Dan Mateescu

Mateescu

Emeritus Professor


Doctor Honoris Causa, FCASI, AFAIAA, Erskine Fellow

Ph.D. Romanian Academy of Sciences

M.Eng. University Politehnica of Bucharest


Macdonald Engineering Building, Rm 460 Map

External Website

514-398-6284 [office]

514-398-7365 [Fax]

dan.mateescu [at] mcgill.ca (Email)


Research Interests and Expertise

Primary Research Theme: Aerodynamics and Fluid Mechanics
Secondary Research Theme: Aeroelasticity, Fluid-Structure Interaction and Flow-Induced Vibrations

  • Aerodynamics of airfoils, wings and aeronautical configurations in subsonic, transonic and supersonic flows.
  • Unsteady aerodynamics of oscillating airfoils and wings in incompressible and compressible flows.
  • Aerodynamics of airfoils and wings at low Reynolds numbers for unmanned and micro-aerial vehicles.
  • Study of aerodynamic problems of unspecified geometry: adaptive and flexible airfoils and wings, jet flaps, compliant surfaces, nozzle design.
  • Development of numerical methods for aerodynamic problems based on finite volume, finite difference and hybrid spectral formulations and Lagrangian methods.
  • Study of aerodynamic interaction problems (ground effect, wing-tail interaction, wind tunnel wall effect).
  • Study of unsteady confined flows with oscillating boundaries and variable inflow velocity.
  • Steady and unsteady fluid-structure interaction and dynamics of structures subjected to unsteady flows.
  • Aeroelastic oscillations of structures (use of piezoelectric actuators and sensors to prevent structural instabilities and to detect cracks in the structure).
  • Atmospheric flight for space missions and aero-gravity assist.

Current Research Projects

  • Analysis of unsteady flows past airfoils and wings at low Reynolds numbers.
  • Study of aerodynamic interactions between wings executing pitching and flexural oscillations.
  • Study of aeroelastic oscillations of damaged aircraft structures in subsonic and supersonic flows for structural health monitoring.
  • Control of aeroelastic oscillations of aircraft structures using piezoelectric sensors and actuators.
  • Analysis of three-dimensional confined flows with variable inflow velocity and oscillating walls.
  • Study of unsteady flows past oscillating lifting systems in the proximity of the ground and in wind tunnels.

Six selected journal papers (from over 250 scientific papers and reports)

  • D. Mateescu. Theoretical solutions for unsteady compressible subsonic flows past oscillating rigid and flexible airfoils. Mathematics in Engineering Science and Aerospace (Cambridge Scientific Publication), Vol. 2, No. 1, 2011, pp. 1-27.
  • D. Mateescu and M. Abdo. Analysis of the flow past airfoils at very low Reynolds numbers. Journal of Aerospace Engineering, 2010, Vol. 224, July, pp. 757-775.
  • D. Mateescu, M. Munoz and O. Scholz. Analysis of unsteady confined viscous flows with variable inflow velocity and oscillating walls. ASME Journal of Fluids Engineering, 2010 , Vol. 132, April, 041105, pp. 1-9.
  • D. Mateescu and M. Abdo. Efficient second-order analytical solutions for airfoils in subsonic flows. Aerospace Science and Technology Journal, Vol. 9, 2005, pp. 101-115.
  • D. Mateescu. Analysis of aerodynamic problems with geometrically unspecified boundaries using an enhanced Lagrangian method. Journal of Fluids and Structures, Vol. 17, 4, Apr.-May. 2003. pp. 603-626.
  • D. Mateescu, T. Pottier, L. Perotin and S. Granger. Three-dimensional unsteady flows between oscillating eccentric cylinders by an enhanced hybrid spectral method. Journal of Fluids and Structures, Vol. 9, No. 6, 1995, pp. 671-695.

Courses

MECH 533 Subsonic Aerodynamics
MECH 537 course description not available
MECH 538 course description not available
MECH 539 Computational Aerodynamics
MECH 620 course description not available 

Back to top