Contents

INTRODUCTION .. 4
WHY STUDY WEATHER AND CLIMATE? .. 4
ABOUT OUR PROGRAM .. 5
STUDENT LIFE IN OUR DEPARTMENT .. 6

ADVISING AT MCGILL ... 6

FACULTY ADVISORS ... 7
DEPARTMENTAL (OR SCHOOL) ACADEMIC ADVISORS .. 7
PROFESSORS/LECTURERS .. 8
PEER ADVISORS ... 8

STUDENT SERVICES – DOWNTOWN CAMPUS ... 9

CAMPUS LIFE AND ENGAGEMENT .. 9
COUNSELLING SERVICE .. 9
CAREER PLANNING SERVICE (CAPS) .. 10
SCHOLARSHIPS AND STUDENT (FINANCIAL) AID OFFICE .. 10

PROGRAMS .. 11

MINOR ATMOSPHERIC SCIENCE (18 CREDITS) .. 11
LIBERAL PROGRAM - CORE SCIENCE COMPONENT ATMOSPHERIC AND OCEANIC SCIENCES (48 CREDITS) ... 12

MAJOR ATMOSPHERIC SCIENCE (62 CREDITS) .. 13

Weather Analysis and Forecasting Stream (17 credits) .. 14
Climate Science Stream (15 credits) .. 15
Atmospheric Chemistry and Physics Stream (15 credits) ... 15
General Stream (17 credits) .. 15

MAJOR ATMOSPHERIC SCIENCE AND PHYSICS (69 CREDITS) 16

HONOURS ATMOSPHERIC SCIENCE (74 CREDITS) .. 17

Weather Analysis and Forecasting Stream (23 credits) .. 19
Climate Science Stream (22 credits) .. 19
Atmospheric Chemistry and Physics Stream (21 credits) ... 20
General Stream (22 credits) .. 21

DIPLOMA IN METEOROLOGY (30 CREDITS) .. 22

ATMOSPHERIC AND OCEANIC SCIENCES (ATOC) RELATED PROGRAMS 23

A) Internship Year in Science (IYS) .. 23
B) Earth System Science Interdepartmental Major .. 23

DEPARTMENTAL PRIZES .. 23

J.S. MARSHALL PRIZE .. 23

SAMPLE SCHEDULE: MAJOR PROGRAM .. 24

FACULTY MEMBERS .. 25
ADMINISTRATIVE & TECHNICAL STAFF..27
WHERE IS OUR DEPARTMENT ON CAMPUS?..28
INTRODUCTION

The history of meteorology at McGill dates back to the middle of the nineteenth century when the McGill Weather Observatory was established. It has made continuous measurements of meteorological variables for over a century. Following the Second World War, two active atmospheric sciences research groups emerged at McGill. Dr. J. Stewart Marshall led a radar meteorology group in the Physics Department, and Dr. F. Kenneth Hare directed an Arctic meteorology program in the Department of Geography. These two groups united in 1959 to form the Department of Meteorology. Since its creation, the Department has been a Canadian and international leader in the training of many distinguished atmospheric scientists. McGill has awarded over 400 M.Sc. degrees and more than 200 Ph.D. degrees in this field.

The history of oceanographic research at McGill also dates from the 1850's, and was brought into focus in 1963 with the establishment of the Marine Sciences Centre (later the Institute of Oceanography). Under the directorship of Dr. Max J. Dunbar, the Institute offered M.Sc. and Ph.D. degree programs in the areas of physical, geological and biological oceanography.

In 1987 the Institute was closed and a Graduate Program in Oceanography was established to coordinate teaching and research in the marine sciences carried out by faculty members in the Departments of Meteorology, Earth and Planetary Sciences and Biology.

In 1992, the Department of Meteorology became the Department of Atmospheric and Oceanic Sciences (AOS) to demonstrate the broad range of research activities in the atmospheric sciences, physical oceanography and climate studies.

WHY STUDY WEATHER AND CLIMATE?

The undergraduate programs in Atmospheric Science provide students with a background to help solve the challenging problems of short- and long-range weather and climate predictions, as well as global warming and air quality issues. Within this framework, the students will learn about specific phenomena such as severe weather, climate change, the ozone hole, and air-sea interactions.

At the Department of Atmospheric and Oceanic Sciences (AOS), we continue to strengthen our educational leadership in teaching, research, and service on the Canadian and international scene.

A degree in Atmospheric Science can lead to a professional career in government service or private industry. The meteorological service of Canada has traditionally been the main employer of graduating students, but certain provincial governments and environmental consulting and engineering firms also employ graduates trained in atmospheric science.
Graduate students in the field move on to successful careers, such as environmental research and consulting, weather and climate forecasting/analysis, and teaching at the college and university level.

Our research areas include:

- Atmospheric Chemistry
- Geophysical Fluid Dynamics
- Cloud Physics and Dynamics
- Atmospheric Radiation
- Mesoscale Meteorology
- Physical Meteorology
- Sea Ice and Arctic Climate
- Ocean Dynamics
- Remote Sensing
- Physical Oceanography
- Ocean Biogeochemistry
- Stratospheric Dynamics and Chemistry
- Dynamical Meteorology and Climatology
- Global Climate Change and Variability
- Radar Meteorology
- Synoptic Meteorology
- Air-Sea Interactions

ABOUT OUR PROGRAM

At the undergraduate level, the Department offers a broad range of courses and degree programs. The study of atmospheric science is based largely on physics and applied mathematics. Consequently, all required courses, except those at the introductory level, generally have pre-requisites or co-requisites in physics, mathematics, and atmospheric science. One of the goals of the discipline is to develop the understanding necessary to improve our ability to predict the weather, but atmospheric science is more than weather forecasting. Another important area of study focuses on quantifying the possible fluctuations observed in global climate caused by the changing chemical composition of the atmosphere.

Atmospheric science combines observation and theoretical models of its complex subject to analyze the motion and composition of the air, its thermodynamic behaviour, and its interaction with radiation and with the solid or liquid surface beneath it. The atmosphere may be studied as a large ocean of gas by the methods of fluid mechanics: winds, circulation patterns, turbulence, and energy and momentum exchanges are examples of ideas employed in this approach. Alternatively, we can also study the physics of the atmosphere: how water condenses in the air, how droplets can make rain, how sunlight warms the ground and the ground warms the air above through radiation and convection, and also how the atmosphere and ocean interact to shape the weather and climate. A comprehensive understanding requires undertaking both types of studies and our curriculum reflects this.

The Department offers four main programs in Atmospheric Science: Minor, Major, Honours, and Joint Major Atmospheric Science and Physics. The Department also offers a Liberal program and a special one-year Diploma program to B.Sc. graduates.

The Major program satisfies the requirements for a professional career as a meteorologist and equips students to undertake post-graduate study in meteorology, atmospheric science, and related sciences such as physical oceanography at any of the leading universities.

The Honours program, with courses similar to those in the Major program, provides students the opportunity to specialize their interests further by taking on advanced optional courses. Students who have demonstrated high academic standing with a minimum GPA of 3.30 in all courses, after completion of the U1 year of the Major program are permitted to enroll in the Honours program. Students having
completed their U1 year in another program may be admitted to the Honours program on the recommendation of the Department.

STUDENT LIFE IN OUR DEPARTMENT

Undergraduate students benefit from our Department's small size. Classes are generally small and professors are approachable. Since there are approximately 25 undergraduate students in the Department, you will know everyone in your year and have ample opportunity to meet others at the various social events that are held outside McGill. Throughout the year, tours and trips to various locations are held, including Weather Channel (MétéoMedia) Station, Canadian Meteorological Centre, Quebec Weather Centre, and McGill's J. Stewart Marshall Observatory.

All undergraduate students are part of the Atmospheric and Oceanic Sciences Society of Undergraduates at McGill (AOSSUM). The nine elected students of AOSSUM council are responsible for organizing social activities of the undergraduates.

ADVISING AT McGill

McGill offers students access to a variety of advisors, mentors and counselors with different skills, expertise, and levels of authority. Your active participation in the advising process is essential for accessing the full range of academic opportunities during your studies. You are encouraged to be proactive in seeking meetings with various advisors, professors, and counsellors to ensure you receive the advice you need to formulate a personal plan of study and meet your academic goals.

Advisors and counsellors will assist you throughout your undergraduate studies. While advisors are there to provide you with guidance, you are ultimately responsible for meeting your degree or diploma requirements. It is your responsibility to learn the rules and regulations of the University, your faculty, and your program.

The following is a brief description of the typical types of advisors available for students:
Faculty Advisors

Each faculty at McGill has its own student affairs office with an advisor specific to that faculty. See section 1.11 (page 118) of the Undergraduate Programs and Courses Calendar 2018–2019 on the https://www.mcgill.ca/study/2018-2019/ for a detailed description. Faculty advisors are available throughout the calendar year and assist students in various areas. They are experts in the rules, regulations, and requirements pertaining to specific degree programs. They

- Provide ongoing advice and guidance on program selection, course registration, credit load, deadlines, and majors and minors.
- Offer help managing academic situations during periods of personal, financial, or medical difficulties, by working with you to identify various possibilities and strategies for making informed decisions.
- Communicate with other advisors within the University and, with your permission, serve as a direct link to other University resources.
- May assist you in planning for, and applying to, university exchange programs and may also provide, or direct you to, information about scholarships, awards, research fellowships, and opportunities within a given field.

To schedule an appointment with an academic advisor at the Faculty of Science, please contact:

Science Office for Undergraduate Student Advising (SOUA)

Address
McGill University
853 Sherbrooke Street West
Dawson Hall, Room 405
Montreal, Quebec H3A 2T6 Canada

Telephone
(514) 398–5442

Email (New students)
newstudentadvising.science@mcgill.ca

Email
advisor.science@mcgill.ca

Website
www.mcgill.ca/science/student

Opening hours
Monday to Friday:
9:00 am – 4:30 pm
Except Wednesdays: 10:00 am – 4:30 pm

Departmental (or School) Academic Advisors

Each department at McGill assigns its own Departmental Academic Adviser (e.g., Undergraduate/Graduate Program Director) and are normally located closer to the offices of professors in your program and may only be available during specific times of the year (e.g., prior to registration for the next session or during the add/drop period) or during regularly scheduled office hours. If you are completing a major or minor in more than one unit, you will likely have an advisor in each unit.

You are strongly encouraged to meet with your Departmental Academic Advisor throughout the academic year and certainly before your final year. See section 1.11 (page 118) and 11.4.4 (page 1436) of the Undergraduate Programs and Courses Calendar 2018–2019 on the https://www.mcgill.ca/study/2018-2019/) for more details.
The Departmental Academic Advisor may be either a professor or a member of the administrative staff who will:

- Guide you through course selection to meet the subject matter requirements of the major or minor.
- Consider requests for course equivalencies, recommend prior approval for inter-university transfer credits, or explain the rationale for the design of a department/school program.
- May assist you in planning for, and applying to, university exchange programs, and may also provide, or direct you to, information about scholarships, awards, research fellowships, and opportunities within a given field.
- Provide support, guidance, and appropriate referrals if you experience academic or personal difficulties while studying at McGill.
- Be responsible for confirming that you have met major or minor program requirements for graduation.

To schedule an appointment with the Undergraduate Program Director at the Department of Atmospheric and Oceanic Sciences, please contact:

Dr. Timothy Merlis, Undergraduate Program Director

Telephone
(514) 398–3140
Fax
(514) 398–6115
Email
timothy.merlis@mcgill.ca

Professors/Lecturers

Sometimes Professors/Lecturers may act in a voluntary capacity to mentor you on a personal level as you progress through your program:

- May provide advice on the latest developments in a specific field of study and make recommendations on related advanced readings.
- May discuss opportunities for a student research experience and help you connect with a professor or lecturer who best suits your interests or learning style.

Peer Advisors

These are students who have been trained by Faculty Advisors or Department/School Academic Advisors to offer drop-in hours for advice on University life and guide you through other University resources. Peer advisors are only available in some faculties or departments.
STUDENT SERVICES – DOWNTOWN CAMPUS

Unless otherwise indicated, all Student Services on the Downtown Campus are located in the William and Mary Brown Student Services Building, 3600 McTavish Street, Montreal, Quebec, H3A 1Y2. Below is a list of some services available in that building. For further information, consult: https://www.mcgill.ca/studentservices/

Campus life and Engagement

To ensure that your transition into the academic and social life at McGill University is as smooth as possible, the Campus life and Engagement office helps newly admitted students prepare for the course registration period on Minerva. To maximize this help, you are strongly encouraged to read the sections in the Welcome to McGill book (www.mcgill.ca/newstudents) applicable to your faculty. The FYO staff is always available to provide advice and referrals to the many support mechanisms at McGill.

Address
3600 McTavish Street
Brown Student Services Building, suite 3100
Montreal, Quebec H3A 1Y2
Canada

Telephone
(514) 398–6913

Email
firstyear@mcgill.ca

Website
https://www.mcgill.ca/firstyear/

Counselling Service

The McGill Counselling Service is to assist and support students in the successful management of the wide range of psychological, academic, vocational and life-skill issues they may encounter from first-year through graduate school.
For some a brief intervention, supportive counselling or answers to worrying questions may relieve their concern, while for others the achievement of personal goals will lie with ongoing therapy. Referral to other student services or outside the University may be made if individual concerns require specialized assistance.
Other than modest cost-recovery charges for vocational testing material, all full- and part-time students who have paid student service fees are eligible for services free of charge.

Address
3600 McTavish Street
Brown Student Services Building, suite 4200
Montreal, Quebec H3A 1Y2 Canada

Telephone
(514) 398–3601

Email
counselling.service@mcgill.ca

Website
https://www.mcgill.ca/counselling/
Career Planning Service (CAPS)

The Career Planning Service (CAPS) is principally funded by McGill student services fees and receives support from corporate and alumni sponsorships. CAPS assists students in their career development and search for permanent, part-time, and summer jobs, as well as internships, by providing workshops, individual advising, a comprehensive job posting service, and an extensive Career Resource Centre. We serve all full-time students, including graduates, up to one year after the end of their studies.

Employers come to CAPS to look for talented students and graduates with skills that they need for their businesses and organizations. CAPS can provide employers with many services to help them find the best students for their employment needs. Our recruitment services are provided to employers free of charge and are offered year round.

Address
3600 McTavish Street
Brown Student Services Building, suite 2200
Montreal, Quebec H3A 1Y2
Canada

Telephone
(514) 398–3304

Email
careers.caps@mcgill.ca

Website
https://www.mcgill.ca/caps/

Scholarships and Student (Financial) Aid Office

McGill offers financial aid in the form of loans (money that needs to eventually be repaid) and bursaries (money that does not need to be repaid) to eligible students who demonstrate financial need. The assistance provided by the Scholarships and Student (Financial) Aid Office is meant to supplement other sources of core funding such as government aid, parental support, part-time work and, in some cases, a student line of credit from the bank. Their mission is to promote accessibility, support retention and encourage scholarship through financial awards for needy and deserving students in any degree program from any geographic origin.

McGill University has a comprehensive scholarship and award program to recognize honour and encourage the outstanding achievements of its undergraduate students at different levels of study. For a comprehensive list of all scholarships and awards with detailed descriptions and eligibility requirements, please consult the Undergraduate Scholarships and Awards Calendar: https://www.mcgill.ca/studentawards/undergraduate-scholarships-and-awards

Address
3600 McTavish Street
Brown Student Services Building, suite 3200
Montreal, Quebec H3A 1Y2 Canada

Telephone
(514) 398–6013

Emails
scholarships@mcgill.ca; student.aid@mcgill.ca

Website
www.mcgill.ca/studentaid

Opening Hours
Monday to Friday: 10-00 am – 4:30 pm
PROGRAMS

The department offers following programs at the undergraduate level:
Minor Atmospheric Science (18 credits)
Liberal Program - Core Science Component Atmospheric and Oceanic Sciences (48 credits)
Major Atmospheric Science (62 credits)
Major Atmospheric Science and Physics (69 credits)
Honours Atmospheric Science (74 credits)

A Diploma in Meteorology (30 credits) is also offered. Atmospheric and Oceanic Sciences (ATOC) Related Programs are also described in this section.

Minor Atmospheric Science (18 credits)

The Minor may be taken in conjunction with any program in the Faculty of Science.

required Courses (3 credits)
ATOC 214 (3) Introduction: Physics of the Atmosphere

Complementary Courses (15 credits)
3-6 credits selected from:
ATOC 215 (3) Oceans, Weather and Climate
ATOC 219* (3) Introduction to Atmospheric Chemistry
CHEM 219* (3) Introduction to Atmospheric Chemistry
* Note: Students may select ATOC 219 or CHEM 219 but not both.

9-12 credits selected from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 312 (3) Rotating Fluid Dynamics
ATOC 315 (3) Thermodynamics and Convection
ATOC 357 (3) Atmospheric and Oceanic Science Laboratory
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 515 (3) Turbulence in Atmosphere and Oceans
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 531 (3) Dynamics of Current Climates
ATOC 540 (3) Synoptic Meteorology 1
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
Liberal Program - Core Science Component Atmospheric and Oceanic Sciences (48 credits)

45-48 credits

Required Courses (21 credits)
ATOC 214 (3) Introduction: Physics of the Atmosphere
ATOC 312 (3) Rotating Fluid Dynamics
ATOC 315 (3) Thermodynamics and Convection
MATH 222 (3) Calculus 3
MATH 223 (3) Linear Algebra
MATH 314 (3) Advanced Calculus
MATH 315 (3) Ordinary Differential Equations

Complementary Courses (27 credits)
24-27 credits:

Note: All students are encouraged to consult with the Undergraduate Adviser for help selecting from among the complementary courses.

3 credits selected from:
ATOC 215 (3) Oceans, Weather and Climate
ATOC 219 (3) Introduction to Atmospheric Chemistry

3 credits selected from:
ATOC 357 (3) Atmospheric and Oceanic Science Laboratory
PHYS 257 (3) Experimental Methods 1

3 credits selected from:
PHYS 230 (3) Dynamics of Simple Systems
PHYS 251 (3) Honours Classical Mechanics 1

3 credits selected from:
PHYS 232 (3) Heat and Waves
PHYS 253 (3) Thermal Physics

12-16 credits selected from (at least 6 of which must be ATOC):
ATOC 309 (3) Weather Radars and Satellites
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 515 (3) Turbulence in Atmosphere and Oceans
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 531 (3) Dynamics of Current Climates
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 546 (1) Current Weather Discussion
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
COMP 208 (3) Computers in Engineering
MATH 203 (3) Principles of Statistics 1
MATH 319 (3) Introduction to Partial Differential Equations
PHYS 333 (3) Thermal and Statistical Physics
PHYS 340 (3) Majors Electricity and Magnetism

Major Atmospheric Science (62 credits)

Required Courses (24 credits)
ATOC 214 (3) Introduction: Physics of the Atmosphere
ATOC 312 (3) Rotating Fluid Dynamics
ATOC 315 (3) Thermodynamics and Convection
COMP 208 (3) Computers in Engineering
MATH 222 (3) Calculus 3
MATH 223 (3) Linear Algebra
MATH 314 (3) Advanced Calculus
MATH 315 (3) Ordinary Differential Equations

Complementary Courses (38 credits)
36-38 credits

Note: Students are required to fulfill the core complementary requirements along with one of the four streams listed below. In cases of overlap, each course can only be used once toward the satisfaction of the core complementary courses or the chosen stream.

Core (21 credits)

3-6 credits selected from:
ATOC 215 (3) Oceans, Weather and Climate
ATOC 219* (3) Introduction to Atmospheric Chemistry
CHEM 219* (3) Introduction to Atmospheric Chemistry
* Note: students may select ATOC 219 or CHEM 219 but not both.

3 credits selected from:
ATOC 357 (3) Atmospheric and Oceanic Science Laboratory
PHYS 257 (3) Experimental Methods 1

3 credits selected from:
PHYS 230 (3) Dynamics of Simple Systems
PHYS 251 (3) Honours Classical Mechanics 1

3 credits selected from:
PHYS 232 (3) Heat and Waves
PHYS 253 (3) Thermal Physics

6-9 credits selected from:
CHEM 213 (3) Introductory Physical Chemistry 1: Thermodynamics
CHEM 273 (3) Introductory Physical Chemistry 2: Kinetics and Methods
CHEM 367 (3) Instrumental Analysis 1
CHEM 575 (3) Chemical Kinetics
MATH 203* (3) Principles of Statistics 1
MATH 317 (3) Numerical Analysis
MATH 319 (3) Introduction to Partial Differential Equations
MATH 323 (3) Probability
MATH 324* (3) Statistics
PHYS 333 (3) Thermal and Statistical Physics
PHYS 340** (3) Majors Electricity and Magnetism
PHYS 342*** (3) Majors Electromagnetic Waves
PHYS 350** (3) Honours Electricity and Magnetism
PHYS 352*** (3) Honours Electromagnetic Waves
* Students cannot receive credit for both MATH 203 and MATH 324.
** Students cannot receive credit for both PHYS 340 and PHYS 350.
*** Students cannot receive credit for both PHYS 342 and PHYS 352.

Weather Analysis and Forecasting Stream (17 credits)
(16-17 credits)
13 credits from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 521 (3) Cloud Physics
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 546 (1) Current Weather Discussion
3-4 credits selected from:
ATOC 404+ (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 531 (3) Dynamics of Current Climates
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
GEOG 322 (3) Environmental Hydrology
GEOG 372 (3) Running Water Environments
MATH 555++ (4) Fluid Dynamics
PHYS 404+ (3) Climate Physics
PHYS 432++ (3) Physics of Fluids
+ Students cannot receive credit for both ATOC 404 and PHYS 404.
++ Students cannot receive credit for both PHYS 432 or MATH 555.
Climate Science Stream (15 credits)

6 credits from:
ATOC 404+ (3) Climate Physics
ATOC 531 (3) Dynamics of Current Climates
PHYS 404+ (3) Climate Physics
+ Students cannot receive credit for both ATOC 404 and PHYS 404.

9 credits (at least 6 of which must be ATOC) selected from:
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 540 (3) Synoptic Meteorology 1
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
EPSC 513 (3) Climate and the Carbon Cycle
EPSC 542 (3) Chemical Oceanography
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
GEOG 322 (3) Environmental Hydrology
GEOG 372 (3) Running Water Environments
MATH 323 (3) Probability

Atmospheric Chemistry and Physics Stream (15 credits)

15 credits from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 404+ (3) Climate Physics
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
CHEM 213 (3) Introductory Physical Chemistry 1: Thermodynamics
CHEM 273 (3) Introductory Physical Chemistry 2: Kinetics and Methods
PHYS 404+ (3) Climate Physics
+ Students cannot receive credit for both ATOC 404 and PHYS 404.

General Stream (17 credits)

15-17 credits (at least 12 of which must be ATOC) selected from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 404+ (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 531 (3) Dynamics of Current Climates
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 546 (1) Current Weather Discussion
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
CHEM 367 (3) Instrumental Analysis 1
CHEM 575 (3) Chemical Kinetics
EPSC 513 (3) Climate and the Carbon Cycle
EPSC 542 (3) Chemical Oceanography
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
GEOG 322 (3) Environmental Hydrology
GEOG 372 (3) Running Water Environments
MATH 555++ (4) Fluid Dynamics
PHYS 404+ (3) Climate Physics
PHYS 432++ (3) Physics of Fluids
+ Students cannot receive credit for ATOC 404 and PHYS 404.
++ Students cannot receive credit for both PHYS 432 or MATH 555.

Major Atmospheric Science and Physics (69 credits)

This Major provides a solid basis for postgraduate study in meteorology, atmospheric physics, or related fields, as well as the necessary preparation for embarking on a professional career as a meteorologist directly after the B.Sc.

The program is jointly administered by the Department of Physics and the Department of Atmospheric and Oceanic Sciences. Students should consult undergraduate advisers in both departments.

Required Courses (57 credits)

ATOC 214 (3) Introduction: Physics of the Atmosphere
ATOC 215 (3) Oceans, Weather and Climate
ATOC 309 (3) Weather Radars and Satellites
ATOC 312 (3) Rotating Fluid Dynamics
ATOC 315 (3) Thermodynamics and Convection
MATH 222 (3) Calculus 3
MATH 223 (3) Linear Algebra
MATH 314 (3) Advanced Calculus
MATH 315 (3) Ordinary Differential Equations
PHYS 230 (3) Dynamics of Simple Systems
PHYS 232 (3) Heat and Waves
PHYS 241 (3) Signal Processing
PHYS 257 (3) Experimental Methods 1
PHYS 258 (3) Experimental Methods 2
PHYS 331 (3) Topics in Classical Mechanics
PHYS 333 (3) Thermal and Statistical Physics
PHYS 340 (3) Majors Electricity and Magnetism
PHYS 342 (3) Majors Electromagnetic Waves
PHYS 446 (3) Majors Quantum Physics

Complementary Course (12 credits)

At least 6 of the 12 complementary credits must come from ATOC courses
ATOC 357 (3) Atmospheric and Oceanic Science Laboratory
ATOC 404* (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 515 (3) Turbulence in Atmosphere and Oceans
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 531 (3) Dynamics of Current Climates
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
PHYS 339 (3) Measurements Laboratory in General Physics
PHYS 404* (3) Climate Physics
PHYS 432 (3) Physics of Fluids
PHYS 434 (3) Optics
PHYS 439 (3) Majors Laboratory in Modern Physics
PHYS 449 (3) Majors Research Project

* Students cannot take both ATOC 404 and PHYS 404.

Honours Atmospheric Science (74 credits)

72-74 credits

Students can be admitted to the Honours program after completion of the U1 year of the Major in Atmospheric Science program with a minimum GPA of 3.30. Students having completed a U1 year in a different program with high standing may be admitted to the Honours program on the recommendation of that department.

A minimum GPA of 3.30 in the Honours program courses (taken as a whole) is required to remain in the program. A CGPA of 3.30 on the total program is also required to graduate with honours.
Required Courses (27 credits)
ATOC 214 (3) Introduction: Physics of the Atmosphere
ATOC 312 (3) Rotating Fluid Dynamics
ATOC 315 (3) Thermodynamics and Convection
ATOC 480 (3) Honours Research Project
COMP 208 (3) Computers in Engineering
MATH 222 (3) Calculus 3
MATH 223 (3) Linear Algebra
MATH 314 (3) Advanced Calculus
MATH 315 (3) Ordinary Differential Equations

Complementary Courses (47 credits)
45-47 credits
Note: Students are required to fulfill the core complementary requirements along with one of the four streams listed below. In cases of overlap, each course can only be used once toward the satisfaction of the core complementary courses or the chosen stream.

Core (24 credits)
3-6 credits selected from:
ATOC 215 (3) Oceans, Weather and Climate
ATOC 219* (3) Introduction to Atmospheric Chemistry
CHEM 219* (3) Introduction to Atmospheric Chemistry
* Students may take ATOC 219 or CHEM 219 but not both.
3 credits selected from:
ATOC 357 (3) Atmospheric and Oceanic Science Laboratory
PHYS 257 (3) Experimental Methods 1
3 credits selected from:
PHYS 230 (3) Dynamics of Simple Systems
PHYS 251 (3) Honours Classical Mechanics 1
3 credits selected from:
PHYS 232 (3) Heat and Waves
PHYS 253 (3) Thermal Physics
3 credits selected from:
CHEM 213 (3) Introductory Physical Chemistry 1: Thermodynamics
MATH 319 (3) Introduction to Partial Differential Equations
6-9 credits selected from:
CHEM 273 (3) Introductory Physical Chemistry 2: Kinetics and Methods
CHEM 367 (3) Instrumental Analysis 1
CHEM 575 (3) Chemical Kinetics
MATH 203* (3) Principles of Statistics 1
MATH 317 (3) Numerical Analysis
MATH 319 (3) Introduction to Partial Differential Equations
MATH 323 (3) Probability
MATH 324 (3) Statistics
PHYS 333 (3) Thermal and Statistical Physics
PHYS 340** (3) Majors Electricity and Magnetism
PHYS 342*** (3) Majors Electromagnetic Waves
PHYS 350** (3) Honours Electricity and Magnetism
PHYS 352*** (3) Honours Electromagnetic Waves
* Students cannot receive credit for both MATH 203 and MATH 324.
** Students cannot receive credit for both PHYS 340 and PHYS 350.
*** Students cannot receive credit for both PHYS 342 and PHYS 352.

Weather Analysis and Forecasting Stream (23 credits)

22-23 credits
16 credits from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 521 (3) Cloud Physics
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 546 (1) Current Weather Discussion
6-7 credits selected from:
ATOC 404+ (3) Climate Physics
ATOC 513 (3) Waves and Stability
ATOC 515 (3) Turbulence in Atmosphere and Oceans
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 531 (3) Dynamics of Current Climates
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
MATH 555++ (4) Fluid Dynamics
PHYS 404+ (3) Climate Physics
PHYS 432++ (3) Physics of Fluids
+ Students cannot receive credit for both ATOC 404 and PHYS 404.
++ Students cannot receive credit for both PHYS 432 or MATH 555.

Climate Science Stream (22 credits)

21-22 credits
15 credits from:
Undergraduate handbook

ATOC 404+ (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 531 (3) Dynamics of Current Climates
MATH 323 (3) Probability
MATH 324 (3) Statistics
PHYS 404+ (3) Climate Physics

+ Students cannot receive credit for both ATOC 404 and PHYS 404.

ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 531 (3) Dynamics of Current Climates
PHYS 404+ (3) Climate Physics

Students cannot receive credit for both MATH 203 and MATH 324.

6-7 credits (3 of which must be ATOC) selected from:
ATOC 513 (3) Waves and Stability
ATOC 515 (3) Turbulence in Atmosphere and Oceans
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 540 (3) Synoptic Meteorology 1
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
EPSC 513 (3) Climate and the Carbon Cycle
EPSC 542 (3) Chemical Oceanography
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
MATH 423 (3) Regression and Analysis of Variance
MATH 555++ (4) Fluid Dynamics
PHYS 432++ (3) Physics of Fluids

+ Students cannot receive credit for both PHYS 432 or MATH 555.

Atmospheric Chemistry and Physics Stream (21 credits)

15 credits from:
ATOC 309 (3) Weather Radars and Satellites
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
CHEM 213 (3) Introductory Physical Chemistry 1: Thermodynamics
CHEM 273 (3) Introductory Physical Chemistry 2: Kinetics and Methods

6 credits selected from:
ATOC 404+ (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 540 (3) Synoptic Meteorology 1
ATOC 558 (3) Numerical Methods and Laboratory
CHEM 367 (3) Instrumental Analysis 1
CHEM 575 (3) Chemical Kinetics
EPSC 513 (3) Climate and the Carbon Cycle
EPSC 542 (3) Chemical Oceanography
MATH 423 (3) Regression and Analysis of Variance
PHYS 404+ (3) Climate Physics
+ Student cannot receive credit for both ATOC 404 and PHYS 404.

General Stream (22 credits)

21-22 credits (at least 15 of which must be ATOC) selected from:

ATOC 309 (3) Weather Radars and Satellites
ATOC 404+ (3) Climate Physics
ATOC 512 (3) Atmospheric and Oceanic Dynamics
ATOC 513 (3) Waves and Stability
ATOC 519 (3) Advances in Chemistry of Atmosphere
ATOC 521 (3) Cloud Physics
ATOC 525 (3) Atmospheric Radiation
ATOC 530 (3) Paleoclimate Dynamics
ATOC 531 (3) Dynamics of Current Climates
ATOC 540 (3) Synoptic Meteorology 1
ATOC 541 (3) Synoptic Meteorology 2
ATOC 546 (1) Current Weather Discussion
ATOC 558 (3) Numerical Methods and Laboratory
ATOC 568 (3) Ocean Physics
CHEM 367 (3) Instrumental Analysis 1
CHEM 575 (3) Chemical Kinetics
EPSC 513 (3) Climate and the Carbon Cycle
EPSC 542 (3) Chemical Oceanography
ESYS 300 (3) Investigating the Earth System
ESYS 301 (3) Earth System Modelling
MATH 423 (3) Regression and Analysis of Variance
MATH 555++ (4) Fluid Dynamics
PHYS 404+ (3) Climate Physics
PHYS 432++ (3) Physics of Fluids
+ Students cannot receive credit for both ATOC 404 and PHYS 404.
++ Students cannot receive credit for both PHYS 432 or MATH 555.
Diploma in Meteorology (30 credits)

The Department offers an intensive, one-year program in theoretical and applied meteorology to B.Sc. or B.Eng. graduates of suitable standing in physics, applied mathematics or other appropriate disciplines, leading to a Diploma in Meteorology.

The program is designed for students with little or no previous background in meteorology who wish to direct their experience to atmospheric or environmental applications, or who need to fulfil academic prerequisites in meteorology to qualify for employment. For further information, consult the Administrative Officer (Burnside Hall, Room 946).

An exemption of up to 6 credits may be allowed for courses already taken. Students granted such exemptions are required to add complementary courses from an approved list to maintain a total credit count of 30 completed at McGill.

Required Courses (15 credits)

- ATOC 512 (3) Atmospheric and Oceanic Dynamics
- ATOC 521 (3) Cloud Physics
- ATOC 531 (3) Dynamics of Current Climates
- ATOC 540 (3) Synoptic Meteorology 1
- ATOC 541 (3) Synoptic Meteorology 2

Complementary Courses (15 credits)

- **6 credits selected from the courses below:**
 - ATOC 309 (3) Weather Radars and Satellites
 - ATOC 315 (3) Thermodynamics and Convection
 - ATOC 519* (3) Advances in Chemistry of Atmosphere
 - CHEM 519* (3) Advances in Chemistry of Atmosphere
 - *Students take either ATOC 519 or CHEM 519.

- **9 credits ordinarily selected from:**
 - ATOC 513 (3) Waves and Stability
 - ATOC 515 (3) Turbulence in Atmosphere and Oceans
 - ATOC 525 (3) Atmospheric Radiation
 - ATOC 530 (3) Paleoclimate Dynamics
 - MATH 317 (3) Numerical Analysis
 - MATH 319 (3) Introduction to Partial Differential Equations
 - MATH 555* (4) Fluid Dynamics
 - PHYS 331 (3) Topics in Classical Mechanics
 - PHYS 340 (3) Majors Electricity and Magnetism
 - PHYS 342 (3) Majors Electromagnetic Waves
 - PHYS 432* (3) Physics of Fluids
 - *Students take either PHYS 432 or MATH 555.
Atmospheric and Oceanic Sciences (ATOC) Related Programs

A) Internship Year in Science (IYS)
IYS is a pregraduate work experience program available to eligible students and normally taken between their U2 and U3 years. For more information, see section 11.12: Science Internships and Field Studies. The following programs are also available with an internship component:
- Major in Atmospheric Science
- Honours in Atmospheric Science

B) Earth System Science Interdepartmental Major
This program is offered jointly by the Department of Atmospheric and Oceanic Sciences, Earth and Planetary Sciences, and Geography. Students in the Department of Atmospheric and Oceanic Sciences interested in this program should contact Professor Bruno Tremblay (bruno.tremblay@mcgill.ca). For more information, see eCalendar section 11.13.11: Earth System Science (ESYS).

DEPARTMENTAL PRIZES

Currently, our Department offers the following awards, prizes, and fellowships to its undergraduate students in recognition of their strong academic records. All graduating students are considered the Department’s Awards Committee.

J.S. Marshall Prize

It was established in 1995 by alumni contributions to the Department, in memory of Professor J. Stewart Marshall. The Marshall Prize is awarded annually or at the discretion of the Department, to the student graduating from the undergraduate program who holds the most outstanding academic record. The award is valued at $300.

For information on all awards, prizes and scholarships offered by the university, please see section 1.8 (page 112) of the Undergraduate Programs and Courses Calendar 2018–2019 https://www.mcgill.ca/study/2018-2019/.
Sample Schedule: Major Program

The following sample schedule has course numbers for 42 of the 62 credits. Complementary Courses are structured into the following Streams: (i) Weather Analysis and Forecasting, (ii) Climate Science, (iii) Atmospheric Chemistry and Physics, or (iv) General. See course titles in previous section.

<table>
<thead>
<tr>
<th></th>
<th>Fall Semester</th>
<th>Winter Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>ATOC 214</td>
<td>ATOC 215 or ATOC 219</td>
</tr>
<tr>
<td></td>
<td>COMP 208</td>
<td>MATH 314</td>
</tr>
<tr>
<td></td>
<td>MATH 222</td>
<td>ATOC 357*</td>
</tr>
<tr>
<td></td>
<td>PHYS 230*</td>
<td>PHYS 232*</td>
</tr>
<tr>
<td>U2</td>
<td>ATOC 315</td>
<td>ATOC 309*</td>
</tr>
<tr>
<td></td>
<td>MATH 223</td>
<td>MATH 315</td>
</tr>
<tr>
<td></td>
<td>Complementary Courses</td>
<td>Complementary Courses</td>
</tr>
<tr>
<td>U3</td>
<td>ATOC 312</td>
<td>Complementary Courses</td>
</tr>
<tr>
<td></td>
<td>Complementary Courses</td>
<td></td>
</tr>
</tbody>
</table>

* Alternatives are available for these courses marked.
Faculty Members

<table>
<thead>
<tr>
<th>Faculty Professors</th>
</tr>
</thead>
</table>
| **Parisa Ariya**
Professor, Ph.D. (York)
(Joint with Chemistry; James McGill Professor) |
| **Peter Bartello**
Professor, Ph.D. (McGill)
(Joint with Mathematics and Statistics) |
| **Carolina Dufour**
Assistant Professor, Ph.D. (Grenoble) |
| **Frédéric Fabry**
Associate Professor, Ph.D. (McGill)
(Joint with McGill School of Environment; Director, J. Stewart Marshall Radar Observatory) |
| **John R. Gyakum**
Professor, Ph.D. (M.I.T.)
(Chair; Canada Steamship Lines Professor) |
| **Yi Huang**
Associate Professor, Ph.D. (Princeton) |
| **Daniel Kirshbaum**
Associate Professor, Ph.D. (U. Washington)
(Graduate Program Director) |
| **Timothy Merlis**
Associate Professor, Ph.D. (Caltech)
(Canada Research Chair, Tier 2; Undergraduate Program Director) |
| **Thomas Preston**
Assistant Professor, Ph.D. (U.B.C.)
(Joint with Chemistry) |
| **David N. Straub**
Associate Professor, Ph.D. (U. Washington) |
| **Bruno Tremblay**
Associate Professor, Ph.D. (McGill) |
| **Man K. (Peter) Yau**
Professor, Ph.D. (M.I.T.)
(NSERC/Hydro-Quebec Industrial Research Chair) |
| **Andreas Zuend**
Assistant Professor, Ph.D. (ETH Zurich) |
Faculty Members (con’t)

<table>
<thead>
<tr>
<th>Adjunct Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilbert Brunet</td>
</tr>
<tr>
<td>Adjunct Professor, Ph.D. (McGill)</td>
</tr>
<tr>
<td>(Research Scientist, Environment Canada)</td>
</tr>
<tr>
<td>Leonard Barrie</td>
</tr>
<tr>
<td>Adjunct Professor,</td>
</tr>
<tr>
<td>(Stockholm University)</td>
</tr>
<tr>
<td>Ashu Dastoor</td>
</tr>
<tr>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Environment Canada</td>
</tr>
<tr>
<td>Luc Fillion</td>
</tr>
<tr>
<td>Adjunct Professor, Ph.D. (McGill)</td>
</tr>
<tr>
<td>(Research Scientist, Environment Canada)</td>
</tr>
<tr>
<td>Pavlos Kollias</td>
</tr>
<tr>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>(Stony Brook University)</td>
</tr>
<tr>
<td>Hai Lin</td>
</tr>
<tr>
<td>Adjunct Professor, Ph.D. (McGill)</td>
</tr>
<tr>
<td>(Research Scientist, Meteorological Service of Canada)</td>
</tr>
<tr>
<td>Louis-Phillippe Nadeau</td>
</tr>
<tr>
<td>Adjunct Professor, Ph.D. (McGill)</td>
</tr>
<tr>
<td>(Université Québec à Rimouski)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emeritus Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacques Derome</td>
</tr>
<tr>
<td>Emeritus Professor, F.R.S.C., Ph.D. (Michigan)</td>
</tr>
<tr>
<td>Henry G. Leighton</td>
</tr>
<tr>
<td>Emeritus Professor, Ph.D. (Alberta)</td>
</tr>
<tr>
<td>Lawrence A. Mysak</td>
</tr>
<tr>
<td>Emeritus Professor, C.M., F.R.S.C., Ph.D. (Harvard)</td>
</tr>
<tr>
<td>(Canada Steamship Lines Professor)</td>
</tr>
<tr>
<td>Isztar Zawadzki</td>
</tr>
<tr>
<td>Emeritus Professor, F.R.S.C., Ph.D. (McGill)</td>
</tr>
</tbody>
</table>
Administrative & Technical Staff

<table>
<thead>
<tr>
<th>Administrative Staff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>John R. Gyakum</td>
<td>Chair</td>
</tr>
<tr>
<td>(514) 398–3760</td>
<td>john.gyakum@mcgill.ca</td>
</tr>
<tr>
<td>Lucy Nunez</td>
<td>Administrative Officer</td>
</tr>
<tr>
<td>(514) 398–3758</td>
<td>admin.aos@mcgill.ca</td>
</tr>
<tr>
<td>Manuela Franzo-Whitnell</td>
<td>Administrative and Student Affairs Coordinator</td>
</tr>
<tr>
<td>(514) 398–3764</td>
<td>graduateinfo.aos@mcgill.ca</td>
</tr>
<tr>
<td>Amna Jabeen</td>
<td>Administrative Coordinator</td>
</tr>
<tr>
<td>(514) 398–4367</td>
<td>coord.aos@mcgill.ca</td>
</tr>
<tr>
<td>Daniel Kirshbaum</td>
<td>Graduate Program Director</td>
</tr>
<tr>
<td>(514) 398–4369</td>
<td>daniel.kirshbaum@mcgill.ca</td>
</tr>
<tr>
<td>Timothy Merlis</td>
<td>Undergraduate Program Director</td>
</tr>
<tr>
<td>(514) 398–3140</td>
<td>timothy.merlis@mcgill.ca</td>
</tr>
<tr>
<td>Research Accounts Administrator</td>
<td></td>
</tr>
<tr>
<td>fstsciencepod2@mcgill.ca</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Staff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calin Giurgiu</td>
<td>Network and System Administrator</td>
</tr>
<tr>
<td>(514) 398–3761</td>
<td>calin.giurgiu@mcgill.ca</td>
</tr>
<tr>
<td>Tara Mawhinney</td>
<td>Library Liaison</td>
</tr>
<tr>
<td>(514) 398–4764</td>
<td>tara.mawhinney@mcgill.ca</td>
</tr>
</tbody>
</table>
Where is our Department on campus?

McGill University
Department of Atmospheric and Oceanic Sciences
Burnside Hall, Room 945
805 Sherbrooke Street West
Montreal, Quebec H3A 0B9
Tel: 514-398-3764 Fax: 514-398-6115
Email: info.aos@mcgill.ca
www.mcgill.ca/meteo