Event

Michael Aizenman, Princeton University

Tuesday, September 25, 2018 16:00to17:00
Room 1140, Pav. André-Aisenstadt, CA

Emergent structures in statistical mechanics and quantum systems

Equilibrium states of classical and quantum systems can often be understood in terms of spontaneously emergent structures. Examples can be seen in: i) the emergent fermionic and spinor degrees of freedom in planar models, ii) the spontaneous organization of Ising and Potts spins into cliques, whose statistics are given by the Fortuin-Kasteleyn random cluster models, iii) the random current representation of the equilibrium Gibbs states of Ising and related field theoretic models, and iv) loop based organization of certain quantum spin chains into clusters of total S^z=0 spin. Uncovering the hidden stochastic geometric features allows insights on the model's phase structure, the nature of its correlation functions, and details of its critical behavior.
 

Follow us on

Back to top