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The human brain is thought to process auditory objects along a
hierarchical temporal “what” stream that progressively abstracts
object information from the low-level structure (e.g., loudness) as
processing proceeds along the middle-to-anterior direction. Empiri-
cal demonstrations of abstract object encoding, independent of
low-level structure, have relied on speech stimuli, and non-speech
studies of object-category encoding (e.g., human vocalizations)
often lack a systematic assessment of low-level information (e.g.,
vocalizations are highly harmonic). It is currently unknown whether
abstract encoding constitutes a general functional principle that
operates for auditory objects other than speech. We combined
multivariate analyses of functional imaging data with an accurate
analysis of the low-level acoustical information to examine the ab-
stract encoding of non-speech categories. We observed abstract
encoding of the living and human-action sound categories in the
fine-grained spatial distribution of activity in the middle-to-posterior
temporal cortex (e.g., planum temporale). Abstract encoding of
auditory objects appears to extend to non-speech biological sounds
and to operate in regions other than the anterior temporal lobe.
Neural processes for the abstract encoding of auditory objects
might have facilitated the emergence of speech categories in our
ancestors.

Keywords: categorization, condition-rich design, fMRI, multivariate
information-based mapping, temporal cortex

Introduction

Two questions are at the heart of theories concerning the cor-
tical processing of naturally occurring auditory objects: 1)
Which low-level features drive neural processing and 2) how
do computations lead to abstract semantic categories robust
to large variations in the low-level features? These questions
continue to stir a lively debate within the domain of auditory
neuroscience. For example, there is a lack of consensus con-
cerning which low-level features are represented in the cortex
(Schonwiesner and Zatorre 2009; Recanzone and Cohen
2010), and processing models based on the concept of spec-
trotemporal receptive fields have had only partial success in
accounting for the cortical responses to naturalistic sounds
(Machens et al. 2004; Bar-Yosef and Nelken 2007). Further,
the empirical evidence for abstract cortical encoding indepen-
dent of low-level structure is limited to a very specific class of
stimuli, harmonic sounds such as human vocalizations or
musical tones (Hasson et al. 2007; Leaver and Rauschecker
2010; Kilian-Hiitten et al. 2011), whereas studies of highly
diverse naturalistic sounds (e.g., animal vocalizations vs.
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human-action sounds such as sawing wood; Lewis et al. 2005)
did not test for abstract encoding. As a consequence, it is still
unknown whether the abstraction of cortical representations
is a general functional principle that operates for all classes of
naturalistic auditory objects. We addressed these questions by
analyzing the extent to which the fine-grained spatial func-
tional magnetic resonance imaging (fMRI) patterns measured
for highly heterogeneous environmental sounds selectively
encoded information about the low-level and category-
membership features (Fig. 1).

There is a wide consensus on the hierarchical nature of the
auditory cortex, which relies on modules that progressively
abstract from the low-level structure to optimize the analysis
of auditory objects (e.g., “what/where model,” Romanski
et al. 1999). However, 1) There is currently a large disagree-
ment on the location of such abstract sound-processing
modules and 2) the majority of the empirical evidence on the
existence of such modules has been collected by focusing on
a restricted number of the auditory objects that our brain ana-
lyzes during our daily life, that is, human vocalizations and,
more specifically, speech. Focusing on the location of
abstract-processing modules, it has, for instance, been ob-
served that the primary auditory cortex (A1) retains less infor-
mation about the spectrotemporal structure but more
information about abstract properties such as stimulus iden-
tity, than does inferior colliculus (Chechik et al. 2006). Con-
sistently, a recent study of perceptually ambiguous speech
argues for abstract object-like representations in the early
auditory cortex (Kilian-Hutten et al. 2011). Abstract-
processing aspects have also been attributed to the planum
temporale (PT), an area hypothesized to be involved in
matching stored spectrotemporal templates to the incoming
sound information (Griffiths and Warren 2002) and to
implement a process that abstracts from the fine-grained spec-
tral shape of the incoming signal (Warren et al. 2005; Kumar
et al. 2007). Other influential studies locate abstract modules
in the anterior temporal cortex, part of a ventral pathway in-
volved in the recognition of auditory objects (Romanski et al.
1999; Rauschecker and Tian 2000; Scott et al. 2000; Davis and
Johnsrude 2003; Hasson et al. 2007; Rauschecker and Scott
2009; Goll et al. 2010; Leaver and Rauschecker 2010, for
studies involving speech stimuli). Other empirical investi-
gations observe instead abstract categorical processes in the
posterior superior temporal sulcus (pSTS; e.g., Desai et al.
2008; Okada et al. 2010, for speech stimuli and Warren et al.
20006, for voices), or even argue for abstract representation in
the entire sound-sensitive cortex, including areas traditionally
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Figure 1. Pipeline for the analysis of representational similarity (RSA). For each stimulus, the fine-grained spatial distribution of the blood oxygenation level dependent (BOLD)
effect is extracted within a spherical searchlight (radius = 6.25 mm). For each pair of stimuli, the dissimilarity between the fine-grained spatial fMRI patterns is defined as 1
minus the correlation between their voxel-specific estimates of the BOLD effect inside the searchlight. The complete square dissimilarity matrix computed for each pair of stimuli
is termed RDM. The RDM is finally correlated with a SDM. The analysis is repeated for each possible gray matter location of the spherical searchlight. In this study, the RSA
method was adopted to assess what stimulus features drive the dissimilarity of BOLD responses within the searchlight. We considered 24 potential proxy measures that capture
the low-level sensory dissimilarity (12 SDMs), and the higher level category-membership dissimilarity (12 SDMs). Significant encoding of a stimulus feature in the spatial fMRI
pattern was inferred if the correlation and partial correlation between the RDM and SDM had the same sign and were both significant. The partial correlation between the target
SDM and the RDM was computed after removing from both the variance they shared with all of the non-target SDMs (see text).

assumed to be involved in low-level processing (Formisano
et al. 2008; Staeren et al. 2009). An important aspect of pre-
vious studies further obscures our understanding of abstract
sound encoding in the cortex: They have almost exclusively
focused on a relatively homogeneous class of stimuli, that is,
highly harmonic vocalizations (e.g., speech or animal vocali-
zations) and musical instrument tones (Leaver and Rauscheck-
er 2010). This aspect of past studies not only reduces the
general validity of current stances on abstract sound proces-
sing in the cortex (i.e., it is unknown whether the cortex rep-
resents abstractly many non-speech naturalistic auditory
objects), but it is also associated with potential methodologi-
cal problems. Indeed, given the high plasticity and context-
dependence of auditory cortical computations (Ulanovsky
et al. 2003; Jaaskeldinen et al. 2007; Asari and Zador 2009), it
is likely that the presence of a large number of speech-like
stimuli within the experimental context triggers the activation
of language-related abstract-processing modules. More impor-
tantly, reverse hierarchy theories of perceptual processing
(Ahissar et al. 2009) predict a stronger emphasis on abstract
representation for sets of sounds that are relatively similar in
the low-level structure (e.g., speech and crying baby, both of
which are highly harmonic) than for sets of sounds that are
highly heterogeneous in the low-level structure (e.g., inhar-
monic crackling fire and crying baby). For these reasons, it is
currently unknown whether abstract processing constitutes a
general functional principle implicated in the cortical proces-
sing of all classes of naturalistic sounds. To address these
issues, we used a condition-rich design with a stimulus set
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that is heterogeneous in both low-level and category struc-
tures. The stimulus set included distinctions between living
and non-living, human and non-human and vocal and non-
vocal sounds, very few human vocalizations, and no speech
stimuli (Supplementary Table S1).

The cortical encoding of highly diverse categories of natur-
alistic non-speech auditory objects has been investigated by
several fMRI and electroencephalography studies (Belin et al.
2000, 2002; Fecteau et al. 2004, 2005; Lewis et al. 2005, 2000,
2010; Pizzamiglio et al. 2005; Kraut et al. 2006; Murray et al.
2006; Altmann et al. 2007; Kaplan and Iacoboni 2007;
Doehrmann et al. 2008; Galati et al. 2008; Engel et al. 2009;
De Lucia et al. 2010; Leaver and Rauschecker 2010). Despite
showing a cortical sensitivity for object categories, this litera-
ture is unable to prove the existence of abstract cortical en-
coding modules because it has not assessed the extent to
which category sensitivities can be accounted for by systema-
tic between-category differences in the low-level structure
(e.g., a neural network that is selectively activated by vocali-
zations and not by tool-action sounds might simply be pro-
cessing a reliable low-level difference between these
categories, namely, harmonicity [HNR]). For this reason, it is
largely unknown whether the previous category-sensitivity
results were the product of abstract cortical encoding based
on high-level features that optimize the categorization of
sound stimuli even in the absence of systematic between-
category differences in the low-level structure. A notable ex-
ception to this trend is the recent study by Leaver and
Rauschecker (2010), which considered 6 different low-level
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Figure 2. Cortical encoding of category-membership information. \We tested for 3 different effects of category-membership information on the dissimilarity of the spatial fMRI
patterns. These effects are exemplified in the top 3 panels for the living versus non-living category-membership distinction. In each of these panels, the dissimilarity between the
spatial fMRI patterns for different stimuli (circles) is represented as the distance between stimuli within a 2-dimensional Euclidean space where stimuli that evoke largely
different fMRI patterns lie farther apart. Similar Euclidean representations can be computed by analyzing RDMs with multidimensional scaling (MDS) models. (4) The cortical
patch represents the distinction between the living and non-living categories. This outcome of between-category differentiation leads to a positive correlation between the RDM
and a living—nonliving dissimilar matrix equal to 0 if 2 sounds are both living or non-living and equal to 1 if 1 sound is living and the other is non-living. (B) The cortical patch
enhances the distinctions between members of the living category. This outcome of within-category differentiation leads to a positive correlation between the RDM and a
living-dissimilar matrix equal to 1 if 2 sounds are both living and equal to 0 otherwise. (C) The cortical patch suppresses distinctions between members of the living category.
This outcome of within-category compression leads to a negative correlation between the RDM and the living-dissimilar matrix.

alternative hypotheses for the cortical encoding of
auditory-object categories. Importantly, however, this study
investigated only highly harmonic sounds (human and
animal vocalizations and musical instrument tones), and is,
for this reason, characterized by the same general validity
and methodological caveats that we noted for speech-based
investigations of abstract cortical encoding. In the present
study, we extended the approach of Leaver and Rauschecker
by considering a larger number of low-level features describ-
ing both the long-term and the time-varying sound structure
(e.g., Giordano and McAdams 2006; Giordano, Rocchesso,
et al. 2010 for the psychophysical relevance of the temporal
structure of naturalistic sounds and, e.g., Zatorre and Belin
2001; Poeppel 2003; Boemio et al. 2005; Schonwiesner et al.
2005; Zatorre and Gandour 2008, for their cortical proces-
sing). The characterization of the low-level features adopted
in this study is, to date, the most extensive among those
carried out in previous brain imaging studies of naturalistic
auditory objects. Our category-encoding tests thus take into
account a comparatively large number of low-level alternative
hypotheses about the nature of the cortical sensitivity to cat-
egories (Fig. 4 for the cortical encoding of the low-level fea-
tures considered in this study).

We measured the encoding of object-category and low-level
features in the stimulus-specific fine-grained spatial fMRI pat-
terns. For this purpose, we adopted the multivariate method
of representational similarity analysis (RSA; Kriegeskorte,
Mur, Bandettini 2008), previously applied only in the study of
visual object processing (Kriegeskorte, Mur, Ruff, et al. 2008;
Fig. 1 for our analysis pipeline). The RSA method assesses the

encoding of stimulus-feature information in representational
dissimilarity matrices (RDMs), measuring the dissimilarity of
the spatial fMRI patterns for different stimuli. The RSA
method combines the high statistical sensitivity of multivariate
classification methods (Kriegeskorte et al. 2006; Kriegeskorte
and Bandettini 2007; Staeren et al. 2009), with a greater flexi-
bility in testing the encoding of feature structures whose rep-
resentation cannot be easily verified with classical massively
univariate analyses. For example, within a univariate frame-
work, category encoding is assumed when the blood oxygen-
ation level dependent (BOLD) response for the exemplars of
1 category differs significantly from that for a different refer-
ence category. Importantly, this “activation”-based method
can measure between-category differences, but cannot detect
within-category effects (e.g., the neural responses for different
face pictures are more similar to each other than to the neural
responses for pictures of cats; Haxby et al. 2001). The
“information-based” RSA approach made it possible to assess
a larger number of abstract category-membership effects: 1)
Cortical representation of the distinction between categories
(between-category differentiation); 2) cortical enhancement of
the diversity of the stimuli within the same category (within-
category differentiation); and 3) cortical suppression of the
differences of stimuli within the same category (within-
category compression; Figs 2 and 5).

During scanning, participants were presented with highly
identifiable environmental sounds (Supplementary Table S1)
and carried out a 1-back repetition-detection task. Analyses
relied on the measurement of the association between RDMs
and stimulus-feature dissimilarity matrices (SDMs; Figs 1 and 2,
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and see Material and Methods). Twelve low-level SDMs were
derived from the time-varying: 1) Loudness; 2) spectral cen-
troid, a measure of the perceived brightness of a sound; 3)
pitch; and 4) harmonic-to-noise ratio (HNR) or, in short, har-
monicity, a measure of the amount of periodicity. For each of
the 4 time-varying features, we computed 3 SDMs by consid-
ering: 1) The median value across time; 2) the amount of tem-
poral change (interquartile range dissimilarity, IQR); and 3)
the overall pattern of temporal variation (cross-correlation dis-
similarity). Twelve object-category SDMs were derived from
the following distinctions: 1) Living versus non-living; 2)
human versus non-human; 3) vocal versus non-vocal. One
group of object-category SDMs assessed between-category
differences in spatial fMRI patterns (Fig. 24); another group
assessed within-category effects such as a large similarity of
the fMRI patterns for same-category stimuli (e.g., highly
similar fMRI patterns for living sounds; Fig. 2B,C). Variance-
decomposition methods made it possible to measure the selec-
tive encoding of each of the stimulus features independently of
their covariation with non-target features (both low-level and
object category). Thus tested, cortical selectivities for object-
category features were taken as evidence of abstract cerebral
encoding of auditory objects. Based on this methodology, we
were able to measure the cortical encoding of several low-level
features (Fig. 4) and, most importantly, we observed the
abstract cortical encoding of sound-object categories (Fig. 5).

Materials and Methods

Stimuli

Sound stimuli were selected from those investigated by Giordano,
McDonnell, et al. (2010). Following standard practices, sounds were
equalized in root mean square (RMS) level. Note, however, that corti-
cal activation does not appear to follow the physical intensity of a
sound but rather its loudness (Langers et al. 2007), and that RMS
equalization does not guarantee constant loudness because it does
not take into account the changes in sensitivity across spectral fre-
quencies (Moore 2003). Sounds were 3 s in duration. Sounds from
Giordano, McDonnell, et al. (2010) shorter than 3 s were replaced by
an alternate excerpt generated by a similar event selected from a
variety of commercial databases of sound effects (e.g., Sound Ideas
2004). We selected 32 stimuli: 16 living sounds, generated by the
vibration of an object that is part of the body of a living being, such
as hands in “clapping hands” and 16 non-living sounds; 16
human-action sounds, generated as a consequence of the motor
activity of a human being (such as in “hammering nail”) and 16 non-
human sounds; 8 vocal sounds, generated as the consequence of the
vibrations in the larynx or syrinx (e.g., “croaking frogs”) or which in-
cluded such vibrations (e.g., “panting man”) and 24 non-vocal
sounds. The human-non-human categorical distinction was perfectly
orthogonal to the living-non-living distinction. The vocal-non-vocal
distinction was orthogonal to the human-non-human distinction
within the category of living sounds (by definition, all vocal sounds
are living sounds). Given these stimulus selection constraints, we ran-
domly extracted 20 million stimulus sets from the available samples.
Among these random selections, we chose for the final set sounds
that: Maximized the average identification performance and had a
minimum identification performance score of 50% correct, as
measured by Giordano, McDonnell, et al. (2010); minimized the
across-sound standard deviation [SD] of the peak of the time-varying
level in dB SPL; did not include significant between-category differ-
ences (e.g., living versus non-living) in peak dB SPL and in identifia-
bility (P>0.1). The measures of identification performance
considered during the sound selection process were collected by
Giordano, McDonnell, et al. (2010). Identification performance was
also measured with the participants in this experiment, subsequent to
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the scanning session. Based on these measures, all sounds were very
accurately identified (average correct=94%; SD=06%; minimum
correct=79%), and no differences in identification performance
emerged between living and non-living, human and non-human, and
vocal and non-vocal sounds (t<1.74; P>0.09). Supplementary
Table S1 reports the properties of the selected stimuli.

Stimulus-Feature Dissimilarity Matrices

We computed 12 matrices quantifying the pairwise dissimilarity of
the sound stimuli relative to various category attributes. The strategy
followed to compute category-feature dissimilarity matrices is exem-
plified in Fig. 2. The first 6 category dissimilarities focused on each of
the following categorical dimensions in turn: Living versus non-living;
human versus non-human; vocal versus non-vocal. The living-non-
living dissimilar matrix equaled 1 if 2 sounds did not belong to the
same category (i.e., one sound living, the other non-living) and 0 if
the 2 sounds belonged to the same category (i.e., both sounds living
or both sounds non-living). The living-dissimilar matrix equaled 1 if
the 2 sounds were living and 0 otherwise. A third
non-living-dissimilar matrix, equal to 1 if the 2 sounds are non-living
and 0 otherwise was not considered to avoid problems with the
partial-correlation analyses (see below). Indeed, the sum of this third
matrix with the living-nonliving dissimilar and living-dissimilar
matrices is a constant. As such, the correlation of any of these 3
matrices with a fourth dependent variable would equal 0 after the
other 2 matrices are partialed out of the correlation. We adopted the
same approach to compute the following matrices: Human-non-
human dissimilar; human dissimilar; vocal-non-vocal dissimilar; vocal
dissimilar. The final 6 dissimilarities considered the intersection of
the 3 main categorical distinctions. Because all vocal sounds are, by
definition, living sounds, the intersection of the 3 main categorical
distinctions defined 6 independent classes of sound stimuli (e.g.,
living—human-vocal sounds). The dissimilarity corresponding to each
of these 6 intersection classes equaled 1 if both sounds were
members of the same intersection class (e.g., both were living—
human-vocal sounds) and 0 otherwise. It should be noted that
among these matrices, only the living—non-living, human-non-
human, and vocal-non-vocal matrices were capable of assessing the
differentiation between 2 sound categories. All the other matrices
could instead model effects specific to a single category, specifically
either a comparatively higher differentiation or a comparatively
higher similarity of the sounds within the category of interest.

We computed 12 matrices quantifying the dissimilarity of different
low-level properties of the sound stimuli. We initially quantified the
time-varying profile of 4 different low-level features: Loudness in
sones, defined for each frame of analysis as the sum of the specific
loudness for the different cochlear filters; spectral centroid in Equival-
ent Rectangular Bandwidth-rate units (ERB; Moore and Glasberg
1983), defined as the specific-loudness-weighted average of the spec-
tral frequency; HNR, defined as the ratio of the periodic-to-non-
periodic energy in the sound signal (HNR) in dB; pitch in ERB-rate
units. Time-varying loudness and spectral centroid were derived from
the time-varying specific loudness of the sound signals, as computed
according to the model of Glasberg and Moore (2002). Time-varying
HNR and pitch were computed using the Praat software (Boersma
and Weenink 2009). The temporal resolution of each of the time-
varying features was 1 ms. We derived 3 dissimilarity matrices for
each of the 4 time-varying sound features by using 1 of 3 different
mathematical operators. 1) The first 4 dissimilarity matrices measured
the absolute value of the difference in the median of the time-varying
feature between each pair of sounds. Median dissimilarities focus on
the time-independent scale of the sound features. 2) The next 4
matrices measured the absolute value of the difference in the inter-
quartile range of the time-varying feature between each pair of
sounds. The interquartile range dissimilarities focus on the amount of
temporal change of the sound features. 3) The last 4 dissimilarity
matrices measure the between-sounds diversity in the entire pattern
of temporal variation, independently of scale (e.g., high- vs. low
median pitch). To this purpose, dissimilarity was defined as 1 minus
the maximum cross-correlation between the time-varying feature
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measured on sounds A and B (e.g., time-varying loudness for both
sounds). The cross-correlation was normalized so as to yield a value
of —1 for the cross-correlation between 1 signal and its negative at lag
0, and a value of 1 for the cross-correlation between 1 signal and its
replica (i.e., autocorrelation) at a temporal lag of 0. In order to yield a
scale-independent measure of the dissimilarity between the time-
varying profiles, time-varying features were range normalized
between 0 and 1 before being analyzed with the cross-correlation
algorithm. Importantly, the cross-correlation measures of dissimilarity
are independent of onset-time differences between 2 sounds. Finally
note that the number of possible low-level measures of sound dissim-
ilarity is in principle infinite because multiple basic representations of
the acoustical structure and multiple mathematical or statistical oper-
ators can be adopted to quantify the differences between 2 sounds
with 1 single number (Peeters et al. 2011, for an extensive list of
acoustical features). In this study: 1) We equated the number of low-
level and category-membership dissimilarities to avoid skewing the
likelihood of observing significant encoding of features belonging to
1 of these 2 groups (e.g., consider a study with 100 low-level and 1
category-membership dissimilarity); 2) we considered plausible
models of how the auditory system computes the temporal variation
of 4 basic sensory attributes; 3) we applied the same set of (simple)
statistical operators to each of the 4 features.

Participants

Twenty subjects took part in this study (10 females, 10 males; age =
23.8 years, SD =4.8 years; average years of experience with English
language = 20.6 years, SD = 5.6 years; number of native English speak-
ers=11). All participants had limited musical training (years of music
performance experience = 2.6, SD = 4.8 years), had normal hearing as
assessed with a standard audiometric procedure (Martin and Cham-
plin 2000; ISO 2004), and were right handed (average laterality quoti-
ent=74.3, SD=17.6) as assessed with an Edinburgh handedness
inventory (Oldfield 1971). Informed consent was obtained from all
individuals, and the protocol was approved by the Ethics Committee
of the University of Glasgow.

JMRI Task

Participants performed a 1-back repetition-detection task, that is,
were requested to press a key when they heard 2 subsequent presen-
tations of the same stimulus. On each block of trials, participants
were presented with the 32 stimuli in random order and with 1 rep-
etition of 2 of the 32 stimuli, for a total of 34 stimulus presentations
per block. At the end of each block, participants were presented with
6 subsequent silent stimuli of 3s duration each. Throughout the
experiment, each participant carried out 16 blocks of trials. Through-
out the experiment, we had a total of 32 subsequent repetitions of 1
sound, 1 for each of the stimuli. The entire scanning session lasted
approximately 60 min.

JMRI Data Acquisition

Participants were scanned with a Siemens 3 Tesla Tim Trio scanner
(Siemens, Erlangen, Germany), using a 12-channel head coil. Sound
stimuli were presented through electrostatic headphones (Nordic
Neuro Lab, Bergen, Norway) at a level of 68 dB SPL. The time to rep-
etition (TR) was 5s, composed of a 2-s acquisition time and a 3-s
silent period during which sound stimuli were played on a silent
background. No stimulus-onset jittering was used, and the silent
period of 3 s between acquisitions was occupied in its entirety by the
auditory stimulation (i.e., inter-stimulus interval=TR and stimulus
duration =TR — acquisition time). Each brain volume contained 31
slices of 2.2-mm thickness with an inter-slice distance of 2.75 mm in
an axial orientation along the direction of the temporal lobe, provid-
ing near full-brain coverage (part of the superior prefrontal cortex
and the posterior part of the occipital cortex were not acquired in
several subjects and were thus excluded from analysis). The in-plane
voxel size was 2x2mm’ (64x64 matrix). A whole-brain, high-
resolution, structural 7;-weighted MP-RAGE image (192 sagittal slices,

256 x 256 matrix size, 1x1x 1 mm> voxel size) was also acquired to
characterize the subjects’ anatomy.

JMRI Data Analysis

All analyses were carried out using SPM8 and custom Matlab code.
Functional images were slice-time corrected to the onset of the first
slice and spatially realigned using a 6-parameter affine transformation.
High-resolution 77 images for each of the participants were coregis-
tered to the average functional image and segmented into gray
matter, white matter, and cerebrospinal fluid.

The first step of the analysis pipeline involved fitting a first-level
native-space generalized linear model (GLM) to the unsmoothed func-
tional images for each participant (Kriegeskorte, Mur, Bandettini
2008; Kriegeskorte, Mur, Ruff, et al. 2008). The GLM focused on gray
matter voxels, as identified on the basis of the segmented T; scan,
and included 33 conditions, 1 for each of the 32 sound stimuli and 1
for sound repetitions and key presses. The GLM also included head-
motion parameters estimated during the spatial realignment step, and
an intercept term modeling activation during the implicit silent base-
line condition. Stimulus-specific BOLD effects were estimated by con-
volving the sound-stimulus onsets with the canonical hemodynamic
response function.

The second step aimed at extracting RDMs (Kriegeskorte, Mur,
Bandettini 2008; Kriegeskorte, Mur, Ruff, et al. 2008), measuring the
(scale-independent) dissimilarity between the fine-grained spatial dis-
tribution of the BOLD effect for each pair of stimuli. Given a target
center voxel, we extracted the stimulus-specific BOLD estimates from
the contrast images of each of the 32 sounds (sound-silence) inside a
spherical volume or searchlight (Kriegeskorte et al. 2006). We chose
a searchlight radius of 6.25 mm (89 voxels), because previous simu-
lation studies showed that searchlight radii containing a similar
number of voxels optimize the discrimination of experimental con-
ditions (Kriegeskorte et al. 2006). The dissimilarity between the
spatial pattern of activation for 2 sounds was thus computed as 1
minus the Pearson correlation between the voxel-specific BOLD esti-
mates for the 2 sounds within the searchlight (Kriegeskorte, Mur,
Bandettini 2008; Kriegeskorte, Mur, Ruff, et al. 2008). RDMs were ex-
tracted for each gray matter center voxel, provided that at least 50% of
the spherical volume included gray matter voxels. Participant-specific
RDMs were normalized to MNI space using the normalization par-
ameters obtained from the segmentation procedure and were
smoothed using a Gaussian kernel (6-mm full-width at half-maximum,
FWHM). In practice, for each of the participants, the normalization
and smoothing algorithms were applied independently to each of the
496 maps measuring the dissimilarity between each of the 496 pairs
of the 32 sound stimuli. The normalization and smoothing steps were
necessary for carrying out random-effects analyses. After normaliza-
tion voxels were 2 mm? in size.

The third and final step of the analysis pipeline adopted a
random-effects approach to test the association between RDMs and
SDMs (Fig. 1), independently of variance common to the different
SDMs (both low-level and category-feature dissimilarities). At the first
level, we thus computed the Spearman rank correlation between the
RDMs on the one hand and each of the SDMs on the other. For each
SDM, this procedure yielded 1 rank- correlation map for each partici-
pant. Correlation maps were transformed into Z-maps by applying the
variance-stabilizing Fisher Z-transform. For each SDM, we then com-
puted 1 random-effects #test to assess whether the correlation
between the RDMs and the SDMs was significantly different than 0 at
the group level [degrees of freedom (df)=19; P<0.0001, extent
threshold = 20 voxels]. This initial correlational test ignored the var-
iance common to the different SDMs. We thus repeated the same
random-effects analysis approach by considering the partial Spear-
man correlation between RDMs and each of the SDMs (df=19 for
t-test; P<0.0001, extent threshold = 20 voxels). The partial correlation
analysis discarded all sources of variance shared between the particu-
lar SDM and all the other SDMs. Note that the partial-correlation
analysis can potentially reveal significant effects even in the absence
of a significant correlation, and that the sign of correlations and
partial correlations can potentially differ. Both of these potential
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results have an unclear functional interpretation. We thus finally con-
sidered for each of the SDMs the conjunction of the correlation and
partial-correlation group-level #tests (P <0.0001, and extent threshold
=20 voxels for both correlation and partial correlation, Nichols et al.
2005), where the correlation and partial correlation had the same
sign. The conjunction analysis thus revealed that those areas where
both the correlation and partial correlation between the RDMs and
the SDM were significantly different than zero and had the same sign
(Figs 4 and 5). Note that an alternative analysis approach based on
the smoothed and normalized correlation maps computed in native
space yielded highly similar results to those presented in this study,
based on smoothed and normalized RDMs.

Results

An initial analysis measured the anatomical overlap in the sen-
sitivity to category and low-level features. This analysis did
not discard the variance that was common among all the
stimulus features and was meant to illustrate some proble-
matic aspects of studies of the encoding of object categories
that do not consider low-level explanations (Fig. 3). The
second and third analyses assessed the cortical selectivity for
low-level and object-category features, respectively (Figs 4
and 5). For each of the features, significant selectivities were
measured by a simultaneous correlation and partial corre-
lation between the RDMs and the SDM (both correlation and
partial correlation with same sign). The partial correlation dis-
carded the variance common between the SDM for the target
feature and non-target category and low-level SDMs. The
third analysis thus assessed the presence of cortical modules
that encode categories of auditory objects abstractly. Table 1
summarizes the results of analyses 2-3.

Figure 3. The anatomical overlap of regions sensitive to both category and low-level
features (yellow) exemplifies the potential interpretational problems that arise from a
study of category encoding independent of the assessment of low-level alternative
hypotheses. The measurement of cortical sensitivity is based on the (unpartialed)
correlation between RDMs and category or low-level SDMs, and thus considers both
the variance specific to each feature, and that shared between the features. With
feature-rich sets of naturalistic stimuli, like the 1 in this study, the cortical sensitivity
to sound categories can simply be mediated by systematic category differences in
neurally relevant low-level structures. Color codes—significant correlation of RDM
with: red = only low-level features (one or several); green = only category features
(one or several); yellow = at least 1 low-level feature and at least 1 category feature
(P < 0.0001, uncorrected, extent threshold = 20).
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Large Extents of the Temporal Cortex are Sensitive to
Both Object-Category and Low-Level Features

Figure 3 shows part of the cortical regions in which we ob-
served a significant correlation between the RDMs and at least
1 of the object-category or low-level features (P <0.0001, un-
corrected). In particular, areas marked in yellow are sensitive
to both low-level and object-category structure (significant
RDM correlation with at least 1 category SDM and at least 1
low-level SDM). Large portions of the bilateral temporal
cortex are characterized by dual category/low-level sensitivity,
including Heschl’s gyrus (HG), whose medial two-thirds are
classically assumed to correspond to the core primary audi-
tory fields (Rademacher et al. 1993; Morosan et al. 2001), and
the superior temporal plane both anterior and posterior to
HG, that is, the PT and the aSTG. The functional meaning of
these results is uncertain, however: It could, for example, be
the simple product of a statistical association between low-
level and object-category features.

Fine-Grained Spatial fMRI Patterns in Both the
Temporal and Extratemporal Cortex Selectively Encode
Several Low-Level Features

Figure 4 shows those regions where we observed a simul-
taneous correlation and partial correlation between the RDMs
and the low-level feature SDMs (P<0.0001, uncorrected for
both; partial correlation discards the variance common
between target low-level and non-target low-level features
and object-category features). These regions meet the strin-
gent statistical criteria of feature selectivity (e.g., Hall and
Plack 2009). We observed encoding of: 1) The median value
of the time-varying pitch in a large temporal cluster in both
hemispheres, comprising the lateral aspects of HG and includ-
ing the most anterior portions of the PT; 2) the median value
of the time-varying loudness in a large patch of the left audi-
tory cortex extending laterally from the middle portion of HG
to the anterior aspects of the left PT; 3) the amount of tem-
poral change of the spectral centroid (spectral centroid IQR
SDM) in the most medial aspect of the right HG and the right
PT; 4) the median value of the time-varying HNR in the right-
lateralized temporal cortex (posterior superior temporal gyrus
[PSTG]/STS) and in a bilateral frontal cluster comprising the
medial frontal gyrus (medFG) and the anterior cingulate
cortex (ACC), with a peak effect in the right hemisphere; 5)
the overall pattern of temporal variation of loudness (loudness
cross-correlation SDM) in the anterior aspect of the superior
parietal lobule (SPL).

The Right Planum Temporale and Posterior Superior
Temporal Gyrus Represent Abstract Categories of
Auditory Objects

Figure 5 shows those regions where both the correlation and
partial correlation between RDMs and category-feature SDMs
were significant (P<0.0001, uncorrected for both). These
regions are potentially involved in the abstract representation
of categories of auditory objects because none of the low-level
features we considered explains their encoding in the cortex.
We observed encoding of: 1) The category of living sounds,
comprising both vocal and non-vocal sounds, as well as
human and non-human sounds, in the medial right PT, bor-
dering the medial HG; 2) the category of human sounds, com-
prising both vocal and non-vocal sounds, as well as both
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Figure 4. Selective encoding of low-level features is revealed after partialing out of the variance shared with other low-level features and with category features. For each of the
low-level features revealed by this analysis, larger low-level differences result in a larger dissimilarity of the fine-grained spatial fMRI patterns (positive RDM-SDM correlation).
Clusters show the statistical parametric map (t-test) for testing a significant correlation between RDMs and low-level feature SDMs only within those cortical regions
characterized by a significant partial correlation between the same low-level SDM and the RDM with the same sign as the correlation (P < 0.0001, uncorrected; extent
threshold = 20 voxels for both the correlation and partial correlation tests). The statistical parametric maps are overlaid onto the group-average 7;. IQR = interquartile range of
time-varying low-level feature. For each of the features, we display the group-average RDM for the peak effect and the relative SDM (numbers between square parentheses =
MNI coordinates). The RDMs are displayed in anti-Robinson form (dissimilarity increases moving away from the diagonal); the relative SDM is resorted accordingly. Note the
analyses reported in this manuscript have been carried out on the participant-specific RDMs, and not on the group-average RDMs. Group-average RDMs are reported in this
figure in order to give a clearer picture of the across-participants structure in the RDM that most likely reflects the stimulus feature at hand.
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Figure 5. Selective abstract encoding of sound categories is revealed after partialing out of the variance shared with other category features and with low-level features. See
Fig. 4 for the meaning of statistical parametric maps and of dissimilarity matrices, and Fig. 2 for details on category SDMs. This analysis reveals 2 temporal regions where all
human-action sounds give rise to similar fine-grained spatial fMRI patterns, the right PT/pSTG and left medHG (negative correlation of RDM with human-dissimilar SDM; top
slices). A similar effect is observed for the category of living sounds in the right PT/medHG (negative correlation of RDM with living-dissimilar SDM; bottom slice). For both
human and living sounds, we thus observe a significant within-category effect (significantly lower diversity of spatial fMRI pattems for sounds within the same category; Fig. 28,
C) that differs qualitatively from the between-category differences detected with “activation-based” univariate analyses (Fig. 24). To further illustrate the observed within-category
effects, we display for each of the category features a 2-dimensional multidimensional scaling (MDS) model of the group-average RDM for the spherical searchlight centered at
the peak-correlation voxel (numbers between square parentheses = MNI coordinates). Within the MDS models, points separated by a large distance represent stimuli
associated with highly dissimilar fMRI patterns. Note the higher proximity of human compared with non-human sounds (top) and of living compared with non-living sounds
(bottom), representing a higher dissimilarity of fMRI patterns within each of these categories. MDS space captions = average representational dissimilarities (RD) for various
categories of interest.
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Table 1

Summary of random-effects representational similarity analyses: Correlations between stimulus dissimilarities and RDMs, masked for the significant partial correlation with the same sign (P < 0.0001,

uncorrected, df = 19, extent threshold = 20 voxels for both correlation and partial correlation)

Left hemisphere

Right hemisphere

Location BA V4 Vox X y P z Vox X y z P
Pitch (median)

IHG/PT 41 5.69 718 —62 —-16 0.27 - - - - - -

IHG/PT 41 - - - - - 5.67 669 68 -10 2 0.18
Loudness (median)

HG/mSTG/aPT 41/42 5.41 680 —62 -14 0.19 - - - - - -
Spectral centroid (interquartile range)

medHG 4 - - - - 4.92 178 42 -20 6 0.27

PT 4 - - - - 438 32 54 -30 20 0.25
Harmonicity (median)

medFG/ACC 9/32 - - - - 483 236 0 44 28 0.28

pSTS/pSTG 22/42 - - - - 455 31 48 =22 4 0.12
Loudness (cross-correlation)

Anterior SPL 7 4.18 24 —28 —40 0.32 - - - - - -
Human dissimilar

PT/pSTG 22/42 - - - - - 473 228 70 -30 18 —0.24

medHG 4 4.38 99 —44 -20 -0.34 - - - - - -
Living dissimilar

PT/medHG 4 - - - - 474 80 44 -28 12 -0.24

Note: The p columns report the Spearman correlation between group-average RDMs on the 1 hand and 1 specific SDM on the other.
BA = Brodmann area; Z = Z-score; Vox = number of voxels in cluster; pSTG/pSTS = posterior superior temporal gyrus/sulcus; mSTG = middle STG; HG = Heschl's gyrus; IHG = lateral HG;
HS = Heschl's sulcus; medHG = medial HG; ACC = anterior cingulate cortex; medFG = medial frontal gyrus; SPL = superior parietal lobule; PT = planum temporale; aPT = anterior planum temporale.

living and non-living sounds, in the right pPT/pSTG, and in
the most medial aspect of the left HG. In both cases, we de-
tected a significant within-category effect measuring a greater
similarity of the spatial fMRI patterns within the living and
human categories (Fig. 2, for more details on the strategy
adopted to assess the encoding of object-category features).

Discussion

Our study aimed to assess the abstract encoding of categories
of non-speech naturalistic auditory objects independently of
systematic fingerprints of their low-level structure. The main
goal of this study also led us to assess the cortical encoding
of a large number of low-level features of naturalistic
sounds. We adopted a condition-rich design coupled with
information-based analyses of the spatial fMRI patterns. The
selectivity for both object-category and low-level features was
assessed after partialing out their shared variance. Selective
encoding was observed for several low-level features: The
brain imaging of naturalistic sounds can represent a powerful
instrument for characterizing the signal-processing architec-
ture of the cortex. In both hemispheres, posterior temporal
regions, among which the PT, appeared to encode abstractly
the categories of living and human sounds. These results 1)
reveal domain-general processes for the abstract encoding of
auditory objects; 2) motivate a revised hierarchical processing
model of increasing information abstraction with the distance
from Al both in the anterior and posterior directions
(Rauschecker and Tian 2000; Peelle et al. 2010); 3) suggest
that part of the by-product of the template-matching process
that takes place in the PT (Griffiths and Warren 2002) is ab-
stract in nature.

Accurate Models of the Cortical Encoding of Sound
Categories Should Consider Their Low-Level Structure
Our current understanding of the processing of naturalistic
auditory objects in the human cortex focuses on the encoding

8 Abstract Cortical Encoding of Auditory Objects Giordano et al.

of categorical structure and largely disregards low-level fea-
tures (see, e.g., Rauschecker et al. 1995 and Leaver and
Rauschecker 2010, for exceptions in the human and animal
literature, respectively). The presence of large cortical patches
sensitive to both low-level and object-category features
(Fig. 3) exemplifies the ambiguity of this approach. The
observation of a dual low-level/object-category sensitivity can
indeed have 2 interpretations. First, it might be the simple
product of a statistical association between categories of
objects and low-level features. Secondly, it might be the
product of multifunctionality, that is, of the simultaneous en-
coding of low-level and object-category features in the same
neural population (see Bizley et al. 2009, for encoding of mul-
tiple low-level features in the same neural populations in Al
in the ferret). Variance decomposition methods, like those
adopted in the current study, are necessary to decide between
these alternative hypotheses and to assess abstract object en-
coding independently of the rich low-level structure of natura-
listic sounds.

Abstract Representation of Biological Sounds

We observed cortical encoding of 2 categories of auditory
objects: Living (right medHG/PT) and human-action auditory
objects (left HG and right pPT/pSTG; Fig. 5). In both cases,
objects belonging to the same category emerged as evoking
similar spatial fMRI patterns. This particular within-category
effect could not be detected with conventional univariate
analysis approaches, and reveals that the cortical encoding of
object categories does not necessarily rely on the ability to tell
apart different category exemplars. The comparatively large
set of low-level features considered in this study cannot
explain these results because the measurement of category
encoding ignored the variance common between object-
category and low-level features. It is possible that additional
low-level features, not considered in this study, account for
these results. Another interpretation, however, is that these
areas encode high-level abstract features optimized for the
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processing of object-category information. Note that various
factors might determine whether abstract cortical encoding of
sound categories occurs (e.g., salience-related attentional pro-
cesses, Kayser et al. 2005; identification-related processes,
Kilian-Hiitten et al. 2011; or in general, the perceptual set that
governs how a listener approaches the heard sounds, Lie-
benthal et al. 2003). It is thus significant that in this study ab-
stract category encoding emerged in the absence of
experimentally induced biases toward focusing on a particular
source of information: Participants were free to carry out the
1-back repetition-detection task by focusing on, for example,
low-level or category-related information. As such, the ob-
served abstract category-encoding effects might potentially be
indicative of cortical processing strategies active outside the
laboratory. Consistently with this interpretation, previous psy-
chophysical investigations demonstrated a cognitive bias
toward processing living sounds by focusing on high-level se-
mantic information (Giordano, McDonnell, et al. 2010). Inter-
estingly, both the human-action and living categories
comprise events of a biological origin. We thus argue that ab-
stract processing is a general functional principle of the audi-
tory brain that operates for both speech and non-speech
ecologically relevant biological auditory objects. Notably, the
location of category-selective modules in our study is consist-
ent with previous observations of abstract processing of
speech and human vocalizations in the posterior temporal
cortex (e.g., Warren et al. 2006; Desai et al. 2008; Okada et al.
2010). Our results thus complement the notion of abstract
object encoding in the anterior temporal lobe (e.g., Belin
et al. 2000; Davis and Johnsrude 2003; Hasson et al. 2007;
Goll et al. 2010; Leaver and Rauschecker 2010) and suggest a
very simple hierarchical model according to which infor-
mation abstraction in the temporal lobe grows with the dis-
tance from Al both in the posterior and anterior directions
(see Fig. 1B in Peelle et al. 2010, for an earlier proponent of
this hypothesis).

Two aspects of our study represent a departure from pre-
vious empirical investigations on the cortical encoding of nat-
uralistic auditory objects. First, previous studies rarely
considered low-level alternative hypotheses. Secondly, where
previous studies relied on univariate analyses of the voxel-
specific BOLD response, our study focused on the multi-
variate analysis of fine-grained spatial fMRI patterns. In the
face of these differences, it is thus significant that the location
of abstract modules revealed in this study is consistent with
the results from previous category-encoding studies. For
example, the representation of the living category in the right
medHG/PT is evocative of previous observations of sensitivity
to vocalizations, particularly animal vocalizations, in the
middle temporal gyrus (e.g., Lewis et al. 2006; Altmann et al.
2007; Doehrmann et al. 2008). More consistently, the rep-
resentation of the human-action category in the left HG
agrees with the results of Kaplan and Iacoboni (2007) and
Doehrmann et al. (2008) and with the observations of Leaver
and Rauschecker (2010) of the abstract encoding of musical
instrument sounds (generated as a consequence of human
actions) in the same left-HG area. Finally, the representation
of human-action events in the posterior temporal cortex is
consistent with the previous reports by Lewis et al. (20006),
Murray et al. (2006), Kaplan and Iacoboni (2007), and Doehr-
mann et al. (2008). Surprisingly, the results of our study did

not confirm the hypothesis of a middle anterior superior tem-
poral sulcus center that selectively processes human vocal
sounds (Belin et al. 2000, 2002; Gervais et al. 2004; Grandjean
et al. 2005; Ethofer et al. 2009; Leaver and Rauschecker 2010).
One of the potential sources for our null result is the differ-
ence in analysis strategies. Future studies will thus be necess-
ary to disentangle this issue. Alternatively, our null result
could arise from the low number of human vocalizations in
our stimulus set (12.5% of the total), which was not large
enough to promote the abstract encoding of this category
(see, e.g., Ulanovsky et al. 2003; Asari and Zador 2009; King
and Nelken 2009, for short-term plasticity and context-
dependence in auditory system), or, more simply, to make a
reliable measurement of abstract human-vocal representations
possible. Similar explanations might account for the absence
in this study of category-encoding effects related to the vocal
versus non-vocal distinction at large.

Cortical Labeling of Sound Categories

We assessed 3 different effects of category-membership infor-
mation on the dissimilarity of the spatial fMRI patterns, inde-
pendent of low-level information: 1) Between-category
differentiation; 2) within-category differentiation; and 3)
within-category compression. Each of these effects can have a
different functional interpretation: 1) The cortical patch rep-
resents abstractly the distinction between different categories;
2) the cortical patch is involved in the fine processing of
stimuli within the category of interest leading to an enhance-
ment of their diversity that go beyond that afforded by low-
level information; and 3) the cortical patch codes whether
stimuli are exemplars of the category of interest, leading to a
compression of the diversity of same category exemplars
beyond that afforded by the low-level structure. Our analyses
did not provide evidence for the former 2 effects. It is interest-
ing to note that previous studies of naturalistic visual objects
did reveal encoding of between-category distinctions in
spatial patterns of activation (Kriegeskorte, Mur, Ruff, et al.
2008). As such, it remains to be seen whether our failure to
observe between-category effects is indicative of a specific
property of pattern-based encoding in the auditory brain or,
instead, stems from the specifics of our experimental method-
ology (e.g., choice of stimuli). More importantly, we
measured within-category compression for both the living
and human-action categories, and in several mid-to-posterior
temporal areas, among which the PT (Fig. 5). Interestingly,
the PT is considered to implement acoustics-dependent pro-
cesses that match stored spectrotemporal templates to the in-
coming sensory information (Griffiths and Warren 2002;
Warren et al. 2005; Kumar et al. 2007). Our results thus
suggest that although the matching process implemented by
the PT relies on the analysis of sensory information, part of
the end product of this process is abstract in nature. We thus
argue that by matching incoming low-level patterns to stored
templates, the PT facilitates a process of labeling auditory
objects as members of specific categories. In post-PT stations
of information relay, this labeling information could, for
example, facilitate the discrimination of different categories,
and promote similar processing pipelines for same category
exemplars.
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Brain Imaging of Naturalistic Sounds Makes it

Possible to Assess the Encoding of Multiple Low-Level
Features

The majority of studies on the cortical encoding of low-level
features investigate synthetic stimuli that differ along a re-
stricted number of acoustical dimensions, often one. From the
methodological point of view, single-feature studies are not
capable of measuring cortical selectivity because they do not
consider the effects of variations in extraneous features (Hall
and Plack 2009; Bizley and Walker 2010). In general, brain
mapping of naturalistic sounds is a powerful instrument for
the study of low-level feature encoding because: 1) It exploits
the rich low-level structure of naturally occurring stimuli that
likely shapes the neural processing starting from the auditory
nerve (Lewicki 2002); 2) it makes it possible to measure en-
coding of multiple sound features within a single experiment;
3) it makes it possible to test for cortical selectivity. In this
study, we considered 12 different low-level features and ob-
served selectivity for 5 of them. Overall, these analyses
confirm previous hypotheses of a pitch-encoding center in
the lateral HG (e.g., Zatorre 1988) and of a right-lateral bias
for the processing of spectral features (spectral centroid, but
also HNR; e.g., Zatorre and Belin 2001). We also observed
left-lateralized encoding of loudness in the temporal cortex, a
rarely observed functional hemispheric asymmetry that could
originate from the exclusive allocation of right-hemisphere re-
sources to the processing of the rich spectral structure of the
stimuli in the current study. Finally, the left SPL appeared to
encode selectively the pattern of temporal variation of loudness.
This result might be indicative of a role of this low-level feature
in the cortical analysis of auditory and multimodal tool-action
events (e.g., a series of loudness impulses for hammering nail
versus less abrupt temporal variations for sawing wood; see
Lewis 20006, for a review). In the following, we discuss the
results for each of the low-level features in more detail.

Pitch

The median of the time-varying pitch was encoded bilaterally
in an area of the temporal cortex that includes the lateral HG.
A significant body of evidence supports the hypothesis of a
general pitch-encoding center in the lateral HG (Zatorre 1988;
Johnsrude et al. 2000; Gutschalk et al. 2002; Patterson et al.
2002; Bendor and Wang 2006; Hyde et al. 2008; Foster and
Zatorre 2010). The general validity of this position has re-
cently been criticized on the grounds that some of the studies
consistent with this hypothesis are carried with synthetic
stimuli from the same class (iterated ripple noises, Hall and
Plack 2009). Our results thus provide strong support for the
hypothesis of a general pitch-encoding center in the lateral
HG, because the stimuli investigated in this study are highly
diverse in their low-level structure.

Spectral Centroid

The right medHG and PT encoded the amount of temporal
variation of the spectral centroid. In general, these results
agree with the hypothesis of finer spectral processing abilities
in the right temporal cortex (Zatorre and Belin 2001; Schon-
wiesner et al. 2005; Warren et al. 2005; Jamison et al. 20006;
Kumar et al. 2007; Obleser et al. 2008; see Zatorre and
Gandour 2008, for a review; Altmann et al. 2010) and with
that of a specialization of the PT in the analysis of time-
varying spectral patterns (Griffiths and Warren 2002; Zatorre
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and Belin 2005). The right-lateralized encoding of this feature
is, at least apparently, at odds with the frequent observation
of a left-hemisphere specialization for the analysis of the tem-
poral variation of spectral information (Zatorre and Belin
2001; Poeppel 2003; Boemio et al. 2005; Schonwiesner et al.
2005; Zatorre and Gandour 2008). However, we note that
several studies did reveal encoding of the spectrotemporal
variation in both the right and left temporal cortices. They
also show that hemispheric asymmetries generally emerge as
a function of the rate of spectrotemporal variation rather than
of overall temporal variation (left-hemispheric specialization
for faster rates, e.g., Belin et al. 1998; Boemio et al. 2005; see
also Obleser et al. 2008), whereas our spectral-centroid IQR
measure captures the amount of temporal variation across
slower and faster rates.

Harmonicity

The median HNR was encoded in the right pSTG/STS and in
the bilateral ACC/medFG (peak effect in the right hemi-
sphere). The right lateralization of the pSTG/STS encoding of
this feature is perhaps suggestive of cortical computations
based on spectrum-matching processes rather than on an
analysis of the temporal structure of the incoming waveform
(cf., right-hemispheric advantage for spectral processing; see
above). From the psychophysical point of view, HNR ac-
counted for the dissimilarity ratings of environmental sounds
in Gygi et al. (2007), and for the tool versus animal categoriz-
ation in Lewis et al. (2005). Within the brain-imaging litera-
ture, ACC has been reported to differentiate between highly
harmonic voiced speech and less harmonic whispered speech
(Schulz et al. 2005). Notably, only 2 studies investigated sys-
tematically the cortical encoding of HNR (Lewis et al. 2009;
Leaver and Rauschecker 2010). Consistently with our results,
both of these studies observed right-temporal sensitivity to
HNR, although in more anterior regions. It should be empha-
sized, however, that the cortical representation of HNR
appears to be largely dependent on the investigated sound set
(cf. variability of HNR-sensitive centers for animal vocaliza-
tions and iterated ripples noises in Lewis et al. 2009). Given
the paucity of studies on the cortical processing of HNR, state-
ments about a general processing center are premature. Given
the high relevance of HNR for the behavioral evaluation of
heterogeneous sets of environmental sounds (e.g., Gygi et al.
2007), it is plausible that the participants in this experiment
focused on this same low-level feature when carrying out the
1-back repetition-detection task inside the scanner (e.g.,
answer “repetition” if 2 subsequent stimuli have highly
similar HNR values; note that the task did not explicitly
impose constraints on the response strategies). As such, the
encoding of the median HNR in the ACC might be the
product of task-related processes: This cortical area is indeed
part of a “salience network” involved in decisional processes
based, for instance, on sensory information (Seeley et al.
2007) and in the processing of errors and conflicts (Menon
et al. 2001; Ridderinkhof et al. 2004). Furthermore, it is
hypothesized to be part of a network that supports focal audi-
tory activity (Hunter et al. 2006).

Loudness

Two loudness features were encoded in the left hemisphere:
The median of the time-varying loudness in the primary audi-
tory cortex, extending also to anterior planum temporale, and
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the overall pattern of time-varying loudness in aSPL. Among
various studies carried out with synthetic sounds, only Brech-
mann et al. (2002) observed a clear left-lateralized bias for the
processing of the overall loudness of a sound signal, whereas
partial agreement emerges concerning the role of the PT in
the processing of this property (see Ernst et al. 2008, for a
review). Among the various factors that might explain these
divergences, it might be speculated that the higher complexity
of the spectral structure of the sounds in the current exper-
iment strengthened the right-lateral bias for the processing of
spectral properties at the expense of the processing of ener-
getic features such as loudness in the same hemisphere. Fo-
cusing on the role of the left SPL in differentiating between
temporal patterns of loudness variation, it is interesting to
note that this area appears to be involved in the processing of
tool-action events in the motor, visual, and auditory domains
(Lewis et al. 2005, see Lewis 2000, for a review; and Giusti
et al. 2010, for cortical processing of action sounds in left SPL;
see Griffiths 2008; Rauschecker and Scott 2009; Recanzone
and Cohen 2010, for role of SPL in dorsal pathway), and in
the online updating of actions (Tunik et al. 2008). Notably,
psychophysical investigations of naturalistic sounds suggest
that the identification of the actions carried out on an object
relies primary on the temporal patterning of the sound signals
(e.g., bouncing versus breaking of a glass bottle, Warren and
Verbrugge 1984). As such, the role of SPL in differentiating
between temporal loudness patterns might potentially sub-
serve processes of sound-based motor control and of sensory-
motor transformation.

Making Sense of a Variable Environment

In this study, we revealed that the spatial patterns of acti-
vation in various regions of the temporal cortex label auditory
objects as exemplars of 2 ecologically relevant categories:
Sounds generated by vibrating living objects, and action
sounds involving a human agent. The exact nature of the
neural processes at the basis of this result remains to be de-
tailed. For example, category encoding might be product a
non-linear feature-combination analysis that merges infor-
mation from multiple low-level features (Sadagopan and
Wang 2009). Independently of the exact nature of the neural
code, it is important to emphasize that it appears to be inde-
pendent of between-sound differences along various funda-
mental dimensions of auditory sensation such as loudness,
pitch, and timbre-related dimensions such as spectral centroid
and HNR (note the investigation in this study of different
measures of dissimilarity along each of these dimensions). As
such, the categorization code appears to be optimized for car-
rying out a job that is very important for an adaptive organ-
ism: Recognizing basic properties of the objects that populate
the environment in the face of variations along several attri-
butes of the input sensory information (King and Nelken
2009). In our ancestors, general-purpose abstract encoding
mechanisms that serve to extract biologically relevant
auditory-object information might thus have spurred the de-
velopment of increasingly sophisticated strategies for the
robust categorical processing of calls, ultimately resulting in
the emergence of phonetic analysis processes at the basis of
the speech ability.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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