight operations
 - Air Traffic Control Training Organisation
 - Issued by State of Operator

- Authorised to release aircraft into service
 - Aircraft Maintenance Engineer

- Must possess a valid
ACCIDENT & INCIDENT INVESTIGATION

Accident/Loss

Physical safeguards

Individual behaviours

Culture

Local supervision

Senior management

Risk/hazard/peril

Sets Policy
Sets core values
Budgets
Performance
Measures
Directs
Plans

Manages
Shapes behaviour
Monitors
Implements

Shares values
Norms
Language
Myths
How things work
Common beliefs

What people do
“At risk” behaviours
Forced by system
Risk tolerance
Can be shaped
Safe behaviors

Safety Rules
Protective equip.
Guards
Safety Training
Warning devices

(Source: Reason, 1994)
Accident & Incident Investigation

Sole Objective
- Accident prevention
- **Not to apportion blame or liability**

Notification
- Flight Crew
- Operator

Investigator in charge
- State of Occurrence

Accredited Representatives
- State of Registry
- State of the Operator
- State of Design
- State of the Manufacturer
- State providing information, facilities or experts

Investigation Phases
- On notification
- Field Phase
- Analysis Phase
- Report Writing Phase

Report
- Draft Final Report
- Final Report
- Safety Recommendations
The sole objective of the investigation of an accident or incident shall be the prevention of accidents and incidents.

It is not the purpose of this activity to apportion blame or liabilities.

Annex 13
Annex 13 recommends that any court or administrative action designed to apportion blame or impose liability should be independent from the accident or incident investigation:

"[t]he accident investigation authority shall have independence in the conduct of the investigation and have unrestricted authority over its conduct . . .".

The State shall establish “an independent accident and incident investigation process, the sole objective of which is the prevention of accidents and incidents, and not the apportioning of blame or liability. . . . In the operation of the SSP (State Safety Programme), the State maintains the independence of the accident and incident investigation organization from other State aviation organizations."

The investigation consists of the gathering, recording and analysis of all available relevant information, the drawing of conclusions, including the determination of causes and/or contributing factors and, when appropriate, the making of safety recommendations.
The State conducting the investigation should recognize the need for coordination between the investigator-in-charge (IIC) and judicial authorities.

Most of the evidence gathered should remain confidential unless the judicial authorities determine “that their disclosure outweighs the any adverse domestic and international impact such action may have on that or any future investigations . . .”.

Evidence gathered during the accident or incident investigation, including that given voluntarily, “could be utilized inappropriately for subsequent disciplinary, civil, administrative and criminal proceedings. If such information is distributed, it may, in the future, no longer be openly disclosed to investigators. Lack of access to such information would impede the investigation process and seriously affect flight safety.”

Hence, extreme caution is urged in using evidence gathered for safety investigation purposes in liability or punitive judicial or administrative proceedings, lest the willingness of those involved in an aviation accident be chilled from volunteering useful information.
Annex 13 requires that States establish both a mandatory and a voluntary incident reporting system. Such a system must be “non-punitive and afford protection to the sources of the information”, because a “non-punitive environment is fundamental to voluntary reporting”. In its guidance material, ICAO observes, “Ideally, State-run voluntary incident reporting systems are operated by an organization separate from the aviation administration responsible for the enforcement of aviation regulations.”
Obligation to investigate all “civil aviation” accidents and serious incidents

Sole objective = prevention

Investigations conducted or supervised by a permanent civil aviation body or entity, functionally independent

Rights and Powers of investigators

Accident reports to be made public (12 months)
The body or entity concerned shall be functionally independent in particular of the national aviation authorities responsible for airworthiness, certification, flight operation, maintenance, licensing, air traffic control or airport operation and, in general, of any other party whose interests could conflict with the task entrusted to the investigating body or entity.
1.1 The protection of safety information from inappropriate use is essential to ensure its continued availability, since the use of safety information for other than safety related purposes may inhibit the future availability of such information, with an adverse effect on safety.

1.5(c) *inappropriate use* refers to the use of safety information for purposes different from the purposes for which it was collected, namely, use of the information for disciplinary, civil, administrative and criminal proceedings against operational personnel, and/or disclosure of the information to the public.
2.1 The sole purpose of protecting safety information from inappropriate use is to ensure its continued availability so that proper and timely preventive actions can be taken and aviation safety improved.

2.2 It is not the purpose of protecting safety information to interfere with the proper administration of justice in States.

2.3 National laws and regulations protecting safety information should ensure that a balance is struck between the need for the protection of safety information in order to improve aviation safety, and the need for the proper administration of justice.

2.4 National laws and regulations protecting safety information should prevent its inappropriate use.

2.5 Providing protection to qualified safety information under specified conditions is part of a State’s safety responsibilities.
3.1 Safety information should qualify for protection from inappropriate use according to specified conditions that should include, but not necessarily be limited to: the collection of information was for explicit safety purposes and the disclosure of the information would inhibit its continued availability. . . .

3.3 A formal procedure should be established to provide protection to qualified safety information, in accordance with specified conditions.

3.4 Safety information should not be used in a way different from the purposes for which it was collected.

3.5 The use of safety information in disciplinary, civil, administrative and criminal proceedings should be carried out only under suitable safeguards provided by national law.

Annex 13 - Attachment E
Non-disclosure of records

5.12 The State conducting the investigation of an accident or incident shall not make the following records available for purposes other than accident or incident investigation, unless the appropriate authority for the administration of justice in that State determines that their disclosure outweighs the adverse domestic and international impact such action may have on that or any future investigations:

a) all statements taken from persons by the investigation authorities in the course of their investigation;
b) all communications between persons having been involved in the operation of the aircraft;
c) medical or private information regarding persons involved in the accident or incident;
d) cockpit voice recordings and transcripts from such recordings;
e) recordings and transcriptions of recordings from air traffic control units;
f) cockpit airborne image recordings and any part or transcripts from such recordings; and
g) opinions expressed in the analysis of information, including flight recorder information.

5.12.1 These records shall be included in the final report or its appendices only when pertinent to the analysis of the accident or incident. Parts of the records not relevant to the analysis shall not be disclosed.
Non-disclosure of records

Note 1.— Information contained in the records listed above, which includes information given voluntarily by persons interviewed during the investigation of an accident or incident, could be utilized inappropriately for subsequent disciplinary, civil, administrative and criminal proceedings. If such information is distributed, it may, in the future, no longer be openly disclosed to investigators. Lack of access to such information would impede the investigation process and seriously affect flight safety.

Note 2.— Attachment E contains legal guidance for the protection of information from safety data collection and processing systems.

5.12.2 The names of the persons involved in the accident or incident shall not be disclosed to the public by the accident investigation authority.
4. PRINCIPLES OF EXCEPTION

Exceptions to the protection of safety information should only be granted by national laws and regulations when:

* a) there is evidence that the occurrence was caused by an act considered, in accordance with the law, to be conduct with intent to cause damage, or conduct with knowledge that damage would probably result, equivalent to reckless conduct, gross negligence or wilful misconduct;

* b) an appropriate authority considers that circumstances reasonably indicate that the occurrence may have been caused by conduct with intent to cause damage, or conduct with knowledge that damage would probably result, equivalent to reckless conduct, gross negligence or wilful misconduct; or

* c) a review by an appropriate authority determines that the release of the safety information is necessary for the proper administration of justice, and that its release outweighs the adverse domestic and international impact such release may have on the future availability of safety information.

Annex 13 - Attachment E
TERROR AT TENERIFE

NORMAN WILLIAMS
GEORGE OTIS

THE INSIDE STORY OF HISTORY'S WORST AIRLINE DISASTER AND ITS MIRACLES OF RESCUE
El accidente de Los Rodeos

1. El PA 1736, de Pan American, solicita permiso para despegar y le comunican desde la torre de control la situación del KL 4805, de KLM.

2. El KL 4805 carga combustible para realizar el vuelo de regreso.

3. El KL 4805 recibe órdenes de recorrer la pista para girar 180 grados y colocarse en posición de despegue.

4. Se autoriza al PA 1736 a seguir al KL 4805, abandonando la pista por la tercera salida (C-3).

5. El comandante no entiende las órdenes e interpreta que tiene que tomar la calle C-4.

6. El KL 4805 comienza su despegue sin autorización mientras que el avión de Pan American gira hacia la C-4. Se produce el impacto.

En el momento del accidente, la visibilidad era de apenas 500 metros.

Total Víctimas 583

GRAFÍA

<table>
<thead>
<tr>
<th>Aeronave</th>
<th>Tripulación</th>
<th>Pasajeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing 747-121 (PA 1736)</td>
<td>16 (9 fallecidos)</td>
<td>380 (326 fallecidos)</td>
</tr>
<tr>
<td>Boeing 747-206B (KL 4805)</td>
<td>14 (todos fallecidos)</td>
<td>234 (todos fallecidos)</td>
</tr>
</tbody>
</table>
LOS RODEOS AIRPORT

Worst Aviation Disaster
Reconstructed

1. Both Planes Parked at End of Runway
2. KLM 747 Taxis
3. Pan Am 747 Taxis
4. KLM 747 Turns & Takes off
5. Planes Collide

Terminal
Apron
Taxiway Closed
11,155 feet
C-1
C-2
C-3
C-4

CARL FOX
Tenerife was the greatest aerial tragedy in terms of loss of life in history - 583 people died. Causes:

* Loss of situational awareness by the captain.
* Poor communications between ATC and KLM and Pan Am.
* Poor decision making by KLM captain, taking off in heavy fog without ATC clearance.
* Stress of long waiting at Tenerife, approaching maximum duty time of crew.

* Tenerife Accident Report
Stricken Jet Misses Sioux City Runway

DC-10 Crashes in Flames

By Sharon Rosse
World-Herald Staff Writer

Sioux City, Iowa — As many as 150 people may have survived the crash Wednesday of a United Airlines DC-10 carrying 288 people when it crashed and exploded while trying to make an emergency landing at the Sioux Gateway Airport.

Flight 232 from Denver to Chicago carried 287 passengers and 11 crew members, said Deborah Jones, a United spokeswoman.

Witnessee said some survivors appeared to have been thrown from the plane when it cartwheeled into the ground and burst into flames. Others walked away, witnesses said.

The plane experienced “complete hydraulic failure” before the crash just after 4 p.m., Federal Aviation Authority officials said.
Part of DC-10 fuselage lies in a cornfield near end of the runway. McDonnell Douglas suspended production of the DC-10 in 1983.

Just Before Crash, Pilot Says Jet Has ‘Complete Hydraulic Failure’

Washington (AP) — The pilot of the DC-10 that careened on the ground and exploded Wednesday at Sioux City, Iowa, reported “a complete hydraulic failure” just before the crash and had lost an engine earlier, a federal aviation spokesman said.

John Leyden, a spokesman for the Federal Aviation Administration, said hydraulic failure would mean a loss of primary control over nearly every control surface on the wide-bodied, three-engine airliner.

A plane’s hydraulic system helps push its wheels down, opens and extends flaps to increase the lift of the wings and governs other control surfaces of the airplane on the wings and tail.
Hydraulics plays a role in many areas of a commercial airliner. This diagram shows a sampling of what an airborne hydraulic system can include. Among the areas shown include the rudder ratio charger actuator (1), cargo door actuator (2), in-line horizontal stabilizer motors (3), AC motor pump (4), brake valves (5), flap/slat actuators (6), constant-speed motor generators (7), main engine pumps (8), ram air turbine pump (9), power transfer unit (10), filter module (11), nose cargo door actuator (12), and integrated electrolytic hydraulic actuator steering package (13).
KILL OF TWA FLIGHT 800

We Saw TWA Flight 800 Shot Down by Missiles
And We Won’t Be Silenced Any Longer

- Pilot eyewitnesses, multiple aircraft.
- Radar “tracked” a nonsolid blip that closed with the aircraft.
- Explosives ruled out.
- Significantly differs from downing by a light SAM at envelope of its range.
- Simple mechanical failure does not fit.

Emulation of surface-to-air missile (part of deception plan)

- 1985 eyewitness of similar EM missile strike on Arrow DC-8 at Gander AFB, Newfoundland.
- Multiple photos of EM missile tests over Western Australia (range).
- Possible: U-2 explosion 7 Aug 96.
- C-130 crash 22 Nov 96.

Emulation of a "leaking fuel" explosion (deception plan)

Conspiracy Theory
Reconstructing the Crash

The National Transportation Safety Board’s version of how TWA Flight 800 exploded on July 17, 1996.

A. 8:31:11: Center fuel tank explodes.

B. 8:31:15: Plane begins to bank to the left. One second later, the front section of the plane breaks off and begins its descent toward earth. The fuselage section of the plane continues on the bank to the left and is pushed upward.

C. 8:31:25: The fuselage rolls to the right and six seconds later begins to fall toward the water.

D. 8:31:53: Fireball erupts on the fuselage as the left wing breaks away.

E. 8:32:05: Fuselage hits water.

F. 8:32:50: Front section of the plane hits the water.

G. The remaining fuselage section sits underwater for 13 hours before it is pulled from the water on July 17th and 18th.
TWA Flight 800 4 Years of Mystery

Though the plane wreckage was found quickly, the cause of the crash took 4 years to uncover.

230 people
18 crew members
212 passengers

The conclusion: likely faulty wiring that caused the fuel tank to explode.

© MapsofWorld 2014
The international search for Air France 447

Military planes and ships from Brazil, France and the US are combing the suspected crash area.
In Free Fall
The last minutes of flight AF 447 from Rio de Janeiro to Paris

2.09 am GMT
The Airbus A330 has been flying through a storm front at an altitude of 10,700 meters (35,100 feet) for more than half an hour.

2.10 am
Ice crystals from the clouds block the pitot probes underneath the cockpit. The airspeed display stops working. Several warning signals appear on the control screens in the cockpit. The autopilot and the automatic throttle stop working. The flight computer switches to emergency control (a mode known as Alternate Law 2).

2.11 am
The pilots lose control of the aircraft. It is possible that a so-called deep stall occurred at this point.

2.12 am
The out-of-control aircraft hurtles toward the ocean surface at an estimated speed of descent of 2,500 meters per minute.

2.13 am
The pilots are believed to have desperately tried to restart the flight computer in an attempt to regain control of the airplane.

2.14 am
The ground proximity warning system alerts the pilots when the aircraft descends below 600 meters above the ocean surface. Acoustic warnings sound in the cockpit: "Terrain! Terrain! Pull up! Pull up!"

Impact
The plane, which is still intact, hits the ocean surface with a force equivalent to 36 times the force of gravity and with its nose raised by only five degrees. The vertical stabilizer becomes detached and flies forward.

Functionality of the Pitot Tube
1. The speed of the aircraft determines the pressure of the air stream in contact with the pitot tube. A sensor measures the total pressure.
2. The air pressure around the pitot tube (known as the static pressure) is also measured.
3. The difference between the total pressure and the static pressure is used to calculate the airplane's speed. The speed is shown on a display in the cockpit.
4. When the opening of the pitot tube freezes over, neither pressure nor difference can be measured.
01:55:57am
Capt. Dubois goes on scheduled break, leaving two co-pilots in charge in the cockpit.

02:10:05am

02:10:07am
Co-pilot Bonin makes disastrous decision to pull the nose of the plane up. Plane starts to climb rapidly, which soon leads to aerodynamic stall.

02:10:11am
First stall warning. Nose is still up, vertical speed increasing.

02:11:22am
Top of the rollercoaster. The plane stalls, starts to fall out of the sky—dropping at 10,000 feet per minute.

02:11:43am
Capt. Dubois re-enters the cockpit. Says to Bonin, “What are you [explicit deleted] doing?” No one acknowledges the plane is in a stall.

02:12:30am
Co-pilot Bonin says “Am I going down now?” Apparently so discombobulated he has no idea whether the plane is going up or down.

02:13:23am
Computer’s synthetic voice announces “dual input” in the cockpit—the two co-pilots are putting contradictory inputs into their respective control sticks.

02:14:14am
Synthetic Voice: “Pull up!” But it is too late. Co-pilot Robert’s last words: “We’re going to crash. I can’t believe it.”

02:14:28am
Air France 447 hits the water.
FATAL AIRLINE DISASTERS SINCE MARCH 8, 2014

<table>
<thead>
<tr>
<th>AIRLINE</th>
<th>FLIGHT</th>
<th>PLANE</th>
<th>CAUSE*</th>
<th>DEATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia Airlines</td>
<td>#MH370</td>
<td>Boeing 777</td>
<td>Missing, cause unknown</td>
<td>239</td>
</tr>
<tr>
<td>Malaysia Airlines</td>
<td>#17</td>
<td>Boeing 777</td>
<td>Unlawfully shot down</td>
<td>298</td>
</tr>
<tr>
<td>TransAsia Airways</td>
<td>#222</td>
<td>ATR 72-500</td>
<td>Inclement weather</td>
<td>48</td>
</tr>
<tr>
<td>Air Algerie</td>
<td>#AH5017</td>
<td>MD-83</td>
<td>Malfunction</td>
<td>116</td>
</tr>
<tr>
<td>Sepahan Airlines</td>
<td>#5915</td>
<td>Antonov 140</td>
<td>Malfunction</td>
<td>39</td>
</tr>
<tr>
<td>AirAsia</td>
<td>#QZ8501</td>
<td>A320</td>
<td>Engine stall</td>
<td>162</td>
</tr>
<tr>
<td>TransAsia</td>
<td>#235</td>
<td>ATR 72-600</td>
<td>Engine failure</td>
<td>38</td>
</tr>
<tr>
<td>Germanwings</td>
<td>#9525</td>
<td>A320</td>
<td>Under investigation</td>
<td>150 (presumed)</td>
</tr>
</tbody>
</table>

*Causes presumed, most cases still under investigation.
Flight MH370

The B777-200 aircraft took off from the Kuala Lumpur International Airport (KLIA) at 12.41am this morning and was due to land in Beijing at 6.30am.

MH370 lost contact with Subang Air Traffic Control at 2.40am.

227 passengers including two infants
12 crew members
TIMELINE OF MISSING MH370

12.41am
MH370 departs KLIA

02.40am
Subang Air Traffic Control loses contact with MH370

06.30am
MH370 scheduled to land in Beijing International Airport, never arrives

07.24am
MAS confirms MH370 missing

08.30am
Estimated time of fuel depletion on MH370

09.00am
MAS begins contacting next-of-kin

10.44am
MAS denies rumour MH370 made emergency landing at Nanming, China

01.46pm
Vietnamese media reports MH370 crashed near Tho Chu Island

02.30pm
Transport minister denies crash report, says awaiting military confirmation

Source: News reports

GRAPHICS: themalaymailonline.com
<table>
<thead>
<tr>
<th>Duration (HH:MM)</th>
<th>Time MYT</th>
<th>Time UTC</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>00:41</td>
<td>16:41</td>
<td>Take-off from Kuala Lumpur</td>
</tr>
<tr>
<td>00:20</td>
<td>01:01</td>
<td>17:01</td>
<td>MH370 confirms altitude of 35,000 feet (11,000 m)(^{[24]})</td>
</tr>
<tr>
<td>00:26</td>
<td>01:07</td>
<td>17:07</td>
<td>Last ACARS data transmission received,(^{[25]}) MH370 reconfirms altitude of 35,000 feet(^{[24]})</td>
</tr>
<tr>
<td>00:38</td>
<td>01:19</td>
<td>17:19</td>
<td>Last Malaysian ATC voice contact: "All right, good night"(^{[23]})</td>
</tr>
<tr>
<td>00:40</td>
<td>01:21</td>
<td>17:21</td>
<td>Last secondary radar (transponder) contact at 6°55′15″N 103°34′43″E</td>
</tr>
<tr>
<td>00:41</td>
<td>01:22</td>
<td>17:22</td>
<td>Transponder and ADS-B now off</td>
</tr>
<tr>
<td>00:49</td>
<td>01:30</td>
<td>17:30</td>
<td>Unsuccessful voice contact from another aircraft, mumbling/static audible(^{[19]})</td>
</tr>
<tr>
<td>00:56</td>
<td>01:37</td>
<td>17:37</td>
<td>Missed expected half-hourly ACARS data transmission(^{[25]})</td>
</tr>
<tr>
<td>01:30</td>
<td>02:11</td>
<td>18:11</td>
<td>First of seven automated hourly ACARS contacts with Inmarsat 3F1 satellite</td>
</tr>
<tr>
<td>01:34</td>
<td>02:15</td>
<td>18:15</td>
<td>Last primary radar contact by Malaysian military, 200 miles (320 km) NW of Penang</td>
</tr>
<tr>
<td>05:49</td>
<td>06:30</td>
<td>22:30</td>
<td>Missed scheduled arrival in Beijing</td>
</tr>
<tr>
<td>07:30</td>
<td>08:11</td>
<td>00:11</td>
<td>Last automated hourly ACARS contact with Inmarsat satellite(^{[26]})(^{[27]})</td>
</tr>
<tr>
<td>07:49</td>
<td>08:30</td>
<td>00:30</td>
<td>Reported missing(^{[28]})</td>
</tr>
</tbody>
</table>
Inmarsat checked all Malaysia Airlines 777s satellite signals in the days and weeks after.

It also checked the historical data of this particular Boeing 777 and examined its unique signature.

The data has been checked and rechecked over months.

Five independent teams have arrived at the same most likely crash area.

How can we be so sure?
French experts say it is a "certainty" that the jet wing part that washed up on the Indian Ocean island of Reunion is from the missing Malaysia Airlines flight MH370.

In a statement in Paris yesterday, senior French prosecutor Francois Molins said that a series of numbers found inside the barnacle-crusted 'flaperon' matches records held by a Spanish manufacturer as being part of the Boeing 777, last seen on 8 March last year.

According to CNN the statement added: "Consequently, it is possible today to affirm with certainty that the flaperon discovered at the Reunion Island on July 29 2015 is that of MH370."

Malaysia's prime minister, Najib Razak, said in August that he believed the flaperon must be from the missing aircraft, says the BBC. But this is the first official confirmation from France, where the part was taken for analysis.

The 6ft-long chunk of metal was found on the French territory of Reunion some 2,300 miles from the area where searchers believe the jet must have crashed into the ocean - but the find is consistent with projections about where debris might end up after drifting on ocean currents.

MH370 took off from Kuala Lumpur in the early hours of 8 March 2015, heading for Beijing with 239 passengers and crew on board.

The hunt for the wreckage continues in the southern Indian Ocean, 1,100 miles off the coast of Australia, with some 30 per cent of the top-priority search area covered so far using sonar technology.

The area searched is more than 11,185 square miles of the ocean floor, says the BBC, at depths of nearly 20,000 feet.

* September 4, 2015
Malaysia Airlines flight 17 (MH17)
Amsterdam - Kuala Lumpur (AMS - KUL)

AIRCRAFT TYPE: Boeing 777-200ER
REGISTRATION NUMBER: 9M-MRD
CONSTRUCTION NUMBER: 28411
LINE NUMBER: 84
FIRST FLIGHT: April 17, 1997
AGE: 17 years
ENGINES: Rolls-Royce Trent 892

SOURCE: PlaneFinderData
GRAPHICS: themalaymailonline.com
Bodies of victims have been taken to Kharkiv

Scene of heavy fighting in early days of the conflict

Sites of recent fighting

Path of flight MH17

Area of rebel activity, July 18

Crash site
Protilétadlový komplex
BUK 9K37
Raketa váží 690 kg
hlavice 70 kg
délka 5,5 metrů
rychlost 1200 m/s
Dosah 32 km
Setřílhuje cíle ve výšce až 22 km

Donetsk
Kyjev
Torez
Sjeverne
Molchalyne
Rusko
50km
Malaysia Airlines Flight MH17 takes off from Amsterdam's Schiphol Airport at 12.15pm local time destined for Kuala Lumpur carrying 280 passengers and 15 crew.

The crew are thought to have been aware of a no-fly zone covering Crimea and south-eastern Ukraine implemented by the International Civil Aviation Organisation.

Shortly before 1.25pm GMT, at 33,000ft, contact with Flight MH17 is lost over a separatist stronghold near the Russian border, suspected of being shot down by Buk missile launcher.

The Boeing 777-200ER passes over Germany and Poland before crossing into Ukraine.

Buk 9K37 MISSILE SYSTEM (NATO codename SA-11 Gadfly)
- Introduced in 1980 by the Soviet Union
- Designed to shoot down cruise missiles, drones and aircraft
- Four missiles mounted on tracked chassis
- Each missile 18ft long with 70kg warhead
- Has a 20 mile range and maximum altitude of 13 miles (72,000ft)
- Missiles fired at 1,900mph and guided by radar station on ground.
Buk-1M air defense system

The Buk missile system is a mobile launcher equipped with air defense missiles capable of hitting aircraft at high altitudes. Such a launcher was reported seen near where Malaysia Airlines Flight MH17 came down.

- Can fly as high as 46,000 ft. (14,020 m) at Mach 3, 2,284 mph (3,675 kph)
- Fast setup, can go from driving to firing mode in as little as 5 minutes
- Fragmentation warhead
- Buk system has a radial range of about 22 mi. (35 km)

Source: GlobalSecurity.org, AP, NBC News
Graphic: Robert Dorrell, Melina Yingling
© 2014 MCT
Fuel tanks kept within the wing of the plane

The SA11 carries a high-explosive warhead that weighs 150 lb (70 kg)

An incendiary warhead would cause critical damage to the engines and control systems

A fragmentation warhead would shred the plane with shrapnel

It detonates within 65 ft (20 m) of its target

199 ft 11 in
The Dutch Safety Board’s (DSB) report, released Oct. 13, 2015, concluded that MH-17 was downed on July 17, 2014, by a BUK surface-to-air missile, killing all 298 people aboard. The report contained several recommendations:
* ICAO should require that states experiencing conflict on their territory should, “at an early stage,” publish the nature and extent of threats it poses to civil aviation.
* ICAO should update its SARPs related to the consequences or armed conflict to civil aviation.
* ICAO and IATA should encourage states and operators that have information on threats in foreign airspace to publish it expeditiously.
* ICAO should amend its SARPs so that risk assessments cover threats to aircraft flying at cruising altitudes, especially when overflying conflict zones. Uncertainty factors should be included in these risk assessments.
* IATA should ensure that standards regarding risk assessments are included in the IATA Operational Safety Audits.
* States should require their national airlines to make risk assessments of overflying conflict zones.
* ICAO and IATA should introduce a platform where experiences and good practices can be exchanged regarding risk assessments of overflying conflict zones.
* IATA airlines should agree on how to present clear information to potential passengers on flight routes over conflict zones.
* Operators should provide public accountability for the routes chosen, at least annually.

* MH-17 Accident Report
5 OTHER PLANES SHOT DOWN BEYOND MH17

- **Aerolínea Itavia Flight 870**
 - June 27, 1980
 - Shot down by an unidentified warplane

- **Libyan Arab Airlines Flight 114**
 - July 3, 1988
 - Shot down by Israel

- **Iran Air Flight 655**
 - February 21, 1973
 - Shot down by the US

- **Siberian Airlines Flight 1812**
 - October 4, 2001
 - Shot down by Ukraine

- **Korean Air Lines Flight 007**
 - September 1, 1983
 - Shot down by the Soviet Union

SOURCE: Mother Jones

GRAPHICS: themalaymailonline.com
FLIGHT TIMELINE

10:01am: Flight takes off after almost 30 min. delay

10:45am: Distress call sent

11:55am: Flight is scheduled to arrive at destination
Typical descent
1,500–2,000 feet per minute

Nose-dive
8,000 feet per minute

Germanwings
3,400 feet per minute

Ground level along the flight path

Alps
WHAT WE KNOW ABOUT CO-PILOT

- 28-YEAR-OLD ANDREAS LUBITZ
- WAS NOT ON A TERROR LIST
- HAD 630 HOURS OF FLIGHT TIME
AirAsia QZ8501 (updated 1.24 PM)

Passengers:
1 Malaysian
1 Singaporean
3 Koreans
157 Indonesians
138 adults
16 children
1 infant
2 pilots
5 cabin crew

Crew composition:
Captain: Iriyanto
FO: Remi Emmanuel Plesel

4 Flight Attendants:
SFA: Wanti Setiawati
FA: Khairunisa Haidar Fauzi
FA: Oscar Desano
FA: Wismoyo Ari Prambudi
1 ENG: Saiful Rakhmad

malaysiakini
news and views that matter
ICAO’s Definition of Safety

“The state in which the possibility of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and safety risk management.”
Annex 19 - Safety Management Systems (SMS)

- **Reactive (Past)**
 - Responds to events that have already happened, such as incidents and accidents

- **Proactive (Present)**
 - Actively seeks the identification of hazardous conditions through the analysis of the organization’s processes

- **Predictive (Future)**
 - Analyzes system processes and environment to identify potential/future problems

Source: FAA
An SMS is a management system for the management of safety by an organization. The framework includes four components and twelve elements representing the minimum requirements for SMS implementation:

1. Safety policy and objectives
2. Safety risk management
3. Safety assurance
4. Safety promotion
The Four SMS Components

Safety Policy
Establishes senior management's commitment to continually improve safety; defines the methods, processes, and organizational structure needed to meet safety goals.

Safety Risk Management
Determines the need for, and adequacy of, new or revised risk controls based on the assessment of acceptable risk.

Safety Assurance
Evaluates the continued effectiveness of implemented risk control strategies, supports the identification of new hazards.

Safety Promotion
Includes training, communication, and other actions to create a positive safety culture within all levels of the workforce.

Source: FAA
1.1 Management commitment and responsibility
1.2 Safety accountabilities
1.3 Appointment of key safety personnel
1.4 Coordination of emergency response planning
1.5 SMS documentation

1. Safety policy and objectives
2.1 Hazard identification
2.2 Safety risk assessment and mitigation

2. Safety risk management
3. Safety assurance

* 3.1 Safety performance monitoring and measurement
* 3.2 The management of change
* 3.3 Continuous improvement of the SMS
4.1 Training and education
4.2 Safety communication

4. Safety promotion
Safety management System must, at minimum:
* a) identify safety hazards;
* b) ensure the implementation of remedial action necessary to maintain agreed safety performance;
* c) provide for continuous monitoring and regular assessment of the safety performance; and
* d) aim at a continuous improvement of the overall performance of the safety management system.

A safety management system shall clearly define lines of safety accountability throughout the operator’s organization, including a direct accountability for safety on the part of senior management.
The State of Design or Manufacture shall require, as part of its State safety programme, that an organization responsible for the type design or manufacture of aircraft implement a safety management system acceptable to the State that, as a minimum:

* a) identifies safety hazards;
* b) ensures the implementation of remedial action necessary to maintain agreed safety performance;
* c) provides for continuous monitoring and regular assessment of the safety performance; and
* d) aims at a continuous improvement of the overall performance of the safety management system.

A safety management system shall clearly define lines of safety accountability throughout the organization responsible for the type design or manufacture of aircraft, including a direct accountability for safety on the part of senior management.
2014 was a year of contrasts: safe but with some tragic events*

Global jet hull loss rate is

1 ACCIDENT
4.4 MILLION FLIGHTS

IATA member jet hull loss rate is

1 ACCIDENT
8.3 MILLION FLIGHTS

For all aircraft types, there were

12 FATAL ACCIDENTS IN
38 MILLION FLIGHTS

In real terms, this means

641 FATALITIES IN
3.3 BILLION JOURNEYS

*Figures do not include MH17, which is not classified as an accident under international safety reporting standards.
ACCIDENTS WILL HAPPEN
RUSSIA AND SUB-SAHARAN AFRICA TRADE PLACES AS THE WORLD'S MOST DANGEROUS FLIGHT ZONES. AFTER RELATIVELY SAFE PASSAGE THROUGH 2009-10, RUSSIA HAS GOTTEN BAD AGAIN.

HULL LOSSES PER MILLION PAIRS OF TAKEOFFS AND LANDINGS

2011

2010

2009

2008

2007

2006

Africa
Russia & C.L.S.
Asia-Pacific
Europe
North America
JACDEC Worldmapping
Universal Safety Oversight Audit Programme

USOAP Rating*
- 26 and above
- 16 - 25 above
- 5 - 15 above
- 4 below - 4 above
- 5 - 11 below
- 12 - 19 below
- 20 - 29 below
- 30 below and more
- not yet reported

* = shown is the deviation from the global average safety performance.
The current world average grading based on the USOAP Comprehensive Systems Approach is 47.

© JACDEC, 2012
Causes of fatal aviation accidents

- Pilot error: 53%
- Mechanical failure: 20%
- Non-pilot human error: 10%
- Sabotage: 8%
- Bad weather: 11%
- Other causes: 1%
<table>
<thead>
<tr>
<th>Event</th>
<th>Fatal accidents</th>
<th>Onboard fatalities</th>
<th>Exposure (Percentage of flight time estimated for a 1.5 hour flight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi, load/unload parked, tow</td>
<td>12%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Takeoff</td>
<td>12%</td>
<td>16%</td>
<td>1%</td>
</tr>
<tr>
<td>Initial climb (flaps up)</td>
<td>8%</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>Climb</td>
<td>10%</td>
<td>13%</td>
<td>57%</td>
</tr>
<tr>
<td>Cruise</td>
<td>8%</td>
<td>16%</td>
<td>11%</td>
</tr>
<tr>
<td>Descent</td>
<td>4%</td>
<td>4%</td>
<td>12%</td>
</tr>
<tr>
<td>Initial approach</td>
<td>10%</td>
<td>12%</td>
<td>3%</td>
</tr>
<tr>
<td>Final approach</td>
<td>11%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>Landing</td>
<td>25%</td>
<td>12%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Percentage of accidents/fatalities: 20% 36%

Percentages may not sum to 100% due to numerical rounding.