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Sommario

La percezione permette agli animali di ottenere informazioni sull’ambiente a par-
tire dalle informazioni in arrivo ai sistemi sensoriali. Nel caso dell’ascolto, la porzione
dell’ambiente d’interesse è la sorgente sonora, ad esempio un solido in vibrazione, e
l’informazione in arrivo è contenuta nel suono. Quali sono le capacità percettive degli
esseri umani in condizioni quotidiane? Quali sono le proprietà della sorgente sonora rile-
vanti per l’ascoltatore? Quale è la natura dell’informazione acustica utile alla percezione
della sorgente sonora? Rispondere a questi quesiti è stato l’obiettivo principale di questa
tesi, che si è focalizzata su uno dei suoni più frequentemente incontrati durante la vita
quotidiana: il suono d’impatto.

La tesi inizia con la presentazione di due degli approcci teorici rilevanti per la compren-
sione della percezione della sorgente sonora: l’approccio dell’elaborazione dell’informazione
e l’approccio ecologico. Una rassegna esaustiva della letteratura sulla percezione della
sorgente viene utilizzata come punto di partenza per la discussione delle assunzioni
dell’approccio ecologico. Viene quindi presentata una rassegna della letteratura sulla
percezione del timbro, cioè sulla percezione dei toni degli strumenti musicali, accompa-
gnata dalla rianalisi di dati precedentemente pubblicati. I risultati di questa rianalisi
evidenziano una forte rilevanza delle proprietà fisiche degli strumenti musicali nello spie-
gare la percezione del timbro, collegando cos̀ı la percezione di materiali sonori musicali e
non.

Sono state condotte tre indagini empiriche. In ciascuna di esse i suoni di impatto
sono stati generati dall’interazione tra due oggetti reali o simulati: un oggetto altamente
smorzato - il martello - e un oggetto vibrante - l’oggetto sonoro. In ciascuno di questi
studi il dato comportamentale è stato spiegato sia in base alle proprietà della sorgente
che in base alle proprietà acustiche. Ancora, la relazione tra proprietà della sorgente e
struttura acustica è stata indagata, evidenziando quei parametri acustici che specificano
univocamente le proprietà della sorgente. In questo modo è stata verificata la presenza
di sufficiente informazione acustica per il perfetto allineamento tra percezione e proprietà
della sorgente sonora.

Il primo studio ha investigato l’identificazione del materiale dell’oggetto sonoro. Sono
state osservate buone capacità di identificazione quando erano implicate discriminazioni
tra materiali di proprietà meccaniche altamente differenti, ad esempio metallo e plastica.
D’altra parte, la discriminazione tra materiali caratterizzati da proprietà meccaniche sim-
ili, come nel caso del legno e della plastica, è stata trovata altamente deficitaria, essendo
basata sulla grandezza dell’oggetto sonoro piuttosto che sul suo materiale. Diverse ipotesi
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sono state avanzate per spiegare il risultato sperimentale sulla base delle proprietà delle
sorgenti dei suoni d’impatto che popolano l’ambiente acustico quotidiano.

Il secondo studio ha indagato la rilevanza delle proprietà dell’interazione tra martello
e oggetto sonoro nel determinare le proprietà percepite del martello, e ha testato la
capacità di percepire indipendentemente martelli e oggetti sonori. Agli ascoltatori è
stato chiesto di stimare la durezza del martello o dell’oggetto sonoro. È stato trovato
limitato supporto empirico a favore dell’indipendenza percettiva dei due oggetti, sebbene
i partecipanti dessero un peso maggiore alle proprietà dell’interazione nello stimare la
durezza del martello, e un peso maggiore alle proprietà dell’oggetto sonoro nello stimare
la durezza dell’oggetto sonoro.

Nel terzo studio sono state comparate la rilevanza percettiva del martello, dell’oggetto
sonoro e delle proprietà della loro interazione. A questo scopo è stato utilizzato un com-
pito sperimentale che non richiedesse l’uso di etichette linguistiche relative alla sorgente
sonora: la stima della dissomiglianza. A questo modo sono stati eliminati degli eventuali
effetti di disturbo che avrebbero limitato la validità ecologica dei risultati sperimentali.
Si è trovato che il giudizio sperimentale si basa sulle proprietà dell’oggetto sonoro e, sec-
ondariamente, sulle proprietà dell’interazione. Non sono state trovate prove a favore della
rilevanza percettiva del martello.

La comparazione dei risultati ottenuti nei diversi studi ha permesso di ottenere infor-
mazioni circa le proprietà della sorgente e del suono rilevanti per la percezione quotidiana
dei suoni d’impatto e delle loro sorgenti. Si può concludere che la percezione quotidiana
è basata sulla grandezza e sul materiale dell’oggetto sonoro e, secondariamente, sulle
proprietà dell’interazione tra martello e oggetto sonoro. Parallelamente dal punto di
vista acustico la percezione quotidiana si fonda sulla frequenza e durata del segnale e,
in maniera secondaria, sul centro di gravità spettrale o centroide spettrale della porzione
d’attacco.

Infine, in tutti gli studi sono stati trovati diversi parametri acustici che, limitata-
mente al contesto sperimentale, specificano univocamente differenti proprietà della sor-
gente sonora. È stata perciò trovata sufficiente informazione acustica per il perfetto
allineamento tra proprietà fisiche e percepite della sorgente. Ciononostante i soggetti
sperimentali hanno mostrato un disallineamento tra proprietà fisiche e percepite della
sorgente. Questo risultato è stato quindi contrastato con l’assunzione dell’approccio eco-
logico in base alla quale la percezione è basata sulla detezione di proprietà invarianti
dell’informazione sensoriale, ovvero sulla detezione di quei tratti della struttura acustica
che specificano univocamente le proprietà della sorgente sonora. Si può concludere che,
ai fini della spiegazione della sorgente nei suoni di’impatto, il concetto di invariante è
inutile.



Summary

Perception allows animals to gather information concerning the environment starting
from information input to the sensory systems where, in the case of audition, the relevant
portion of the environment is the sound source (e.g., a vibrating solid) and the incoming
information is contained in the sound wave. What are the perceptual capabilities of
humans under everyday conditions? Which properties of a sound source are relevant to
the perceiver? What is the nature of the acoustical information useful for sound source
source perception? Answering these questions has been the main goal of this thesis, which
focused on one of the most frequently encountered types of sound during everyday life:
impact sounds.

The thesis begins with a presentation of two of the theoretical approaches relevant to
the understanding of sound source perception: the ecological and information-processing
approaches. A comprehensive review of the literature on source perception is then taken
as a starting point for the discussion of the assumptions of the ecological approach. A
review of the literature on timbre perception, i.e., on the perception of musical instrument
tones, along with a reanalysis of previously published data, is also presented. Results of
the reanalysis point out the strong relevance of the physical properties of the musical
instruments in explaining timbre perception, thus linking perception of nonmusical and
musical acoustical materials.

Three empirical investigations were conducted. With each of them, impact sounds
were generated by the interaction between two real or simulated objects: a highly damped
object - the hammer - and a vibrating object - the sounding object. Across studies
behavioral data were explained both in terms of source and acoustical properties. Also,
the relationship between source properties and acoustical structure was studied, pointing
out those acoustical parameters that uniquely specified the source properties. In this
way the presence of sufficient acoustical information for unbiased perception of the source
properties of interest was ascertained.

The first study investigated identification of the material of the sounding object. Good
identification capabilities were observed when discrimination among materials of vastly
different mechanical properties were involved (e.g., metal and plastic). On the other
hand, discrimination between materials of similar mechanical properties (e.g., wood and
plastic) was highly impaired, being based on the size of the sounding object rather than
on its material. Several hypotheses were formulated, which explained the observed re-
sponse biases with the properties of the impact sound sources that populate our everyday
acoustical environment.
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The second study investigated the relevance of the properties of the interaction be-
tween hammer and sounding object in determining perceived hammer properties, and
ascertained the ability to perceive hammers independently from the sounding objects.
Listeners were asked to rate the hardness of either the hammer or the sounding object.
Limited support for perceptual independence between the two was pointed out, although
participants weighted interaction properties more heavily when rating hammer hardness,
and weighted sounding object properties more heavily when rating sounding object hard-
ness.

The third study investigated the relative perceptual relevance of hammer, sounding
object and interaction properties. A task that did not require the use of source-related
linguistic labels was used: dissimilarity rating. Thus possible biases in the experimental
procedure limiting the ecological validity of results were eliminated. Participants based
their judgments on the properties of the sounding object, and, to a limited extent, on
the properties of the interaction. No evidence to support the perceptual relevance of the
hammer was found.

Comparison of results across studies allowed us to gather knowledge on the source and
acoustical properties relevant to everyday perception of impact sounds and sources. Thus,
everyday perception was found to be most likely based on the size and material of the
sounding object and, to a secondary extent, on the properties of the hammer/sounding
object interaction. From the acoustical point of view, everyday perception was found
to be based on signal frequency and duration and, to a secondary extent, on the attack
spectral center of gravity or spectral centroid.

Finally, in all studies, acoustical parameters were found, which uniquely specified
different properties of the sound source within the experimental context. Thus acoustical
information for unbiased perception of the source properties was found. Nonetheless
participants revealed perception to be misaligned with respect to the actual physical
properties. This result was contrasted with the assumption of the ecological approach
according to which perception is based on the detection of invariant properties of the
sensory information, i.e. on the detection of those traits of the acoustical structure that
uniquely specify the properties of the sound source. As a result it was concluded that the
concept of structural invariant is not useful to the understanding of source perception in
impact sounds.
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Chapter 1

Introduction

Our everyday environment is populated with widely diverse species of sounds (cracks,
drippings, etc.), originating from equally diversified sources: breaking objects, vibrating
liquids, etc. When we encounter these sounds, we are likely to become aware of the
nature of the physical events that generated them, thus demonstrating one of the most
important tasks of our perceptual system: the use of the incoming information for the
extraction of properties of the environment.

We rarely make the effort to realize consciously, just from hearing, that what is
approaching is an automobile rather than a motorbike, or that a wood log is being sawed
rather than struck. Nonetheless, solving this problem represents a challenge to researchers
in audition. Many issues are still open, from the delineation of auditory capabilities in
recognition of the properties of the sound source, to that of the properties of the sounds
used by humans to these purposes, and arriving at a theoretical framework capable of
giving a good account of the empirical data. These problems are part of what constitutes
the field of sound source perception and have been the focus of this thesis.

Chapters 2-4 present the conceptual tools needed to carry research in this field. Chap-
ter 2 presents and contrasts two theories of perception relevant to the understanding of
sound source perception. Chapter 3 outlines the necessary methodological tools. Chapter
4 reviews the published literature on sound source perception, outlining possible future
directions for research and testing part of the theoretical assumptions presented in Chap-
ter 2 with available empirical data. Within this same chapter the literature on timbre
perception is also reviewed, and previously published data are reanalyzed in order to
point out the common traits between source and timbre perception.

Chapters 6-8 present three experimental studies. These are written in the form of
stand-alone papers and can be read independently of the rest of the thesis. All studies
investigated one of the simplest and yet most ubiquitous sound sources in our acoustical
environment, the impacted sound source (e.g., fingers tapping on a keyboard). The
main goal has been to outline both the source and acoustical properties relevant to the
perception of impact sounds and sources.

Particular care has been taken with respect to the ecological validity of the exper-
imental results. Thus, through methodological choices and the comparison of results
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2 Chapter 1. Introduction

gathered in the different experimental studies, knowledge useful to the understanding of
the perception of impact sounds and sources in everyday conditions have been generated.
Finally, on the basis of experimental results, a few conclusions are drawn concerning the
future directions for the theoretical development of this field.



Chapter 2

The theoretical framework

Perception is the act of gathering information about the environment. The survival
of a species is a good proof of the efficiency of such an act. How is this possible? Dif-
ferent theories have different assumptions, and explanations, concerning the nature of
perception.

To better point out these differences we shall briefly outline the path that links the
environment to perception. In the case of audition the portion of the environment with
auditory relevance is the sound source, most of the times a vibrating object. In normal
conditions objects are not located in empty space, but are surrounded by air. The
vibrations of an object are then transmitted to the surrounding air particles and spread
through the medium, where they travel under the form of a wave, eventually reaching
our ears. We refer to the sound source as a distal stimulus, and to the acoustical wave
that reaches our ears as the proximal stimulus. Changes in the source determine changes
in the structure of the sound, i.e., a variation in the distal stimulus causes a variation in
the proximal stimulus (see Section 3.2). Different theories of perception make different
assumptions concerning the nature of the relationship between properties of the distal
and proximal stimuli.

Once the sound reaches our ears and causes the tympanum to vibrate, a complex
chain of reactions in the nervous system is triggered, which results in the emergence
of the sound as we experience it perceptually. A second source of disagreement among
theoretical approaches is found in the assumptions concerning the nature of the processes
that link the properties of the proximal stimulus with the perceived properties of the
environment.

This chapter outlines the main issues of two theoretical approaches to perception: the
ecological approach and the information processing approach. Theoretical contributions
focusing explicitly on sound source perception are highlighted. Several examples are
drawn from studies on visual perception.

3
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2.1 The ecological approach to perception

The ecological approach to perception is the fruit of the work of J. J. Gibson (Gibson,
1966, 1979), who dedicated his efforts to develop a theory of how the organism comes to
know the world. The main assumptions of this approach are:

1. the proximal stimulus specifies uniquely the distal stimulus;

2. perception of the properties of the distal stimulus is direct and does not require
additional computations carried out within the perceptual system;

3. perception is veridical.

An excellent overview of the ecological approach to perception is given by Michaels
and Carello (1981). This section draws much from their work.

2.1.1 Invariants

When an object is observed from a variable distance, several properties of the stimula-
tion arriving at the retina change, such as the size of the retinal projection. Despite these
variations, the perceived size of the object remains constant. When the voice of a familiar
person is heard over the phone or in person, the structure of the acoustical signal changes
drastically. Despite these changes, identification of the talker remains unchanged. In
these examples perception of properties of the environment (the size, the talker) remains
constant despite variations in the structure of the proximal stimulus (the retinal projec-
tion, the acoustical signal) caused by variations in the distal stimulus (the distance of the
object, the system that transmits the acoustical signal). These phenomena are referred
to as perceptual constancies and are of central relevance for the development of theories
of perception.

The ecological approach explains perceptual constancies on the basis of the properties
of the stimulation. The fact that constant perceptions are possible despite variations in
the proximal stimulus means that part of the stimulus structure remains unchanged. In
other words, the proximal stimulus is characterized by invariant properties, and constant
perceptions are based on the detection of such stable structures. Invariants are defined
as higher-order variables of stimulation that specify the properties of the environment,
often through a pattern of variability over time. The link between invariants and temporal
variability of stimulation is well exemplified by the work of Johansson (1973) on biological
motion. In this research several actors were asked to walk in a dark room while wearing
light emitting/reflecting spots, attached to the joints of their body (e.g., knees) in a dark
room. Walking humans were unanimously recognized in the resulting dynamic point light
displays. With static displays, however, recognizing humans was impossible: information
for perception was thus found in the pattern of temporal variability.

It is possible to distinguish between two types of invariants: structural invariants
specify the properties of the objects in our environment; transformational invariants
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specify changes in the properties of the objects. Structural invariants allow us to recognize
that an object is a chair, for example, despite variations in its size, shape, in its distance
from the observer, or in the viewpoint, or to recognize the same melody even though it is
played with different musical instruments, at different intensities, or in different rooms.
In this latter case the invariant structure is found in the ratios among the fundamental
frequencies of the tones that compose the melody (see Section 3.2.2 for a definition of
fundamental frequency). Transformational invariants allow us, for example, to recognize
that a sound source is approaching us or moving away from us, independently of whether
it’s the whistle of a train or the horn of a car. The invariant is found in the frequency
and intensity variations of the signal reaching the listener where, independently of the
particular source, both increase when the source is approaching and decrease as the source
passes and moves away1. Another example of a transformational invariant in audition
is found in the structure of the acoustical signal that allows us to distinguish between
a bouncing and a breaking object (Warren & Verbrugge, 1984). A bouncing object
generates a series of impact sounds progressively closer in time, while with breaking,
after an initial burst of noise which is due to the rupture of the object, the signal is given
by a superimposition of many independent bouncing sound sequences, originating from
each of the pieces of the broken object (see section 4.3 for a more detailed presentation
of this study).

Using invariants to explain perceptual constancies is equivalent to assuming that at
some level of analysis the properties of the environment are uniquely specified by the
structure of the proximal stimuli: I recognize that Luciano is talking over the phone, or
in the next room, therefore some property of the acoustical signal specifies that the talker
is Luciano across these circumstances, i.e. uniquely. Unique specification of the distal
stimulus in the structure of the proximal stimulus is a key assumption of ecological theory.
An important consequence of this is that the most sensible approach for the specification
of the relevant information for perception, and of invariants, is based on the analysis of
the relationship between the properties of the distal stimulus and those of the proximal
stimulus. Such an analysis takes the name of ecological optics, if we are concerned with
vision, or ecological acoustics if we are concerned with audition.

2.1.2 The animal and the environment

Traditionally psychology has treated the animal and the environment as two distinct
units, and research has focused on the study of the former. The ecological approach
rejects this dualism and claims that the study of perception should consider jointly the
animal and the environment. This choice has several relevant consequences.

First, research within the ecological framework focuses on everyday perception, inves-
tigating stimuli and conditions that characterize the interaction of the animal within its
usual environment. As such, auditory perception should be studied using, for example,

1The change of the frequency of the signal emitted from a moving source, reaching a stationary listener
is known as the Doppler effect and is due to the fact that the number of wavefronts reaching the listener
increases as the source approaches and decreases as it moves away.
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slamming doors or jingling key sounds, rather than white noises or sinusoids (Gaver, 1988,
1993a). Also, experimental settings where stimulation is impoverished with respect to
everyday conditions should be avoided (e.g., tachistoscopic presentation of visual stimuli,
too brief to be informative of everyday vision), as providing no information about the
nature of everyday perception.

Second, the study of the information for perception has to consider the properties of
the sensory systems of the animal. Different animals are indeed sensitive, or attuned, to
different properties of the stimulation. Bees, for example, are sensitive to the polarization
of light and detect ultraviolet wavelengths; bats have developed a highly sophisticated
system for the analysis of echoes, which serves perception of the properties of the surfaces
that reflect the acoustical waves. In the case of research on human audition, this would
imply that the characterization of the investigated stimuli should consider at least the
most basic properties of the peripheral auditory system.

Third, research must consider that information is not passively imposed on the animal.
The animal, in fact, explores the environment, actively determining the stimulation it is
exposed to. It should be noted, however, that at least in the case of everyday audition,
many of the acoustical signals that reach our ears are not generated by our actions or
explorations but are generated by external events and are thus passively imposed on us.

A final consequence of the rejection of the animal-environment dualism is found in
the concept of affordance. Affordances are the “acts of behavior permitted by objects,
places, and events” (Michaels & Carello, 1981, p. 42). Affordances, for example, are
those properties of the stimulation that specify that we can sit on a surface, grasp an
object, or eat a fruit. According to the ecological approach, it is affordances that are
perceived by the animal. The notion of affordance reveals the centrality of action to
the ecological approach, which assumes action itself to be the most appropriate test for
perception. Accordingly, Carello, Anderson, and Kunkler-Peck (1998) studied auditory
perception of the length of a rod dropped on the floor, asking participants to match the
perceived length of the rod to their distance from a visible surface, as if they could reach
this with a rod of the estimated length (see Section 4.3 for a more detailed presentation of
this study). It should be pointed out, however, that it is not always possible to highlight
proper tests of perception based on action: which action should be used to test whether
one perceives that an object is made of plastic or wood, for example?

2.1.3 Direct perception

The ecological approach explains perceptual constancies with the properties of the
proximal stimulus. Alternative explanations might however be formulated based, for
instance, on previous experience. For example, one might hypothesize that visual size
constancy (i.e., perception of constant size despite variation of the distance of the object
from the observer) is achieved on the basis of previous experiences of the same object.
This hypothesis was tested by Epstein (1965). In this study observers were asked to
judge the size of three pictures of differently sized coins (a dime, a quarter, half a dol-
lar), pictures being enlarged/reduced to the same size, and being located at a constant
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distance from the observer. Configurations were presented in a dark room illuminated
with a spotlight, and were observed monocularly through an aperture. Results showed
perceived size to be scaled to the actual size of the coins, demonstrating size perception
to be influenced by previous experience with coins. These results, however, would not be
accepted by those embracing the ecological approach, as the experimental methodology
adopted provided the observer with impoverished information with respect to that avail-
able in everyday conditions (for instance monocular observation through a fixed aperture
eliminates the differences among the retinal images at the two eyes, known as retinal
disparity).

According to the ecological approach, the only information upon which perception is
based is contained in the proximal stimulus, and no information coming from previous
experiences or from internal computations is added. As a consequence the concept of
memory is discarded as not useful to the understanding of perception. Also discarded is
the concept of unconscious inference, according to which internal processes reconstruct
the most probable distal stimulus from incomplete sensory evidence (see Section 2.2.2).
These assumptions define perception as direct, a key concept in the ecological theory.

As a consequence of the rejection of internal computations, the ecological approach
states that the animal simply detects, or picks up, the relevant information contained
in the incoming stimulation. The concept of information pickup is exemplified by the
metaphor of resonance. Acoustic resonance was, for example, used by H. L. F. von
Helmholtz (1821-1894) to analyze musical sounds. Helmholtz resonators were hollow
spheres with two opposite openings. The air inside the resonator had a natural frequency
of vibration, determined by the geometry of the resonator (for example the larger the
volume of the spherical cavity, the lower the natural frequency). The air in the resonator
vibrates in response to the sound entering the opening, and its response is maximal when
the incoming sound has significant energy at the natural frequency. Thus the Helmholtz
resonator operates a sort of spectral analysis without needing complex intermediate pro-
cessing, responding selectively to frequencies thanks only to its structure. According to
the ecological approach perceptual systems pick up information in a manner similar to
Helmholtz resonators, respond selectively to particular aspects of the incoming stimula-
tion.

2.1.4 Veridicality of perception

Does a physical reality exist? What is its relationship with perception? The ecolo-
gist adopts the position of realism, which posits the existence of a physical reality whose
properties are independent of perception. If the physical reality is independent of per-
ception, then perception has to reflect its properties, i.e., perception should be veridical.
In opposition, idealism gives primacy to perception, stating that what we might know of
the physical reality is determined by perception, and that what we have access to is the
product of perception and not a physical reality.

Realism is often criticized with reference to the assumption of veridicality of percep-
tions, sometimes found to be in error, i.e., they do not necessarily reflect the properties of
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physical reality. Different instances of error can be outlined. None of them, according to
the ecological approach, disprove the assumption of veridical perception. Misperceptions
might arise in the absence of sufficient information for the specification of the objects
and events in the environment. This includes both conditions representative of the nor-
mal interaction of the animal with the environment (e.g., viewing in presence of fog), as
well as artificial laboratory conditions (e.g., tachistoscopic presentation of visual stim-
uli). Talking about errors of perception in this case would, in principle, be equivalent to
asserting that we are in error if we are not able to see through walls, an evident case of
absence of sufficient information. In other cases, sufficient information might be avail-
able, but it might go undetected because of limits in the sensory apparatus, or because
the perceptual system is still not tuned to detect it. Accordingly, it is not appropriate
to talk about errors of perception if we are not able to perceive the ground vibrations
that come with relatively weak seismic phenomena. Finally, misperceptions might be
erroneously identified in those cases when, despite sufficient and detectable information,
the perceived properties of the environment are not consistent with those we might mea-
sure with devices other than the perceptual system. This is the case, for example, of
visual illusions (see Section 2.2.2 and Figure 2.1). In such cases, however, we might have
failed in identifying the information that is relevant for the perceptual system, which is
ultimately the information assumed to be detected veridically. Thus the error would not
be at the level of the perceptual system, but would be with those who mistakenly defined
the variables for perception.

After these considerations, it seems that the assumption of veridicality might still be
tested empirically, provided that the variable under investigation is correctly defined, is
transparent to the sensory system of the animal, and provided that sufficient information
is given. But even if misalignments were found, the theory wouldn’t be undermined.
Indeed the ecological approach ultimately rejects the appropriateness of the application
of the term error to perceptions. This label is indeed properly applied to propositions
(e.g., the earth is flat), which can be either true or false. According to the ecological
approach, then, perceptions, as well as actions, are not propositions, but “states of affair”
(Michaels & Carello, 1981, p. 109), and should be conceived in the same way as one might
conceive anatomic parts of the animal. Thus, because the five fingers of our hands can’t
be labeled as erroneous or true, but as useful or not, then perceptions should be evaluated
with reference to their usefulness to the animal-environment interaction.

2.1.5 Contributions to sound source perception

Both the contributions presented here share with the ecological approach the idea
that a better understanding of auditory perception should focus on the distal stimulus.

Balzano (1986) proposed a new approach for the study of timbre perception, and
identification of musical instruments. Since the time of von Helmholtz (1877/1954), the
peripheral auditory system has been conceived as a Fourier analyzer, and timbre per-
ception has been thought to be based on the distribution of energy across the spectrum.
According to Balzano (1986) this view can’t account for several phenomena, such as the



2.1. The ecological approach to perception 9

supposed constancy of musical instrument identification over the pitch range, and across
variations in dynamics (see Section 4.7.1 for a review of the empirical results concerning
pitch effects on musical instrument identification). Consequently “an alternative theory
that [...] more nearly captures what we perceive” is proposed. Following Gibson’s ap-
proach, Balzano (1986) suggests that a more proper framework for the study of timbre
perception, and musical instrument identification, is based on the wave equation which
specifies the vibratory behavior of the sound sources, and is invariant over variations in
pitch and dynamics. Thus timbre perception is better understood with reference to the
properties of the source, and source identification relies on the detection of those invariant
properties of the acoustical information that specifies the source. A similar position is
adopted by Gaver (1988, 1993b). Algorithms for the synthesis of environmental sounds
(e.g., impact sounds, liquid sounds), based on an analysis of the physical behavior of the
sound source, are conceived as “instantiated hypotheses about the acoustic information
for events”, i.e. for perception of source properties.

Another contribution by Gaver (1988, 1993a) concerns the definition of two different
listening modalities. With musical listening the focus of perception is on the properties
of the proximal stimulus per se, and the relevant dimensions of the percept are indepen-
dent of the source. With everyday listening, instead, the focus is on the distal stimulus,
and the perceptual dimensions of interest are related to the sound source. According to
Gaver (1988, 1993a), both listening attitudes can be used for the same sound, although
the second of them would be most frequently adopted during everyday life. A conse-
quence of this hypothesis is that when musical listening is involved, the properties of the
percept should be closely tied to the properties of the acoustical signal, and show little
or no relationships with those of the source. This consequence of the distinction between
musical and everyday listening drawn by Gaver (1988, 1993a) was tested in Section 4.7,
analyzing previously published data on perception of musical instrument sounds.

Finally, a point of strong commonality between the ecological theory and the approach
of Gaver (1988, 1993a, 1993b) is found in the definition of the object of study for the
understanding of perception. As for the ecological theory perception should be studied
using sounds representative of the environment of the perceiver, Gaver conceives research
on source perception as necessarily focusing on the so-called “everyday sounds”, i.e., all
those sounds other than music or speech as breaking and rolling sounds, elsewhere defined
as environmental sounds (cf. Gygi, 2001). Such a position is pushed further by Gaver
in denying the relevance of musical sounds to the understanding of source perception.
This choice is based on two assumptions. Firstly, musical sounds “reflect only a small
part of the range of sounds encountered by people in their everyday lives” (Gaver, 1988,
p. 10). Secondly, given their “quasi-harmonic” nature, musical sounds would “provide
relatively little information about their sources” and would be “too simple to permit easy
identification of their sources” (Gaver, 1988, p. 10). It should be noted that the first
of these assumptions can not be tested on the basis of published data, and is plausible
only if we conceive the “average listener” as having no interest in music. Concerning
the second of these assumptions, it is unclear why the musical “quasi-harmonic” sounds
would offer less source-specific information than the everyday inharmonic sounds. Also,
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the corpus of published data on perception of musical instrument sounds can be used
to test the relevance of source properties to audition of these particular class of signals.
Such analysis is presented in Section 4.7.

2.2 The information processing approach

The ecological approach has been opposed to the information processing approach to
perception (Lindsay & Norman, 1977; Anderson, 1980). The main assumptions of the
latter are:

1. the proximal stimulus is processed in a series of sequential stages, which alter the
information systematically;

2. the proximal stimulus is ambiguous with respect to the distal stimulus;

3. internal processing compensates for ambiguity in the proximal stimulus by way of
additional information provided by internal processes, based on past experience.

2.2.1 Stages in the processing of information

The information processing approach assumes perception to be the end-product of a
multi-stage process which, starting with the proximal stimulus, analyzes and manipulates
the incoming information in specific ways. Thus, the purpose of those adopting the
information processing approach for the study of perception is to trace the sequence of
stages resulting in perception, and the properties of the representations on which they
operate.

A popular example of application of information processing to perception is found in
the work of Marr (1982), who modelled recognition of visual objects as a series of con-
secutive stages, each operating on representations of a different nature. The input to the
process is found in the retinal image, the raw primal sketch, which contains information
about the distribution of intensities. The primal sketch operates on this representation,
generating information on the distribution of edges, contours and blobs. The 2 1/2-D
sketch generates information about the depth and orientation of visible surfaces, and is
centered on the viewing position. Finally, the 3-D sketch generates a three-dimensional
model of the scene, independent of the viewing position. The recognition process would
operate matching the final result of this elaboration to three-dimensional models stored
in memory.

Matching of a representation resulting from the analysis of the incoming stimulation
with information stored in memory is the basis of pattern recognition. Two types of pat-
tern recognition models are found: template models and feature-based models. Template
models assume recognition to be based on the comparison of the pattern of the incoming
stimulation to a copy or template stored in memory. This mechanism would require,
for example, 6 different templates to explain why we recognize the same letter in the
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following patterns: “A”, “A” “A”, “a”, “a”, and “a”. This model is much too complex
to be able to explain human recognition capabilities as it requires a separate template
for each pattern that leads to the same recognition. This limit does not characterize
feature-based models, which assume the incoming pattern to be analyzed in terms of
elementary components or features (in the case of visual patterns the number of lines, of
acute angles, of curves, etc..). Recognition is assumed to be based on the detection of
those basic features, and higher level features that code for the relationships among the
basic ones, that allow constant recognition despite variations associated with a change in
font, size, etc..

2.2.2 Empiricism

According to the information processing approach the sensory information provides
only an impoverished description of the world. Impoverished information is in contrast
with our ability to interact efficiently with the environment, for which sufficiently veridical
perception can be demonstrated. To solve this contradiction, the information processing
approach has to assume that disambiguation of the input is achieved by virtue of addi-
tional information provided by the perceiver. Such an assumption is rooted in the stances
of empiricism, the main paradigm for the study of perception in this century (Gordon,
1989).

Empiricism was spread in perception by Helmholtz, who thought perception to be
the result of the application of a constructive process operating on sensory data, which
adds information to an ambiguous input. The constructive process takes the form of an
unconscious inference, on the basis of which sensory data are interpreted with reference
to previous experiences. A modern version of the unconscious inference theory is found
in the work of Gregory (e.g., Gregory, 1970). The principle can be explained examining
a famous visual illusion: the Ponzo illusion (see Figure 2.1).

Figure 2.1: Ponzo illusion

In this configuration, despite the fact that the two horizontal segments have the same
physical length, the upper segment is perceived as longer than the bottom one. According
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to Gregory, several visual illusions result from the wrong application of rules for the per-
ception of three-dimensional objects to the perception of two-dimensional configurations.
In the case of the configuration in Figure 2.1, the mistakenly applied rule takes the name
of size-constancy scaling.

When the same object is viewed from two positions, one farther than the other, it’s
retinal projection changes, becoming smaller when the object is observed from a greater
distance. Despite the difference in size of the retinal images, the size of the object
is perceived as constant. This occurs because the visual system compensates for the
variation in the size of the retinal image caused by a variation in the distance of the
object from the observer (size-constancy scaling). Consequently the small retinal image
of an object perceived at a farther position results in the same perceived size as the
larger retinal image of the same object perceived at a closer position. This process is
triggered by cues for depth. One of these cues is found in linear perspective, according
to which parallel lines converge as their distance from the observer increases. In the case
of Figure 2.1, the visual system treats the obliqueness of the two flanking lines as a cue
to depth, where the closer the point on the line is to the convergence point, the farther
its position from the observer appears to be. This depth information is extended to the
two horizontal lines, so that the upper one, closer to the convergence point, is assigned a
farther position in the three-dimensional space. According to the size-constancy scaling
this line is also perceived as longer than the lower one, which is assigned a closer position
in the three-dimensional space.

Gregory’s explanation reveals the role that the so-called errors of perception are given
for the understanding of the functioning of the perceptual systems. Indeed, the informa-
tion processing approach conceives errors as “valuable to us because the mechanics of a
system are frequently revealed primarily through its errors and distortions” (Lindsay &
Norman, 1977).

2.2.3 Top-down vs bottom-up

It is possible to distinguish among processes for perception depending on whether
they are based on the information input to the sensory system or not. In the first case we
talk about bottom-up or data-driven processing. The approaches to recognition presented
in Section 2.2.1 are based exclusively on bottom-up processing.

Several studies provide evidence that sensory information alone is not able to explain
perception. Warren (1970) presented listeners a speech sequence, replacing the central
phoneme in one of the words with either a cough or a tone. Listeners reported hear-
ing the missing phoneme despite the absence of information in the incoming stimulation
(phonemic restoration). When perception is determined by information not present in
the stimulation we talk about top-down, or conceptually-, schema-, knowledge-driven pro-
cessing. With the phonemic restoration effect the source of information for the perception
of the missing phoneme is found in the phonemes flanking the cough/tone and in the lis-
teners knowledge of the language. In other words, the additional information comes from
the “context of the sensory event” (with Warren’s configuration the sensory event evoked
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by the cough/tone), where context is the “information that is accumulated and routinely
used to understand events”, “as well as the overall environment in which experiences are
embedded”(Lindsay & Norman, 1977).

When embedded in a meaningful context, recognition might require a lower amount
of information. For example, when embedded in the drawing of a face, the drawing of
an eye needs much less detail to be properly recognized than when presented out of this
context (Palmer, 1975), as shown in figure 2.2.

Figure 2.2: Effects of context on the amount of information needed for recognition.
Adapted from Palmer (1975).

Thus with meaningful context, information for perception becomes redundant : the
detailed drawing of the eye embedded in the context of the face drawing contains much
more information than is actually needed for proper recognition. Redundancy of infor-
mation is far from being useless. Indeed in the presence of redundancy, recognition is
made robust, as distortions, or missing detections of portions of the signal in input do
not cause a failure in recognition.

2.2.4 Contributions to sound source perception

In this section two sound source perception models are presented. Each of them,
in accordance with the information processing approach, conceives perception as the
result of a multi–stage process. However, in both cases some traits of the models reveal
influences of the ecological approach too.

Figure 2.3 shows the stages of the sound source recognition model outlined by (McAdams,
1993). The sensory transduction stage involves the processing of the incoming signal by
the cochlea, and the conversion of the movements of the basilar membrane in electrical
signals transmitted through the fibers of the auditory nerve. As a result of this pro-
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Figure 2.3: Stages of processing of information for sound source recognition, after
McAdams (1993)

cessing, two different representations might be generated, one which codes the spectral
evolution of the signal in time, the other its temporal fine-structure. Auditory group-
ing processes operate on the representations output by the sensory transduction process.
The task of this process is to link those portions of the incoming information originat-
ing from the same sound source (Bregman, 1990), resulting in the formation of auditory
objects or streams. Grouping processes are distinguished on the basis of the time scale
on which they operate. Simultaneous integration links together simultaneous portions
of the incoming representation and allows perceiving the note of a musical instrument
as a single perceptual entity or auditory object, rather than as a mixture of unrelated
spectral components. Sequential integration processes group together auditory events
presented successively in time, and allows the piano tones in an orchestral composition
to be perceived as a single stream. A second distinction among grouping processes is
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drawn according to whether they are based on the incoming information alone (primi-
tive or bottom-up processes), or on previous knowledge of the listener (schema-based or
top-down processes). Schema-based processing facilitates the segregation of the voice of
someone pronouncing our name from the mixture within which it appears. The result of
the grouping processes is then analyzed in terms of its relevant features. One can distin-
guish among features depending on whether their extraction operates over short or long
time spans. Microtemporal properties are extracted over short time spans (milliseconds
to centiseconds), and allow us to perceive whether a given signal has been generated
by a large, rather than a small, struck object. Macrotemporal properties are extracted
over longer time spans (up to a few seconds), and allow us to distinguish between break-
ing and bouncing objects (Warren & Verbrugge, 1984). According to McAdams (1993),
extracted properties can also be conceived as invariants, properties of the stimulation
that specify the source. Structural invariants, for example, would be part of the class of
the microtemporal properties. The extracted features are then compared with the audi-
tory lexicon, representations stored in long-term memory which define different classes of
sound sources. Recognition is conditional on the activation of one representation in the
auditory lexicon. Finally, items in the lexicon of names, concepts, and meanings, might
be activated, allowing identification (naming), and programming of appropriate actions.

Richards (1988) proposed a sound source recognition model, closely connected to the
model by Marr (1982) for visual object recognition. The model comprises three sequential
stages, each operating on different representations. The vibration of the tympanum, in
response to the incoming sound, is transduced into a spectrotemporal representation that
codes the temporal variation of the vibration of the different portions of the basilar mem-
brane in terms of neural activity. This representation is further elaborated in the primal
sketch. Comparison of the information coming from the two inner ears allows portions
of the representations originating from different sources to be separated. Potential fea-
tures for the representation of the primal sketch are onset and offset time, tonal quality,
frequency change, and harmonic structure. The central stage of the model is the 2 1/2-D
sketch, which codes the information in a listener-position centered framework. Sound
sources are conceived as comprising four components: a power source P, an oscillator O,
a resonator R, and a coupler C. For example, in the case of voice the source of power
is the lungs, the vocal folds are the oscillator, the resonator is the vocal tract, and the
mouth is the coupler. Thus the signal A input to the auditory system, with dimensions
time t and frequency f , is given by the properties of the P, O, R, and C components, and
by the properties of the environment k, as mediated by phenomena such as reflections or
echoes. This characterization is formalized in equation 2.1:

A (f, t) = k
n∑
i

gi(P,O,R,C) (2.1)

where n is the number of sources that generate the incoming signal, and gi is the function
that links the signal generating from each source to its constitutive components. Equation
2.1 is proposed as potentially solvable by the auditory system, and source perception
is suggested to be better understood by means of the study of the influences of the
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P, O, R, and C components, as well as of their interaction, on the structure of the
acoustical signal/auditory representation. Finally, the 3-D sketch, by analogy with the
model outlined by Marr (1982), would represent the acoustically meaningful environment
independently of the position of the listener. The usefulness of this latter representation is
however questioned by Richards (1988), as all information for recognition would already
be contained in the 21/2-D sketch representation. The central stage of the model by
Richards (1988) expands the approach that Balzano (1986), inspired by the ecological
approach, proposed as a new framework for the study of timbre perception. In both cases
the study of source behavior is of primary relevance to the understanding of perception.
However Richards (1988) considers a somewhat more detailed characterization of the
source, as well as the effects of the environment on the signal/information and the presence
of simultaneous sources.

2.3 Converging and diverging traits in the ecological

and information processing approaches

Contrary to the information processing approach, the ecological approach seems to
bypass the question of how perception is achieved (McAdams, 1993), as it assumes per-
ception to be based on resonance to information, without further specifying the nature
of this process. Thus it is not surprising that the ecological approach has been defined
as analogue to the behaviorist stimulus-response approach, which discarded explanations
based on internal processes and representations (Epstein, 1982). Indeed, for the ecologi-
cal approach the question concerning how perception is achieved seems to reduce to the
problem of highlighting the stimulus properties upon which it is based. In seeking an
explanation for perception in the stimulus information alone, in the detected invariants,
the ecological approach has a trait in common with the feature-based pattern-recognition
models outlined in Section 2.2. Indeed both can be conceived as bottom-up approaches
to perception (Eysenck, 2001, p.29). Perception being explained in both cases on the
basis of properties of the incoming information, it is not surprising to find a commonality
between the concept of invariant and that of feature. Indeed, in both cases the percep-
tually relevant variables are assumed to be independent of extraneous variations in the
configuration, such as the size, the orientation, and the font for letters.

One point of strong opposition concerns the veridicality of perception, assumed by
the ecological approach, but not by the information-processing approach. Although this
assumption appears easily tested empirically, the considerations outlined in Section 2.1.4
show that this might not be the case. Another point of strong opposition is found in
the conceptions of direct, and indirect perception. Epstein (1982) presents convincing
arguments in favor of the indirect approach, based on experimental evidence. As stated
several times in this chapter, the direct approach asserts that perception is a function of
the proximal stimulus alone. As such, the theory assumes that no internal representations
can influence the properties of the derived percept. Such an eventuality is however found
in what Epstein (1982) defines as percept-percept couplings, i.e., those cases in which
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one property of the percept influences another perceptual property. A percept-percept
coupling has been outlined, for example, by Gilchrist (1977), where, despite the constant
luminance of a target patch in a visual display, it’s perceived lightness depended on
whether it was perceived as coplanar to one region or another of the display. Cases like
this point toward the relevance of internal representations in determining the properties of
the percept, and strongly contradict the direct perception theory. None of these cases are
found, to my knowledge, in the literature on sound source perception, and the question
of whether source perception is direct or not still remains open.





Chapter 3

Methodological issues

This chapter presents the methodological instruments needed to carry out research on
sound source perception. The first section defines the research design in this field. The
second section describes the acoustically relevant properties of the sound source, focusing
on struck bars and plates, and highlights relevant acoustical parameters associated with
the different source properties. The third, and final section summarizes briefly the main
methodologies used for behavioral data collection in this field.

3.1 The research design in sound source perception

The research design in sound source perception has been formalized by Li, Logan,
and Pastore (1991). The object of study can be described at three different levels: the
physical or mechanical level, the properties of the sound source; the acoustical level, the
structure of the signal; the perceptual level, the properties of the percept evoked by the
incoming signal, as inferred from the behavioral response (see Figure 3.1).

Figure 3.1: The research design in sound source perception, after Li et al. (1991).

A complete research design should analyze all the pairwise relationships among these
three levels.

Concerning the physical level, a wise approach is to adopt the most complete, and
finely grained characterization possible, in order to avoid assumptions concerning which
properties of the source are perceptually relevant. This suggestion shouldn’t be taken
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literally, so that in a hypothetical study on the auditory discrimination of metals one
shouldn’t consider the melting temperature as a descriptor variable. Instead, the selection
of the set of physical descriptors should be ideally based on knowledge coming from the
field of physical acoustics, i.e. from previous studies concerning the acoustically relevant
physical variables.

Concerning the acoustical level, three indications should be followed. First, the com-
putation of the selected descriptors should take into account knowledge concerning the
processing of the signal in the auditory system (see Section 2.1.2). Second, the selection
of acoustical descriptors should take into account, when available, previous knowledge
of how source properties structure the acoustical signal (see Section 2.1.1). Third, even
though not strictly linked with source properties, acoustical variables found in previous
research to be associated with judgments of similar signals should be included.

Concerning the experimental methodology used to investigate source perception, one
indication should be followed. When investigating perception of a given source property
using direct judgments, say identification of the material of a struck object, the exper-
imental set should include variations in material, as well as variations in other source
properties, such as size. In other words one should also include variations in extrane-
ous properties, referred to as perturbation variables. As pointed out by Gaver (1988),
this “allows a more strict test of whether subjects can actually perceive the attribute
in question despite irrelevant changes in the sounds”. Another advantage of the use of
perturbation variables is that of increasing the generalizability of experimental results to
everyday listening conditions, in which sources are not constrained to vary along only one
property. The generalizability issue suggests also that when investigating source percep-
tion with techniques that do not require direct judgments (e.g., dissimilarity ratings or
classification, see Section 3.3), one should include variations of as many source properties
as possible.

Analysis of all the pairwise relationships among the three levels allows increasing
knowledge on how source properties structure the acoustical signals, and on the physical,
and acoustical determinants of source perception. In my opinion, both the physical,
and acoustical levels should be conceived as alternative and equally important ways of
characterizing the stimulation. Each of them serves different purposes: considering the
physical level allows for the gathering of knowledge directly related to the interaction
of the animal with the environment while considering the acoustical level allows us to
understand the medium upon which this interaction is based.

As pointed out by Li et al. (1991), the analysis of the acoustical determinants of
perception should be complemented with a final experimental phase where those variables
found to be associated with participants’ judgments are explicitly manipulated by the
experimenter. This additional stage in the research design has the purpose of highlighting
a causal link between acoustical properties and source perception, a link that cannot be
established with the correlational procedures usually used to investigate the relationship
between the acoustical and perceptual levels. Manipulation of the stimuli might be
necessary for another reason: usually with real signals, or with signals synthesized on
the basis of a physical model of the source, some acoustical variables may be correlated
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with one another. Thus it might happen that more than one acoustical descriptor can
explain equally well the same behavioral variable. In this case the experimenter might
decorrelate them in a final experiment, manipulating the recorded or synthesized signals.
Correlations might be found among source properties as well. For example, it is already
known that with solid objects density and elasticity are correlated, where denser materials
are also stiffer (Waterman & Ashby, 1997). Then a final decorrelation experiment might
be necessary when strongly associated physical variables explain participants’ responses
equally well. In this case, then, it might be useful, or even necessary, to use simulated
sound sources. Indeed, with real objects it might be difficult or even impossible to build
experimental sets where these variables are not correlated.

3.2 Source properties and structure of the acoustical

signal

This section focuses on the physics of the two sources that have been studied in
this thesis, and that have been the main focus of research on impact sounds: bars
(Gaver, 1988; Lakatos, McAdams, & Caussé, 1997; Lutfi & Oh, 1997; Carello et al.,
1998; Houix, McAdams, & Caussé, 1999; Roussarie, 1999; Lutfi, 2001; Klatzky, Pai, &
Krotkov, 2000; McAdams, Chaigne, & Roussarie, 2004; Houix, 2003), and plates (Rous-
sarie, 1999; Kunkler-Peck & Turvey, 2000; Giordano, 2003; Tucker & Brown, 2003). The
physical variables that influence the properties of the acoustical signals generated by these
vibrating systems are presented. When appropriate, these are linked with acoustical de-
scriptors used in previous research on source perception or in the investigations presented
in this thesis. The following presentation is based on three monographs, Handel (1989),
Rossing, Moore, and Wheeler (2002), Fletcher and Rossing (1991), and on additional
material cited throughout the section.

3.2.1 Simple harmonic motion

The simplest vibrating mechanical system is composed of a mass m attached to a
spring, and free to move longitudinally, i.e. along the direction of the spring (Figure 3.2).

When displaced a distance x from the equilibrium position and released, the mass
moves back to the initial position thanks to restoring forces of the spring. However, its
inertia causes the mass not to stop its motion at the initial position, but to pass after it,
or overshoot. Again, restoring forces will move the mass back to the equilibrium position,
and inertia will cause the mass to overshoot again. In other words, the mass will oscillate
around the equilibrium position. With this system the relationship between the restoring
force F , and the displacement x of the mass is governed by Hooke’s law: F = −Kx,
where K is called spring constant or spring stiffness. When F is proportional to x, the
motion of the mass is a sinusoidal function of time, and is called simple harmonic motion.
The natural frequency f of the vibrating system, with which the mass oscillates around
the equilibrium position in absence of external driving forces, is given by Equation 3.1.
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Figure 3.2: Simple harmonic motion: mass-spring system.

f =
1

2π

√
K

m
(3.1)

In absence of energy dissipation, the oscillation of the mass would go on forever.
However, for a number of different physical causes, generally referred to as damping, the
amplitude of the vibration decreases with time, and the mass eventually stops at the
equilibrium position again.

3.2.2 Modes of vibration

A slightly more complex system can be created by linking the mass to two springs
clamped at their ends, and allowing the mass to move in one plane only. In this case
the mass can vibrate both longitudinally, i.e. along the line connecting the springs at
equilibrium, as well as transversally, i.e. perpendicular to this line (Figure 3.3). The
system, thus, will have two vibrational modes, one longitudinal, and one transversal.

As we add more masses, and springs to the system, the number of vibrational modes
increases. With two masses and three springs the system has two transversal and two
longitudinal modes; with three masses and four springs both the transversal and lon-
gitudinal modes will be three, and so on. A system with an infinite number of masses,
which approximates the case of a vibrating string, has infinite transversal and longitudinal
modes.
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Figure 3.3: Vibrational modes of a two springs/one mass system.

Figure 3.4: First three transversal modes of a string fixed at both ends (a = antinodes;
n = nodes.

Figure 3.4 shows the first 3 transversal modes of vibration of a string fixed at both
ends. The frequency of the nth mode is given by Equation 3.2.

fn =

√
T

ρ

n

2L
with n = 1, 2, 3, ..., (3.2)

where T is the tension of the string in newtons (N), which provides the restoring force
to the vibrating system, ρ is the linear density of the string in kg/m3, and n is a positive
integer indexing the transversal vibrational mode. The frequencies of the vibrational
modes are integer multiple of that of the first mode, called the fundamental frequency.
In this case the frequencies of the vibrational modes constitute an harmonic series.

As can be seen in Figure 3.4, for each mode, there will be positions on the string
where the displacement is always zero. For the second vibrational mode this is the case
for the two extremes of the string and for its center. These positions are called nodes.
Conversely, for each mode there will be positions were displacement reaches its maximum
value, corresponding to the center of the string for the first mode. These positions are
called anti-nodes.

Vibrational modes are independent of each other, and for this reason they are also
called normal modes of vibration. Vibrational modes are independent because it is pos-
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sible to excite each of them selectively. This, in general, is done by driving the vibrating
system to oscillate at the frequency of the particular vibrational mode, using one of a va-
riety of methods, such as mechanical or acoustical excitation. When the frequency of the
external driving force equals the frequency of a specific vibrational mode, the amplitude
of vibration of the system will increase significantly, and the system is said to resonate.

3.2.3 Vibration of bars and plates

Bars, as well as strings, are conceived as one-dimensional vibrating systems. In strings
the restoring forces are supplied by the tension, while in bars restoring forces are supplied
by the rigidity of the material. In bars three types of vibrations are possible: longitu-
dinal, transversal, and torsional. As in strings transversal vibrations are perpendicular
to the length of the bar, along which bending takes place. In longitudinal vibrations
the bar expands and contracts in length. In torsional vibrations the bar twists around
a longitudinal symmetry axis. In the following presentations only transversal modes of
vibration are considered.

Many properties of the bar affect the frequency of its vibrational modes. First, how
the bar is supported at each of the two extremes, which define the so-called boundary
conditions, second the geometry of the cross section, third the length, and fourth its
density and elastic properties, which jointly determine the speed of waves within the bar.

For each of the two extremes, three different boundary conditions are possible: the
bar can thus be free to vibrate at both ends, or be rigidly clamped, or simply supported
(hinged) (see Figure 3.5).

Figure 3.5: Boundary conditions for a vibrating bar. Top: freely vibrating; middle:
clamped; bottom: simply supported.

Equations 3.3, 3.4, and 3.5 give the frequency of the nth transversal mode when both
extremes are, respectively, free, clamped, or simply supported (hinged).
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Free-free: fn =
πK

8L2

√
E

ρ
m with m = 3.0112 for n = 1 and m = (2n+ 1)2 for n > 1

(3.3)

Clamped: fn =
πK
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m with m =

{
1.1942, 2.9882

}
for n = {1, 2} and m = (2n− 1)2 for n > 2

(3.4)

Simply supported (hinged): fn =
πK

2L2

√
E

ρ
n2 with n = 1, 2, 3, ..., (3.5)

where L is the length of the bar; K, in meters, is a constant called radius of gyration which
depends on the geometry of the section of the bar (K = h/

√
12 for a bar of rectangular

cross-section, and thickness h; K = r/2 for a bar of circular cross-section of radius r);
ρ is the density of the bar, in kg/m3; E is the Young modulus, which characterizes the
elasticity of the material and is measured in N/m2. In particular, in a bar subjected to
a longitudinal stress, the higher the value of E, the lower the longitudinal strain. The

quantity
√
E/ρ gives the speed of longitudinal waves.

A variation of all the terms in Equations 3.3, 3.4, and 3.5 determine a change in the
absolute frequency of the vibrational modes, but not of their ratios. One of the acous-
tical measures used by Klatzky et al. (2000) and McAdams et al. (2004) to characterize
bar sounds takes into account these dependencies: the frequency of the lowest spectral
component. If all the other source properties are kept constant, indeed, variations in
the frequency of the lowest spectral component unambiguously specify the length of the
bar, as in Klatzky et al. (2000) and in two of the stimulus sets investigated by McAdams
et al. (2004), or its density, as in one of the sets investigated by McAdams et al. (2004).
Variations of the boundary conditions determine a change in both the frequency of the
vibrational modes and in their ratios. In particular, when both extremes are simply sup-
ported, frequencies are less widely spaced. For this reason, it is likely that a variation in
the boundary condition would result in a change in the amount of inharmonicity of the
generated signals (i.e. deviation from the harmonic relation).

Plates can be considered as two-dimensional bars or as stiff membranes. As with bars,
the frequencies of the vibrational modes are influenced by the boundary conditions, by
the elastic properties, by the density, and by the geometrical properties. If the plate is
simply supported at all four edges, the frequencies of the vibrational modes are given by
Equation 3.6.

fmn = 0.453

√
E

ρ (1− ν2)
h

(m+ 1

Lx

)2

+

(
n+ 1

Ly

)2
 (3.6)

where ν is a dimensionless constant called Poisson’s ratio, which gives a measure of the
lateral contraction of a solid subjected to a longitudinal strain; Lx and Ly are the width
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and the length of the plate, respectively, and m, and n are positive integers which give the
number of nodal lines along the length, and the width of the plate, respectively, without
counting the nodes at the edges.

Equation 3.6 highlights how variations in the elastic properties, in the thickness, and
in the density of the plate determine a change in the modal frequencies, but not in their
ratios. The same effect is achieved when the size of a plate (height × width) is varied,
keeping shape constant (height/width ratio). A variation in each of these parameters
alone is uniquely specified by the frequency of the lowest spectral component of the
generated signal. This acoustical descriptor was used in the experiments presented in
Chapters 6 and 8, where plates of constant shape, variable size and variable material
were investigated. It should be noted, however, that in these cases the frequency of the
lowest spectral component did not uniquely specify the size or the material properties
(density, elasticity) of the plates, as both were varied within the stimulus sets investigated.

More complex effects are associated with a variation in the shape of the plates, which
alter the absolute value, as well as the ratios among modal frequencies. Following the
same considerations as for the variation in the boundary conditions in bars, it is likely
that variations in the shapes of the plates determine variations in the inharmonicity of
the modal frequencies. Inharmonicity measures, however, were not considered in previ-
ous studies on shape perception (e.g., Lakatos et al., 1997). Performance was instead
explained measures related to the modal frequencies. Lakatos et al. (1997) investigated
recognition of the height/width ratio of struck bars, large enough to be considered as two-
dimensional systems, and thus capable of transversal bending modes along the length and
width. Accordingly, one of the descriptors used to explain participants’ performance was
the ratio of the frequency of the lowest transversal mode related to the height, to the
frequency of the lowest transversal mode related to the width.

Up to this point it has been assumed that the material of the plates and bars have
constant elastic properties in all directions. This condition, which characterizes for exam-
ple metals and glass, is called isotropy. The elastic behavior of isotropic materials can be
fully characterized using two constants: the Young modulus, and the Poisson’s ratio. For
other materials, however, the elastic properties are not constant in different directions,
and more than two elastic coefficients are needed. With orthotropic materials, such as
wood, different elastic properties are found along three orthogonal axes: a longitudinal
axis, parallel to the direction of the fibers, or grain; a radial axis, in the direction of
growth of the rings, and a tangential axis. A variation in the elastic properties along the
different directions determines a variation in the waves velocity, and thus in the frequency
of the vibrational modes. Although several previous studies have investigated sets gener-
ated by striking both isotropic and orthotropic bars or plates, none of them has explicitly
related this distinction to the structure of the acoustical signals.

3.2.4 Damping

Damping refers to the dissipation of energy in the vibrating system. Damping is
responsible in first place for the decay of the amplitude of vibration, and consequently



3.2. Source properties and structure of the acoustical signal 27

for the decrease in the overall amplitude of the radiated sound. Further, damping causes
a decrease in the modal frequencies, although this effect often may be considered as
secondary. It is possible to distinguish among different types of damping, and thus,
among different mechanisms responsible for energy dissipation. Internal damping refers
to energy losses resulting from various processes within the material of the vibrating
object. Structural damping refers to energy losses resulting from the relative motion of the
vibrating element with respect to the structures that eventually support it. Additional
damping is provided by the interaction of the vibrating element with the surrounding
medium. When the surrounding medium is the air we talk about air damping (Fletcher
& Rossing, 1991); when the medium is a fluid we talk about fluid damping (de Silva,
2000).

Wildes and Richards (1988) developed an internal damping model with the intent
of extracting an acoustical measure that uniquely specifies the material of an object.
Following the work by Zener (1948), Wildes and Richards (1988) proposed material to
be specified by a measure of internal damping, the coefficient of internal friction tanφ,
given by Equation 3.7.

tanφ =
α

πf
(3.7)

where f is the frequency of vibration, and α is a quantity termed the damping factor,
defined as the reciprocal of the time te required for the amplitude to decay to 1/e of its
starting value. Damping increases with internal friction, so that highly damped mate-
rials, such as rubbers, are characterized by higher tanφ values. The model by Wildes
and Richards (1988) assumes a linear relationship between damping factors and frequen-
cies, where α increases with increasing frequency, i.e. the amplitude of higher frequency
vibrations drops faster.

The tanφ model has been used both for synthesis (van den Doel & Pai, 1998), and
analysis (Tucker & Brown, 2003) of impact sounds. In the latter case the signal was
processed with a bank of bandpass filters, and, roughly speaking, an average tanφ value
was computed, applying Equation 3.7 to the amplitude of the output from each filter, f
being their center frequency. It should be noted, however, that for recorded signals, the
extracted tanφ values are not determined by internal damping alone. Indeed, in this case
damping of vibration is determined also by the way the plate is supported (structural
damping) and by the interaction with the air medium, or, in the case of underwater
recordings (Tucker & Brown, 2003), with the surrounding fluid. Thus the tanφ measure
extracted from recorded impact sounds is to be conceived as a rough damping measure.

More complex damping models have been used for the synthesis of impact sounds
(Doutaut, Matignon, & Chaigne, 1998; Lambourg, Chaigne, & Matignon, 2001) inves-
tigated in sound source perception research (McAdams et al., 2004; Roussarie, 1999).
In Doutaut et al. (1998), the relationship between damping factors and frequency is
quadratic and not linear as in the tanφ model. The perceptual relevance of the quadratic
damping model was tested by (McAdams et al., 2004; Roussarie, 1999). Lambourg et al.
(2001) modeled three independent sources of damping: two internal damping mechanisms
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(thermoelastic and viscoelastic damping), as well as one mechanism of air damping, the
energy losses due to acoustic radiation (radiation damping). The perceptual relevance of
this damping model was tested in Roussarie (1999). Interestingly, an acoustical measure
closely related to tanφ was found to be associated with the behavioral outcome: the slope
of a linear function relating the frequency of the spectral components to their damping
factors α.

In chapters 6, 7, and 8 an approach similar to that adopted by Tucker and Brown
(2003) was used to extract a rough damping descriptor from the investigated sounds ac-
cording to the tanφ model. The choice of the simplest of the damping models, among
those tested in previous perception studies, was based on the assumption of at-best-
limited capabilities of the auditory system in the discrimination between a linear and
quadratic damping model (cf. McAdams et al., 2004; Roussarie, 1999) and between
these and more complex models (cf. Lambourg et al., 2001). Such an assumption was in
part supported by the above-highlighted relevance of a tanφ-related acoustical measure in
explaining performance with stimuli generated according to the three-components damp-
ing model by Lambourg et al. (2001), whose perceptual relevance was tested by Roussarie
(1999).

3.2.5 Interaction properties

All studies that investigated vibrating plates and bars have adopted the hammer -
sounding object paradigm according to which signals were generated by a highly damped
object - the hammer - striking a vibrating object - the sounding object (i.e., the bar or
plate). As a result of the high damping of the hammer, it’s vibrations are so negligible
that the acoustical energy they generate can be assumed as perceptually irrelevant. This
section focuses on the acoustically relevant parameters of the hammer-sounding object
interaction.

Vibrating systems theoretically have an infinite number of vibrational modes. Poten-
tially, for each of them a spectral component should be found in the generated signal.
However, depending on the position where the hammer stroke is applied, only some of the
vibrational modes are excited. In particular, those modes that have a node in the position
of the stroke are excited minimally, while those that have an antinode in the position of
the stroke are excited maximally. Figure 3.6 shows the nodal lines for the lowest three
vibrational modes of a square isotropic plate. The dots mark the striking positions for the
selective maximal excitation of each of them. Different striking positions are also more
or less efficient in exciting torsional, transversal, or longitudinal modes of vibration. For
example, if a bar is struck on a surface perpendicular to its length, longitudinal modes
are maximally excited (c.f. Houix, 2003).

A hammer stroke introduces kinetic energy into the vibrating system, the sounding
object. The higher the amount of kinetic energy introduced into the system, the larger
the amplitude of oscillation and the louder the resulting sound. In general, the higher the
striking force, or, conversely, the higher the mass and acceleration of the hammer, the
higher the kinetic energy introduced in the vibrating system and the louder the resulting
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Figure 3.6: Nodal lines for the lowest three vibrational modes of a square isotropic plate.
Gray circles show the striking position for the selective, maximal excitation of each of
them.

sound. Similar considerations were made by Grassi and Burro (2003) and Grassi (2005)
to motivate the use of signal power as acoustical the acoustical correlate of hammer mass.

During the stroke, the hammer and sounding object remain in contact for a finite
time τ . The contact duration of τ has a direct influence on the vibration of the sounding
object as those vibrational modes whose period is longer than τ will not be excited
efficiently (Benade, 1979). Thus for increasing τ the resulting sound will be characterized
by decreasing high frequency energy. Also, a decrease in τ will determine a decrease in
spectral centroid, or spectral center of gravity, defined as the amplitude weighted average
of the frequencies of the spectral components (see Marozeau, de Cheveigné, McAdams,
& Winsberg, 2003, for a brief discussion of the different definitions of spectral centroid).

Chaigne and Doutaut (1997), following the work by Landau and Lifshitz (1981),
derived Equation 3.8, relating contact time τ and the properties of the hammer, the
sounding object, and to the initial velocity of the hammer (striking velocity). A basic
assumption is that the hammer strikes a flat sounding object, i.e. with infinite radius of
curvature. This assumption is valid for almost all the impact sound sources investigated
in perceptual research.

τ = 3.2181
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µ is the reduced mass of the hammer and the sounding object, a quantity introduced to
simplify notation, given by Equation 3.9; mh is the dynamic mass of the mallet, given
by the ratio of the impact force to the resulting acceleration; mS is the mass of the
sounding object. In practice, for all impact sounds studied in previous works, mh should
be slightly higher than the static mass of the hammer. Also, mh � mS, so that to a first
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approximation µ, and consequently τ , are independent of mS. K is the force stiffness
coefficient, which, according to Hertz’s law of contact, relates the striking force F to
the compression δ of the mallet during the contact phase (F = Kδ

3/2
h in the analysis

developed by Chaigne and Doutaut (1997)). K is related to the Young modulus E, and
Poisson’s ratio ν of the hammer and sounding object, and the radius of curvature of the
hammer Rh (Equation 3.10). V0 is the initial velocity of the hammer at the beginning of
the contact (striking velocity).

This analysis highlights the dependence of contact time on multiple properties of
the hammer/sounding object source. From equations 3.8, 3.9, and 3.10, and the above-
mentioned considerations, it follows that variations in τ characterize the sources inves-
tigated by Freed (1990), McAdams, Kudo, and Kirchner (1998), Grassi (2005), Grassi
and Burro (2003), Giordano (2003), and Tucker and Brown (2003). Also, variations in
the simulated force stiffness coefficient, associated with a change in contact time, have
been investigated by Roussarie (1999). Among these studies, however, only Grassi and
Burro (2003) and Grassi (2005) explicitly linked τ variations to acoustical properties of
the generated signals, namely spectral centroid. It should be noted, however, that both
Freed (1990) and Roussarie (1999) used this descriptor to explain their experimental re-
sults. Following these considerations, spectral centroid-related descriptors will be used
to describe the signals investigated in Chapters 6, 7, and 8.

3.3 Experimental techniques for behavioral data col-

lection

With a few exceptions, all experimental techniques used to investigate timbre percep-
tion (McAdams, 1993; Hajda, Kendall, Carterette, & Harshberger, 1997) have also been
adopted to study source perception. In this section, the most common among those used
in the studies summarized in Chapter 4 are described.

With identification, listeners are required to assign a verbal label to a given sound.
When the listener is not given a predefined list of labels, free-identification is used (e.g.
Vanderveer, 1979). When the listener is given the list of possible labels to be used,
forced-choice identification is used (e.g. Klatzky et al., 2000). Identification data can
be represented in a confusion matrix, where the frequency, or proportion of times that
a given sound has been assigned a given label is shown. These data can be modelled
using linear regression techniques (e.g. Klatzky et al., 2000), or, preferably, log-linear
and logistic regression models (e.g. Kunkler-Peck & Turvey, 2000; Giordano, 2003), in
order to highlight the physical and/or acoustical determinants for the choice of a given
label.

With classification, the listener is with presented the set of sounds and is asked to sort
them into classes according to a given criterion (e.g., make classes of similar sounds). The
listener might be asked to group stimuli in a predetermined number of classes or might not
be given constraints concerning the number of classes (free-classification). Classification
tasks have been used by Houix et al. (1999)/Houix (2003). With this research, the
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frequencies with which sounds were placed in the same category were transformed into
measures of the distances among them (the higher the frequency, the lower the distance).
This distance measure was then analyzed using clustering algorithms (Gordon, 1999;
Arabie, Hubert, & De Soete, 1996).

With unidimensional scaling, or rating, participants are asked to rate the signals with
respect to a given attribute (e.g., rod length, Carello et al., 1998). Participants’ responses
can be numerical format, or in analog format, as when they are asked to rate the stimuli
by moving a slider along a continuous scale. These data are analyzed using ANOVA
models or linear regression techniques.

With the semantic differential (Osgood, Suci, & Tannenbaum, 1957), the listener is
asked to estimate the position of a given sound along multiple judgment scales defined
by opposing bipolar adjectives (e.g. pleasant-unpleasant, Kidd & Watson, 2003). Data
reduction techniques, namely factor analysis, are then applied to responses in order to
reduce the set of scales to a limited number of salient factors used to judge the sound
set. The factors extracted with this analysis are assumed to correspond to the basic
dimensions used to judge the stimuli.

With dissimilarity ratings, listeners are presented with sounds in pairs, and are asked
to rate the similarity or dissimilarity between them. This method presents the advan-
tage of avoiding a priori assumptions concerning the nature of the perceptually rele-
vant source properties and frees the methodology from linguistic issues. For example,
free-identification can highlight relevant source properties only to the extent to which
listeners possess an adequate vocabulary to describe them. Also, with unidimensional
scaling, the perceptual relevance of physical parameters unknown to the listener (e.g.,
force stiffness coefficient) cannot be directly investigated. These data can be analyzed
using ANOVA models (e.g., Marozeau et al., 2003) to test specific hypotheses concerning
the determinants of dissimilarity ratings or can be related directly to acoustical or source
properties using correlational or regressive techniques (cf. Iverson & Krumhansl, 1993).
However, the statistical models of choice for the analysis of dissimilarity rating data are
multidimensional scaling (MDS) models (Borg & Groenen, 1997; Cox & Cox, 1997). In
general, MDS techniques map ratings of the dissimilarities between experimental stimuli
to their distance within a geometrical structure, a space defined by a given number of
dimensions. The dimensions of the space are then assumed to represent the perceptual
dimensions attended to by listeners to perform the rating (cf. McAdams, 1993) and are
interpreted with reference to known stimulus properties. The main MDS models used in
timbre and source perception research are summarized in the following section.

3.3.1 Multidimensional scaling models

The classical MDS model (Torgerson, 1958; Gower, 1966), maps dissimilarities dij

among stimuli i and j to Euclidean distances in an R-dimensional space:

dij =

[
R∑

r=1

(xir − xjr)
2

]1/2

(3.11)
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where xir is the location of stimulus i along dimension r. Distances in this model are
rotationally invariant. For this reason, in interpreting the configuration, the analyst is
free to rotate the MDS solution until the location of the objects along the dimensions
reflects known object properties. This ambiguity in the choice of the dimensions of the
MDS model is eliminated in the INDSCAL, or weighted Euclidean, model (Carroll &
Chang, 1970). With INDSCAL, psychologically meaningful dimensions are postulated to
be weighted differently by the different subjects.

dijn =

[
R∑

r=1

wnr (xir − xjr)
2

]1/2

(3.12)

where wnr is the weight of the rth dimension for the nth subject.
The classical model has been extended by Winsberg and Carroll (1989a), with the

extended Euclidean model, EXSCAL, which characterizes stimuli with their location in a
common Euclidean space, as well as with dimensions specific to each of them (specificities
s):

dij =

[
R∑

r=1

(xir − xjr)
2 + si + sj

]1/2

(3.13)

Specificities may be conceived as the “square of the perceptual strength of a feature
possessed by the stimulus” (McAdams, Winsberg, Donnadieu, De Soete, & Krimphoff,
1995). The EXSCAL model have then been extended with the extended INDSCAL model
by Winsberg and Carroll (1989b), where each of the n subjects weight differently both
the dimensions common to all stimuli (wnr), and the set of specificities (vn):

dijn =

[
R∑

r=1

wnr (xir − xjr)
2 + vn (si + sj)

]1/2

(3.14)

With the INDSCAL model the cost of the removal of the rotational invariance is the
introduction of many additional parameters, one for each subject and for each dimension,
which are rarely interpreted, and which often contribute marginally to the improvement
of the ability of the model distances to explain the dissimilarity ratings. This problem was
faced by Winsberg and De Soete (1993) with the CLASCAL model, where application
of the latent-class approach allows a considerable reduction in the number of parameters
needed to model interindividual differences. According to this model, each of the n
subjects is assumed to belong to one of T � n latent classes, where different latent classes
weight the dimensions of the MDS space differently. Thus the CLASCAL model retains
the advantage of the rotational invariance of the configuration, but avoids introducing a
high number of additional parameters. The model distances are given by the following
equation:

dijt =

[
R∑

r=1

wtr (xir − xjr)
2

]1/2

(3.15)
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where each subject is characterized by the probability λn of belonging to each of the T
latent classes, using post-hoc Bayesian techniques.

A final extension of the CLASCAL model (McAdams, Winsberg, Donnadieu, De
Soete, & Krimphoff, 1995), used in Chapter 8, allows the computation of both common
and specific dimensions:

dijt =

[
R∑

r=1

wtr (xir − xjr)
2 + vt (si + sj)

]1/2

(3.16)

It should be noted that this last model includes all those presented above as special cases.





Chapter 4

The empirical framework

In this chapter, several experimental results are summarized that are relevant to the
understanding of sound source perception. Ideally these should include research that has
focused on spatial location or on the movement of the source, as well as those studies
that have focused on properties of static sources other than their location. Also included
should be research on the perception of animate sources, as well as perception of inanimate
sources, i.e., is, studies that have focused on speech or non-speech vocalizations and, if
existent, on perception of animal vocalizations, as well as studies which investigated
signals generated by the vibration of inanimate objects. In the following, research on
animate sources, and on the spatial attributes of sources are not considered. The focus
is, instead, on the perception of static inanimate sources.

Section 4.1 presents studies carried out with heterogeneous sound sets, focusing mainly
on environmental sounds : all those sounds that are classified neither as speech nor as
music (see Gygi, 2001, for a thorough discussion on the definition of the class of environ-
mental sounds).

Inspired by the ecological approach, Gaver (1988, 1993b) developed a taxonomy of
environmental sounds, which provides a useful framework for organizing already collected
results, as well as for directing future research in this field. A hierarchical organization
is drawn, which distinguishes first among the materials involved in sound generation,
and then on the type of interaction. The higher partition distinguishes between sounds
generated by interacting solid objects (solid sounds such as keyboard typing), liquids
(liquid sounds such as pouring), and by direct introduction of a pressure variation in the
atmosphere (aerodynamic sounds such as a bursting balloon). Within these categories
several basic events are distinguished, which involve different types of interactions among
materials. For example, basic solid events are impacts, rolling, deformation, and scraping,
while basic liquid events are dripping, pouring, splashing, and rippling. A distinction is
then made among events resulting from a combination of these basic categories. Bouncing,
for example, results from a temporal patterning of impacts. Compound events are given
by a temporal patterning of different basic events (bowling is given by a rolling followed by
an impact). Hybrid events result from the interaction of materials belonging to different
basic categories (rain is given by the interaction between liquids and solid objects).

35
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The taxonomy delineated by Gaver (1988, 1993b) is used as a basis to organize the
presentation of results collected with smaller sets of sources, given by the experimental
manipulation of a limited number of properties, in Sections 4.2-4.6.

Another class of inanimate sound sources is that of musical instruments. As previ-
ously outlined in Section 2.1.5, Gaver (1988) considered the focus on musical instrument
tones to determine a limited usefulness of research on timbre for the understanding of
source perception. He motivated his position assuming that the “quasi-harmonic” nature
of musical sounds, and the simplicity of their structure, makes them a bad vehicle for
transmitting information on source properties. Also, Gaver (1988, 1993a) distinguished
between two listening modalities: everyday listening, focused on the properties of the
source, and musical listening, focused on the properties of the acoustical signal. A con-
sequence of this definition is that when musical listening is involved the structure of the
percept should present little or no relationship with the properties of the source. This
should be the case for perception of musical instrument tones too. With Section 4.7,
studies on the perception of musical instrument sounds, defining the field of timbre per-
ception research, are reviewed. In particular, a substantial part of previously published
data is analyzed in order to test for the correctness of the position adopted by Gaver
(1988, 1993a), concerning the limited usefulness of musical sounds for the understand-
ing of source perception, and the absence of relevance of source properties to musical
listening.

4.1 Sets of heterogeneous environmental sounds

4.1.1 Identification studies

Vanderveer (1979) carried out several investigations on heterogeneous sets of everyday
sounds. A first free-identification experiment was carried out with adults, who were
presented mainly solid sounds, but also some non-speech human sounds (e.g., coughing),
and were asked simply to describe what they heard. Descriptions addressed mainly the
sound source, in terms of actions assumed to be specified by temporal properties of the
sounds, and in terms of objects assumed to be specified by spectral properties of the
sounds. Descriptions based on auditory properties were much less frequent, and seemed
to be used only in case of uncertainty with respect to the sound source. The most
mentioned source properties were, from the most to the least frequent, the kind of action,
the instrument used to execute the action, and the recipient of the action. Identification
performance was particularly high with non-speech human sounds. Errors seemed to be
based mainly on the temporal properties of the signals (e.g., fingernail scratching on a
book was confused with writing, knocking with hammering). With impact sounds, more
or less detailed information on material could be extracted, where wood and metallic
objects were consistently identified, although with signals characterized by a particularly
fast decay (e.g., dropped book), material identification was seldom possible. Impaired
performance with impact sounds was explained in terms of the absence of source-specific
acoustical information. Free-identification was investigated also with children (age 4-5



4.1. Sets of heterogeneous environmental sounds 37

years). As with adults, descriptions focused on the sound source. Worse recognition
performance than for the adults was observed. It was unclear whether this was due to
an inability to attend to source-specific acoustical information or to limitations in the
available vocabulary. Three additional experiments, conducted with adults, investigated
the similarity of environmental sounds. Two experiments, conducted on different stimulus
sets, used the free-classification technique, and one experiment was based on dissimilarity
ratings. The main determinant of similarity seemed to be the temporal patterning of the
sounds, a result that explains why confusions in the free-identification experiments were
based mainly on the temporal properties of the sounds. In other cases classification
and similarity appeared to be based on the materials involved (e.g., paper sounds were
grouped together by most listeners).

Lass, Eastham, Parrish, Schebrick, and Ralph (1982) investigated free-identification
of animal, inanimate, and musical sounds, as well as speech. High recognition rates were
found. In general, animal sounds were the least correctly identified, followed by inanimate,
musical, and speech sounds. Careful examination of the data reveals that differences
among classes are caused by low recognition for isolated signals. In particular, the lower
performance with animal sounds was due to the inability of listeners to correctly identify
sheep and pig sounds, result probably related to the reduced experience of participants
with countryside acoustical environments.

Gaver (1988) studied free-identification of liquid and solid sounds, such as paper
sounds, impact sounds, walking sounds and machine sounds (electric razor). Participants
were asked to describe what they heard. Consistently with the results ofVanderveer
(1979), descriptions focused on the sound source. In general, the material of the inter-
acting objects seemed one of the most easily recovered source properties. Solid sound
sources were never recognized in liquid sounds, and vice versa. With impact sounds par-
ticipants were also able to recover the size and shape of the interacting objects. Mutual
constraints between materials and actions were observed: crumpling sounds were some-
times confused with multiple impacts, especially when the identified material was hard
(metal can) rather than soft (paper), while when the material was identified as paper, it
was more likely that crumpling, rather than multiple impacts were described.

Ballas and Mullins (1991) investigated the effects of context on the identification of
everyday sounds using a variety of different conditions. Pairs of “nearly homonymous”
sounds were selected, generated by different sources (e.g., the sound of a fuse burning and
that of food frying) and, despite being aurally discriminable, they were highly confused in
the identification tasks. Context was operationalized either by means of linguistic labels
presented along with the sounds, or by means of sequences of sounds belonging to a given
acoustical environment (e.g., kitchen sounds). Context could be either absent, consistent,
or, when related to the other sound of the nearly homonymous pair, inconsistent. Free
and forced-choice identification were used, where in this latter case participants had to
choose between the linguistic labels for the two nearly homonymous sounds. Inconsistent
context impaired identification, biasing listeners to identify a source consistent with the
given context. Consistent context, however, did not enhance identification, leading to the
same performance as when the sound was presented without contextual information.
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Ballas (1993) studied the cognitive, perceptual, and acoustical determinants for the
identification of environmental sounds. A first free-identification experiment was car-
ried out. Identification responses were used to compute a measure of the uncertainty of
participants concerning the source of the sound (Hcu), the higher the value of Hcu the
worse the ability of participants to identify the source. Hcu explained identification times
better than a multiple regression predictor based on acoustical descriptors. In particular,
the higher the Hcu value, the larger the identification time. A second experiment inves-
tigated the relationship between identification and frequency of occurrence of sounds in
everyday conditions (ecological frequency, Ef). Participants were asked to describe the
cause of the sounds they heard at various times of the day, and on various week days.
Sounds with higher Hcu were encountered less frequently during everyday life (had lower
Ef), and lower identification characterized sounds with higher Ef. A linear combination
of spectral, temporal, and signal envelope descriptors, along with Ef explained a high
portion of the variance in identification. In a third experiment, participants were asked
to rate sounds along several scales, describing their auditory properties, several cognitive
factors antecedent to identification (e.g. familiarity with the sound), and several cogni-
tive factors related to identification (e.g., “how easy is it to describe in words the action
that generated this sound?”). Three factors were extracted from the ratings. The first
factor, strongly correlated with identification and Hcu, measured sound’s ease of identifi-
cation. The second factor measured a sound’s timbre (e.g., dull vs. sharp), and the third
a sound’s oddity (e.g., number of events that would produce the sound). The sounds’
loadings on these factors were analyzed with a clustering procedure. Four groups were ex-
tracted. The first contained mainly water sounds, the second signals, the third door and
engine sounds, the fourth sounds made up of multiple transients. Two more experiments
investigated listeners’ performance in accepting or rejecting a given cause for a sound.
Results indicated high probability causes to be accepted faster. Also the typicality of
sounds with respect to their causation was investigated. Results indicated typical sounds
to be associated with faster decision times in cause rejection than non-typical sounds.

Gygi, Kidd, and Watson (2004) (see also Gygi, 2001) investigated the acoustical deter-
minants for the forced-choice identification of vast sets of environmental sounds, including
nonverbal human sounds (e.g., infant cries), or animal vocalizations. A first experiment
investigated the effects of high- and low-pass filtering, varying the cutoff frequency of the
filters. Listeners received training with unfiltered sounds. Identification performance was
found to be particularly high (60% correct at worst) even in the most extreme filtering
conditions. The crossover point, defined as the filter cutoff frequency for equal recognition
performance with high and low-pass was measured. This measure is assumed to give an
estimate of the redundancy of information for identification, where redundancy increases
with decreasing crossover frequency. An estimate of around 1300 Hz was derived from
the data, a frequency close to the lower estimates for speech, which highlighted the high
redundancy of acoustical information in environmental sounds. A second experiment in-
vestigated the effects of band-pass filtering. Trained listeners were used. Performance
decreased drastically for filter center frequencies above 6800 Hz, and below 850 Hz, while
high performance was observed for intermediate center frequencies. A second group of
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experiments tested identification in signals that kept the temporal information of the
original signals, and little or no spectral information. Both trained and naive listeners
were tested. Temporal information was found to be sufficient for above-chance-level cor-
rect performance: the higher the amount of preserved spectral information, the higher
the identification performance. Not surprisingly, training led to significant improvements
in performance. Finally, a large set of acoustical features was used to explain percent
correct identification data for this last set of experiments. Several descriptors (from 5 to
9 across datasets) were needed to account for limited amounts of variance in the original
data. Among the datasets, one of the best predictors was the number of peaks in the
autocorrelation function, a measure of signal periodicity. In particular, the higher the
number of the autocorrelation peaks, the better the identification.

Across studies good source identification abilities were observed. In free-identification
studies by Vanderveer (1979), and Gaver (1988), participants described sounds in terms
of sources and did not use terms referring to perceptual qualities such as pitch or loud-
ness. Care should be taken in interpreting this result, as it might reflect simply a higher
availability of source-related terms, rather than the fact that we hear sources and not
sounds, in line with the assumptions of the ecological approach. On the basis of studies
by Vanderveer (1979) and Gaver (1988), it can be concluded that the materials involved
in the sound generation process, as well as the properties of the interaction, were the most
easily identified source properties. Concerning the acoustical determinants for identifi-
cation, temporal factors were found to be highly relevant both in studies by Vanderveer
(1979) and by Gygi et al. (2004), where in this latter case the amplitude envelope was
sufficient for above-chance identification. Also, Gygi et al. (2004) demonstrated that
acoustical information for sound source identification is highly redundant. Identification
was found to be influenced by the level of experience with the sounds. Sounds experienced
particularly frequently, as with non-speech human sounds in Vanderveer (1979), were par-
ticularly well identified, while the sheep and pig sounds investigated by Lass et al. (1982)
were frequently misidentified, most likely because of the low degree of experience par-
ticipants had with them. The relationship between the likelihood of encountering sound
sources in everyday conditions and identification performance was indeed proved empir-
ically by Ballas (1993), highly frequent sources being better identified than less likely
sources, and vice versa. The relevance of previous experience was further highlighted by
Gygi et al. (2004), who showed training to yield higher identification performance with
sounds where the amount of acoustical information was diminished. Finally, results by
Ballas and Mullins (1991) and Ballas (1993) highlight the relevance of cognitive factors
in identification. Particularly interesting are the context effects reported in Ballas and
Mullins (1991), which, inconsistently with the assumptions of the ecological approach,
reveal that source identification can be influenced by information not contained in the
proximal stimulus.

4.1.2 Semantic differential studies

Björk (1985) investigated a small set of environmental sounds, also comprising animals
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and human vocalizations. Although sounds were selected in order to investigate a set of
signals more representative of our natural acoustical environment, these were presented
in the highly artificial condition of reversed playback, i.e., recorded signals were played
backwards. Five main factors were extracted from the rating data. The first, correlated
with signal roughness, represented an evaluation dimension (pleasant vs. unpleasant).
The second factor, correlated with sharpness and pitch, was interpreted in terms of ac-
tivity (sharp vs. dull). The third factor, correlated with signal loudness, was interpreted
in terms of potency (powerful vs. weak). The fourth factor was interpreted as reflecting
auditory complexity. The fifth factor was related to the fast-slow rating scale.

Ohta, Kuwano, and Namba (1999) studied a set comprising only impulsive sounds,
including sport sounds, explosion and construction sounds, and musical sounds. Four
factors were extracted from the rating data. The first was interpreted as related to
power (clamorous vs. quiet), and separated musical sounds (quiet) from construction and
explosion sounds (clamorous). Clamorous sounds were characterized by a higher overall
loudness and by broader spectral peaks. The second factor was interpreted as related to
reverberation (diffused vs. not diffused) and was explained in terms of level decay time.
Sounds judged as reverberant, mostly musical sounds, were characterized by a slower
decay. The third factor was interpreted as related to metallicness (metallic vs. deep), and
distinguished between sounds generated by striking metallic objects and sounds generated
striking wooden objects, along with explosion sounds. Metallic sounds were characterized
by higher maximum sharpness values and by lower loudness. Interestingly the hard vs.
soft judgment scale had a high loading on this factor, where sounds judged as hard had the
same acoustical properties as those judged as metallic. The fourth factor was interpreted
as related to pleasantness (pleasant vs. unpleasant). Judgment scales with a high loading
on this factor (pleasant vs. unpleasant; refreshing vs. not refreshing; beautiful vs. ugly)
correlated strongly with the sharpness of the spectral peak. This acoustical measure was
interpreted in terms of pitch clarity, more definite pitches being associated with sharper
spectral peaks, where pleasant sounds had a sharper peak.

Kidd and Watson (2003) investigated a vast set of environmental sounds, intended
to cover the range of sounds encountered every day (ambiances, appliances, bouncing,
cars, doors, scraping, water, and wind sounds). Four factors were extracted from the
rating data. The first factor, harshness, was related to pleasantness (breaking sounds
were the least preferred, water sounds the most preferred). The second factor coded for
sound complexity, single impacts (e.g., doors closing) being the least complex sounds,
ambience sounds the most complex (e.g., casino sounds). The third factor coded for
appeal (attractiveness), and quality, water sounds having the highest appeal, scraping
sounds the lowest. The fourth factor coded for object size or signals loudness, explosion
sounds having the highest scores for this factor and sounds generated with small objects
(e.g., bouncing ball) the lowest. Several acoustical descriptors were used to explain the
factor scores. Harsh sounds were associated with a concentration of energy in the higher
frequencies, complex sounds had a lower percentage of within-event silences, appealing
sounds were characterized by high pitches, and a higher spectral variation, and “big”
or loud sounds by a higher total energy, and by a concentration of energy in the lower
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frequencies. Interestingly, if separated groups of sounds were considered, the acoustical
explanations for the factors differed. For example, while for the impact class “big” sounds
were characterized by a higher total energy, the same judgment in the wind class was
given for signals characterized by a higher temporal variability of energy. Also, while
the most preferred water sounds were characterized by a lower energy, and by a higher
percentage of audible silences, the most preferred wind sounds were less repetitive, and
had a higher concentration of energy in the lower portions of the spectrum.

In summary, all of these studies found a loudness-related dimension of judgment, in-
terpreted as potency/power in Björk (1985) and Ohta et al. (1999), and as object size in
Kidd and Watson (2003). Also, all of the researches highlighted a pleasantness-related
dimension, explained by roughness in Björk (1985), pitch salience in Ohta et al. (1999),
and presence of high-frequency energy in Kidd and Watson (2003). Finally, both Björk
(1985) and Kidd and Watson (2003) found a dimension related to sound complexity. The
variability in the acoustical explanation of similar dimensions of judgment across studies
might be related to variations in the considered acoustical descriptors, but also, and more
interestingly, to the variability within the investigated sound sets. Indeed, Kidd and Wat-
son (2003) suggested that the same judgment is based on different acoustical properties
depending on the nature of the stimulus set. This latter result strongly motivates source
perception research carried with sets of relatively homogeneous sounds.

4.2 Isolated impact sounds

All studies conducted on isolated impact sounds have made use of the hammer-
sounding object paradigm for signal generation (see Section 3.2.5). These can be grouped
according to the gross property under investigation. Thus, a main distinction can be
drawn between the studies on the perception of geometric properties of the sounding
object, and those on the perception of material properties of either the sounding object
or the hammer. In this section, studies based on direct judgments on source properties
are presented separately from studies based on dissimilarity ratings.

4.2.1 Perception of geometrical properties

Lakatos et al. (1997) studied discrimination of shape (height/width ratio) in steel and
wood bars. Training on the acoustical effects of shape variation was given prior to the
experimental phase, allowing participants to strike different bars not used in the testing
phase. Sounds were presented pairwise along with two pairs of figures, representing the
two bar shapes. Participants had to indicate which of the two pairs of figures corresponded
to the presented pair of sounds (see Figure 4.1). No feedback on response correctness was
given. Stimuli were equalized in loudness. Steel and wood bars were tested in separate
sessions. A cutoff 75% correct criterion across all stimuli was not reached only by 8.3% of
the participants with steel bars and by 16.6% of the participants with wood bars. Their
data were not further analyzed. Percent correct scores were converted to a dissimilarity
measure and were analyzed with an MDS algorithm. Two and one-dimensional solutions
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Figure 4.1: Experimental method used by Lakatos et al. (1997) to investigate percep-
tion of the shape of struck bars. Participants were presented consecutively two sounds,
generated striking bars with a different heigth/width ratio. Participants had to indicate
which of two pairs of figures (A, B) represented correctly the order of the bar shapes for
the pair of sounds.

were extracted, respectively, for the steel, and wood bars. In both cases one dimension
correlated strongly with the height/width ratio of the bars, with the ratio of the frequency
of lowest transverse modes related to height and width, and with the frequency of the
lowest torsional mode. The second dimension of the steel-bar space correlated with
spectral centroid. Interestingly, a cluster analysis conducted on steel-bar data revealed a
distinction between plate-like and block-like bars that depended on both dimensions.

Houix et al. (1999), Houix (2003) expanded the shape perception study by Lakatos
et al. (1997) using steel bars with variable height/width ratio, struck at different loca-
tions. A first experiment used a classification task. Participants were asked to group
sounds either 1) on the basis of their similarity, 2) on the basis of the shape of the struck
bar, or 3) to create one group per bar, each containing the 6 sounds generated by striking
them at 6 different locations. No constraints on the number of groups were imposed in
conditions (1) and (2). In spite of the fact that acoustical information for shape was avail-
able, partitions were found to reflect only in part the bars’ shapes, and groupings were
explained by the most salient pitch evoked by the sounds, related to the transverse flex-
ural modes of vibration along the height or width. A second experiment investigated the
relative contribution of flexural and torsional vibrational modes to shape discrimination.
The same procedure and the same steel bar signals used by Lakatos et al. (1997) were
adopted. In three additional conditions, synthetic signals were investigated, extracting
from the original sounds either the flexural and torsional mode components, or the flex-
ural components only, or the torsional components only. Proportion correct scores were
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analyzed with MDS and cluster algorithms. Consistently with Lakatos et al. (1997), in all
conditions plate-like bars were partitioned from block-like bars. Two-dimensional MDS
spaces were extracted for all conditions. Dimension 1 in all spaces, excepting the torsional
mode condition, was related to the height of the bars. For the torsional mode condition,
the first dimension was explained by the height/width ratio of the bars. Results were
explained in terms of pitch and amplitude decay.

Lutfi (2001) studied discrimination of hollowness in synthetic struck bar signals. Par-
ticipants were asked to indicate which of two presented sounds was generated striking
a hollow (vs. solid) bar. Length and material of the bars (wood, iron, aluminum) were
varied across pairs. Feedback was given concerning response correctness. Listeners were
found to adopt two different strategies, one based on frequency and decay time, which al-
lowed optimal discrimination between hollow and solid bars, the other based on frequency
alone. The optimal decision strategy was shown to yield at best a small advantage over
the decision rule based on frequency alone.

Kunkler-Peck and Turvey (2000) studied perception of the shape of struck plates. In
a first experiment steel plates with constant area and variable height/width ratio were
investigated. Participants estimated their height and width by mechanically adjusting
the position of two response bars. Estimates were found to be ordered according to the
actual height and width of the plate, and in the approximate range of the actual values.
An underestimation bias was observed however. Performance was explained in terms
of the corresponding modal frequencies of the plates. A second experiment tested the
effect of plate material (steel, wood, and plexiglas) on height/width estimation, using
the same geometrical properties and procedure as for the first experiment. Height and
width estimates decreased as material changed from steel to wood to plexiglas and were
well accounted for by the modal frequencies of the struck plates, which decreased ac-
cordingly. In a third experiment, participants identified the shape of circular, triangular,
and rectangular steel plates. Identification performance was found to be significantly
above chance. In the last experiment, participants identified both shape (circle, triangle,
rectangle) and material (steel, wood, plexiglas). Again shape identification performance
was significantly above chance. Material identification was almost perfect. A secondary
interaction between shape and material was found, steel being associated with triangular
shapes, wood with circular shapes, plexiglas with rectangular shapes.

Gaver (1988) studied length estimation with iron and wood bars. Participants rated
the length of the bars. They were informed of the material variation and, before the
beginning of the experimental phase, were shown the correct response for the longest
and shortest bars. Estimates pooled across participants were scaled with actual length
and were nearly independent of material. However, much interindividual variability was
observed. Only a few participants showed estimates independent of material, while part of
them judged wood bars to be shorter than iron bars, and part of them made the opposite
judgment. Analogous results were obtained with synthetic struck bar sounds. It should be
noted that lower length estimates for wood, rather than iron bars, are highly inconsistent
with Kunkler-Peck and Turvey’s (2000) results, where plates were judged as larger and
wider when their material was wood, rather than steel. A last experiment studied the
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effect of training. Participants were trained to recognize length in real bar sounds, being
afterwards tested with synthetic sounds. A substantial improvement in size estimation
abilities was observed. Interestingly enough, despite the extensive training received,
participants showed a material effect, this time in agreement with results by Kunkler-
Peck and Turvey (2000). Indeed, synthetic metal bars were judged as significantly shorter
than wood bars. It was concluded that the impairment in the absence of training was
not caused by the absence of acoustical information for length, but by the fact that
length judgments are an unfamiliar task to everyday listeners. This conclusion, however,
contrasts with the abilities of untrained listeners reported by Kunkler-Peck and Turvey
(2000), and Carello et al. (1998) (see below).

Tucker and Brown (2003) investigated shape and size perception in wood, plastic, and
aluminum plates struck in open air or underwater. In a first experiment, participants
were asked to identify the shape of constant-area square, circular and triangular plates.
In contrast with results by Kunkler-Peck and Turvey (2000), highly impaired performance
was observed for both the open-air and underwater conditions. Consistently with results
by Kunkler-Peck and Turvey (2000), significant shape-material associations were observed
in the open-air condition, square shapes were more frequently identified in plastic sounds,
circles in wood sounds. In a second experiment, size estimation in struck square-plate
sounds of variable material and area (three levels) was investigated. Participants were
presented pairs of signals generated by striking plates of the same material and were
asked to estimate the size of the plates by adjusting the size of squares presented on a
screen. Better performance was observed with open-air than with underwater recordings
and with aluminum than wood and plastic plates. However, strong estimation biases
were found: size estimation was better when the first sound of the pair was generated
with a medium-size plate, while assimilation effects were found when the first sound of
the pair was either a small or large plate, size estimates for the second sound being biased
toward the size of the first sound. Impaired performance in this last experiment cannot be
explained in terms of an absence of acoustical information for the task, as the difference
in signal frequency between small- and medium-sized plate sounds of the same material,
and between medium and large plates, should have been of the order of two octaves.

Lakatos et al. (1997), Kunkler-Peck and Turvey (2000), Lutfi (2001), one experiment
in Houix (2003), and, to a limited extent, Gaver (1988) demonstrated perception of
geometrical properties to map veridically the actual geometry of the sounding objects.
Variability on veridicality of perception is, however, found across studies. Explaining
these differences might involve differences in the task, in the investigated stimuli, and on
the level of expertise of participants in perception of geometrical properties, as modulated
by pre-experimental training or by feedback on the correctness of responses.

An explanation based on the task seems likely when comparing inconsistencies be-
tween results by Lakatos et al. (1997) and by Houix et al. (1999) and Houix (2003).
Indeed, the accurate shape perception results obtained by Lakatos et al. (1997) were
replicated by Houix et al. (1999) and Houix (2003) using the same discrimination task
and the same stimuli, but were not replicated with a classification experiment carried out
with similar stimuli. Differences between the additional results by Houix (2003) collected
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with synthetic stimuli and those by Lakatos et al. (1997) might, instead, be explained
by differences among stimulus sets, where the synthetic stimuli used by Houix (2003)
might have provided listeners with impoverished acoustical information for shape. An
explanation based on differences among stimuli might also explain the differences between
the accurate shape identification results by Kunkler-Peck and Turvey (2000) and the im-
paired performance reported by Tucker and Brown (2003). Kunkler-Peck and Turvey
(2000) generated stimuli live and struck plates repeatedly before the response was given.
Given the plausible acoustical differences among repetitions, extraction of shape-related
invariants might have been facilitated in the latter case. On the contrary, Tucker and
Brown (2003) investigated recorded stimuli, where for each shape only one signal was
given, so that impoverished shape information might have been available to the listeners.
Concerning size perception, the good performances observed by Kunkler-Peck and Tur-
vey (2000) in auditory estimation of the length and width of struck plates is consistent
with results of Gaver (1988) on estimation of bar length, but not with those by Tucker
and Brown (2003). It should be noted, however, that Gaver (1988) trained listeners,
showing them the correct responses for the longest and shortest bar sounds, so that good
performance is not surprising. An explanation of differences among results of Kunkler-
Peck and Turvey (2000) and those of Tucker and Brown (2003), instead, might be similar
to that formulated above concerning shape identification, but might also involve differ-
ences in the task. Choosing among these alternatives is not possible with the available
information.

More consistent across studies, instead, is the effect of material on geometry percep-
tion. With size perception experiments, both Kunkler-Peck and Turvey (2000), and, with
the majority of participants, Gaver (1988) found wood objects to yield higher size esti-
mates than metallic objects. With shape perception experiments, both Kunkler-Peck and
Turvey (2000) and Tucker and Brown (2003) found circular shapes to be recognized more
often in wood sounds and rectangular shapes in plexiglas sounds. These results show that
geometry perception is influenced also by source properties other than geometry itself.
Geometry perception performance has been associated with measures of the frequencies
of the vibrational modes and of signals frequency (Lakatos et al., 1997; Lutfi & Oh, 1997;
Kunkler-Peck & Turvey, 2000; Houix, 2003). Given the influence of density and elasticity
on the frequency of vibrational modes (see Section 3.2.3), effects of material on geome-
try perception do not appear surprising. It remains however unclear which, among the
material-related properties that influence modal frequencies (density, elastic properties),
is responsible for the material-geometry perceptual coupling, or, alternatively, whether
both should be taken into account.

Lakatos et al. (1997) and Tucker and Brown (2003) found geometry perception per-
formance to be impaired with wood, rather than metal sounding objects. These effects
might be explained with another material-related property: damping. Wood vibrations
are generally more damped than with metals, so that the information attended to by
listeners to judge geometry is impoverished, i.e. the vibrations last for shorter times.
This would explain also why Tucker and Brown (2003) found impaired performance with
underwater sounds as compared with performance with open-air recordings where plates
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vibrations were more damped when the surrounding medium was water rather than air.
Thus a distinction can be drawn among the perceptual effects of the different material
related properties. While density and/or elasticity modulate the acoustical information
used to perceive the geometry, damping modulates its salience, affecting the ability of
the auditory system to detect such information. A psychophysical metaphor might be
used to explain further these effects. Given a certain acoustical signal, perception of ge-
ometrical properties, say size, is not fixed over presentations and might be modeled with
a normal distribution with a given average value and with a given spread or standard
deviation. Therefore it might be hypothesized that while a variation in density and/or
elasticity, along with size variations, affect the average value of the perceived size distri-
bution, damping variations affect the spread of the distribution. In particular increases
in damping are associated with increases in the spread of the distribution of perceptual
effects and with a higher probability of observing impaired performance.

Finally it is interesting to note that both Lakatos et al. (1997), Houix et al. (1999)
and Houix (2003) found a perceptual partitioning of bars in plate-like (i.e. thin bars)
and block-like (i.e., thick) objects. This result points toward the perceptual relevance of
a thickness-related dimension, which remains to be investigated.

4.2.2 Material perception

Freed (1990) studied hammer hardness scaling, with sounds generated by striking
variable size cooking pans with mallets of variable hardness (felt covered rubber, felt,
cloth covered wood, rubber, wood, and metal). Sounds were equalized in loudness. Some
training was given, demonstrating to participants the sounds of the metal, and felt mallets
striking two pans of different sizes. Ratings were found to be scaled with actual hardness
and independent of pan size. A preliminary experiment showed the first 300 ms of the
signals to be critical to hardness estimation. Consequently acoustical predictors were
extracted from this portion of the signal: average spectral level, spectral level slope (i.e.,
rate of change in spectral level), average spectral centroid, and spectral centroid time-
weighted average. Average spectral centroid was the best predictor. Altogether predictors
accounted for a high portion of variance in the ratings.

McAdams et al. (1998) studied the perceptual independence of hammer and sounding
object properties with stimuli generated by striking hard and soft wood xylophone bars
and large and small tympani membranes with medium and soft rubber mallets. Pitch was
kept constant. The Garner paradigm was used (Garner, 1974), participants being asked
to identify the hammer or instrument used to generate the sound. Feedback on response
correctness was given. Both speeded, and unspeeded classifications, were investigated.
Perceptual interaction was found in the speeded condition, perceptual independence in
the unspeeded condition, indicating an interaction among the properties of hammer and
sounding object only at an early stage of processing. This results might point toward
the ability of listeners to tell apart hammer and sounding object hardness in normal lis-
tening condition, to the limit where these are characterized by temporally unconstrained
judgments.
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Lutfi and Oh (1997) studied the discrimination of material with synthetic struck
bar sounds. Signals were synthesized so as to perturb the elasticity and density of the
simulated bars around values typical for iron, silver, steel, copper, glass, crystal, quartz,
and aluminum. Perturbations were applied either to all the frequency components or
to each component independently. Participants were asked to tell which of two stimuli
was generated by striking an iron bar, silver, steel, and copper being the alternatives,
or with a glass bar, the alternatives being crystal, quartz, and aluminum. Feedback was
given. Far from ideal performance was observed, because of the strong weight given to
frequency; amplitude and decay time played only a secondary role.

Gaver (1988) studied material identification with variable length iron and wood bars.
Participants were informed of the length variation and, before the experiment, were shown
the correct responses for the shortest and longest iron and wood bars. Not surprisingly
performance was almost perfect. Similar results were obtained with synthetic struck bar
signals.

Klatzky et al. (2000) investigated material identification with synthetic struck bar
sounds, generated by varying a damping parameter related to tanφ (see Section 3.2.4)
which modeled the bars material, and the length of the bars. The length manipulation
was associated, within the experimental set, with a frequency variation of 3.3 octaves.
Four response categories were used: rubber, wood, steel, and glass. Both experimental
variables influenced participants’ responses, glass and wood being associated with higher
frequencies than rubber and steel, glass and steel being associated with lower damping
values than wood and rubber.

Roussarie (1999) investigated material identification with synthetic struck plate sounds.
Damping coefficients, elastic properties, and the density of the simulated plates were var-
ied around values typical of glass and aluminum. Hammer properties were manipulated
as well, via the force stiffness coefficient (see Section 3.2.5), using parameters typical
of either wood or rubber. Stimuli were equalized in loudness. Two response categories
were adopted: glass, and aluminum. Responses were found to be influenced only by the
damping properties of the plates, strongly correlated with an acoustical parameter anal-
ogous to tanφ, and with the average spectral center of gravity. Variations in density and
elasticity, associated with a frequency variation of a musical interval of one perfect fifth,
had no effect.

Avanzini and Rocchesso (2001a) (see also Rocchesso, Ottaviani, Fontana, & Avanzini,
2003) investigated material identification with stimuli synthesized with a physical model
employing a single vibrational mode. Both the frequency of the vibrational mode and
damping were varied. Frequency, in particular, was varied over one octave. Four response
categories were used: rubber, wood, glass, and steel. Steel and glass were associated with
slower level decays than rubber and wood. Secondary frequency effects were found, rubber
and glass being associated with higher pitches than wood and steel.

Giordano (2003) carried out three experiments on material identification using struck
plate sounds. In all experiments both plate material (steel, glass, plexiglas, and wood)
and size/area were varied. In the first and second experiments the shape (height/width
ratio) of the plates was also varied. In the third experiment, the material of the hammer
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was varied (steel, glass, wood, and plastic). In the second experiment, plate vibration
was externally damped with a low density plastic plate attached opposite to the struck
surface. Plate shape and hammer material did not influence material identification. With
the first and third experiments, perfect material identification was found with respect to
gross categories (wood and plastic vs. glass and steel). Within the same gross category
identification was based on plate size, steel and plastic being identified more often in larger
plates than wood and glass. Similar effects were found with the second experiment, where
external damping caused wood and plastic to be identified in glass sounds. Preliminary
acoustical analyses explained identification with signal frequency and amplitude decay.

Tucker and Brown (2003) investigated material identification with plates of vari-
able materials (aluminum, plastic, and wood plates), constant size, and different shapes
(square, circle, and triangle). Plates were struck either in the open air or underwater.
In this latter case vibrations were more damped, and signals duration was shorter. Alu-
minum was perfectly discriminated from wood and plastic, while wood and plastic were
strongly confused each other, although to a lesser extent in the freely vibrating condition.
Shape did not influence material identification. A damping measure related to tanφ was
found to account for large portions of variance in identification data.

Results by Freed (1990) and McAdams et al. (1998) and of the hammer variation
condition in Giordano (2003) point toward the perceptual independence of hammer and
sounding object properties, i.e. the absence of effects of hammer properties on the per-
ception of the properties of the sounding objects and vice versa. Given the relative
absence of relevant acoustical energy emitted by the hammer which should characterize
the hammer-sounding object paradigm (see Section 3.2.5), it might be concluded that
the dependence of the resulting acoustical signal on the hammer properties is mediated
by the properties of its interaction with the sounding object (e.g., contact time, see Sec-
tion 3.2.5). As a consequence hammer perception should be based on the properties of
its interaction with the sounding object, and not on hammer properties itself. Then,
the perceptual independence of hammer and sounding object should be better conceived
as due to the relevance of interaction properties for perception of the properties of the
former, sounding object properties for the perception of the properties of the latter. Con-
sistently Roussarie (1999) found identification of the material of the sounding object to
be independent of variations in the force stiffness coefficient. The relevance of interac-
tion properties to hammer perception and the perceptual independence of hammer and
sounding object were studied in Chapter 7.

Gaver (1988), Kunkler-Peck and Turvey (2000), Giordano (2003), and Tucker and
Brown (2003) found material identification to be almost perfect when discriminations
among gross categories were involved (i.e. wood or plastic vs. glass or metal), and, lim-
ited to this discrimination, to be fairly independent of the geometry of the objects. Dis-
agreement is however found concerning performance within these gross categories. While
Giordano (2003) and Tucker and Brown (2003) found plastic materials to be confused
with woods, Kunkler-Peck and Turvey (2000) found this discrimination to be perfect.
As in the case of perception of the geometrical properties, this inconsistency might be
explained with the fact that Kunkler-Peck and Turvey (2000) generated stimuli live, and
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repeatedly struck the plates before participants emitted this response. These conditions
might have provided listeners with additional source-specific acoustical information. Dis-
agreement is also found concerning the effects of geometry on the discriminations within
the gross categories. While Giordano (2003) found size influence material identification,
Kunkler-Peck and Turvey (2000) and Tucker and Brown (2003) found shape to be not in-
fluent. It should be noted, however, that the size manipulation investigated by Giordano
(2003) might have caused more drastic changes in the acoustical structure than the shape
variation by Kunkler-Peck and Turvey (2000), and Tucker and Brown (2003). Indeed, the
shape variation investigated by Giordano (2003) did not significantly influence material
identification either. An alternative explanation for the emergence of size effects in the
study by Giordano (2003) is related to the available amount of acoustical information
for the discrimination between grossly similar materials (e.g., metal and glass). Thus, it
might be hypothesized that participants focused on source properties irrelevant to the
task, plate size, because sufficient acoustical information for the discrimination between
grossly similar materials was not available. This hypothesis was addressed in Chapter 6.

The relevance of geometry to material perception is symmetrical to the observed
relevance of material to geometry perception highlighted in Section 4.2.1. In analogy
with what was hypothesized for the effects of material on geometry perception, this
interaction should arise from the fact that acoustical variables modulated by perceptually
relevant material properties, attended to by listeners to judge the material, are influenced
also by the geometry of the sounding object. The most probable acoustical candidate
is the frequency of the spectral components in the generated signal, determined by the
geometry of the sounding object, as well as by two material-related properties: density
and elasticity. It should however be pointed out that not all studies found evidence
in favor of the perceptual relevance of elasticity and density: while Roussarie (1999)
found material identification not to be influenced by these properties, these variables
were almost surely relevant in determining listeners responses in the study by Lutfi and
Oh (1997).

Much more consistent across studies, instead, is the significance of damping to ma-
terial identification: measures of this property are significantly correlated with results
by Klatzky et al. (2000), Avanzini and Rocchesso (2001a), Roussarie (1999), and, when
extracted from the acoustical signals, by Tucker and Brown (2003).

Concerning the acoustical basis for material perception, more complete evidence has
been found for the perception of hammer properties than for sounding object properties.
Perceived mallet hardness has been found to be related to the loudness and spectral
centroid of the initial portion of the signals, as well as to loudness decay and spectral
centroid temporal evolution (Freed, 1990). Although not explicitly tested, the absence
of the size of the sounding object on hardness estimates suggests that this judgment is
independent of signal frequency.

Concerning frequency, effects of this variable were observed by Klatzky et al. (2000),
Avanzini and Rocchesso (2001a), but not by Roussarie (1999), most probably given the
smaller range of variation of this variable in his stimulus set. Also, material perception
was associated with damping measures, which, given their nature, can also be consid-
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ered as acoustical descriptors. However, before concluding that acoustical measures of
damping are perceptually relevant it is necessary to compare its explanatory power with
that of other related descriptors, such as loudness decay or duration. Given the rele-
vance of spectral centroid measures to material identification highlighted by Roussarie
(1999), further studies should consider this acoustical variable as well. With the study
presented in Chapter 6 a large set of acoustical descriptors were considered to investigate
the acoustical correlates of material identification. In particular the explanatory power of
acoustical measures of damping was contrasted with measures of the loudness decay, and
of signal duration. Also, several spectral centroid-related descriptors were considered.

4.2.3 Dissimilarity rating studies

From the methodological point of view one of the studies reported in this section is a
hybrid between the dissimilarity rating and direct source judgment techniques (Klatzky
et al., 2000). This study is reported in this section as data analysis is based on MDS
models.

Gaver (1988) investigated separately real and synthetic wood and iron bars of vari-
able length. Two-dimensional solutions were derived in both cases. The first dimension
partitioned categorically wood sounds from iron sounds. The second dimension mapped
almost perfectly to bar length.

Klatzky et al. (2000) investigated synthetic struck bar sounds of variable damping and
length, associated with variations in frequency. Participants were asked to rate either
dissimilarity in the bar materials or length. Two-dimensional solutions were derived in
both cases. High interindividual agreement was found for material dissimilarity, based on
both damping and bar length. Much interindividual variability was found in the length
dissimilarity rating task, where length was relevant for the near totality of listeners, while
damping was relevant for only half of the participants. Instructions thus modulated the
perceptual relevance of damping, much more relevant to material dissimilarity ratings
than to length.

Roussarie (1999) investigated synthetic struck plates sounds. Both plate properties
(damping, density, and elasticity with values around those for aluminum and glass), and
hammer properties (wood/rubber, manipulated with an interaction parameter, the force
stiffness coefficient, described in Section 3.2.5) were varied. Wood and rubber hammer
sounds were rated in separate sessions. Two and three-dimensional solutions were found
for the wood and rubber hammer datasets respectively. Results for the two datasets were
highly similar. In both cases, the first dimension strongly correlated with the damping
parameter, with an acoustical parameter analogous to tanφ, and with signal spectral
centroid. The second dimension was found to be related to the flexural and torsional wave
velocities, related to plate elasticity and density, and with two pitch-related measures:
the frequency of the spectral peak and that of the lowest resonant mode.

McAdams et al. (2004) investigated synthetic struck bars. Two experiments were
carried out varying bar damping, and either bar density or length. A two-dimensional
solution was derived from data for the first experiment. The first dimension was related
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to the damping parameter, and to the temporal decay of the spectral centroid. The
second dimension was related to bar density and to frequency, varying over 9.5 semitones.
The damping-related dimension had a greater perceptual weight than the frequency-
related dimension. The second experiment tested whether an increase in the range of
variation of frequency and a decrease in the range of the damping parameter could change
their relative perceptual relevance. Two stimulus sets were investigated in the second
experiment, frequency spanning over 15 semitones in both cases, one set being two octaves
below the other. Two-dimensional solutions were derived for both datasets. In both
cases, one of the dimensions was related to bar length and signal frequency, while the
other dimension was related to bar damping and to level decay descriptors for the higher-
pitched set or to spectral centroid related descriptors in the lower-pitched sound set.
Significant interindividual differences were found in the weighting of the two dimensions,
where part of the listeners weighted more heavily the pitch-related dimension than the
damping related one, while another part showed the opposite weighting. Data for all
experiments were explained in terms of signal frequency and of a linear combination of
the average spectral center of gravity and of level decay in the last portion of the signal.

Across studies two orthogonal dimensions of judgment were highlighted. A first di-
mension was related either with the material of the sounding object (Gaver, 1988), or
with damping measures (Roussarie, 1999; Klatzky et al., 2000; McAdams et al., 2004).
In Section 4.2.1 it was noted that the relevance of damping to geometry perception was
indirect and secondary, simply affecting the detectability of the perceptually relevant
information for geometry. Consistently, when listeners where asked to rate length dis-
similarity, damping measures were much less relevant than when they were asked to rate
material dissimilarity (Klatzky et al., 2000). The second dimension was related to size
(Gaver, 1988; Klatzky et al., 2000; McAdams et al., 2004) or density/elasticity (Roussarie,
1999; McAdams et al., 2004). Only Roussarie (1999) tested the relevance of interaction
parameters to dissimilarity rating, finding no effect of this variable.

It should be noted that none of these studies contrasted the perceptual relevance of
hammer and sounding object properties in determining dissimilarity ratings, varying both
in the same experimental set. Also, scarce evidence is found concerning the relevance of
the properties of the interaction between hammer and sounding object to dissimilarity
ratings, investigated only by Roussarie (1999). Indeed, the particular experimental de-
sign used by Roussarie (1999) might have led listeners to focus judgment on the only
source properties that were varying within the experimental set, i.e., not on the interac-
tion parameter force stiffness coefficient, which was varied across stimulus sets, but not
within the same set. In Chapter 8 the relative relevance of hammer, sounding object and
interaction properties in determining dissimilarity ratings was investigated.

From the acoustical point of view, the first dimension of the spaces was also correlated
with other variables than the damping descriptors, such as the overall spectral centroid
(Roussarie, 1999; McAdams et al., 2004), spectral centroid decay rate (McAdams et al.,
2004) or loudness decay (McAdams et al., 2004). The second dimension, instead, was
invariably related to signal frequency (Klatzky et al., 2000; Roussarie, 1999; McAdams
et al., 2004). In line with the reasonings on the acoustical determinants for material
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identification outlined in Section 4.2.2, the perceptual relevance of damping to dissimi-
larity ratings points toward the relevance of signal duration. However, no previous study
attempted to explain experimental data on the basis of this simple acoustical property.
This was done in the study presented in Chapter 8.

4.3 Sequences of impact sounds

Repp (1987) studied clapping sounds, investigating listeners’ abilities to identify the
gender of the clapper, as determined by the size of the hands, and hand configuration. In
a first experiment, listeners were presented with sequences of claps produced by different
clappers without constraints imposed on hand configuration. Listeners knew each of the
clappers and were asked to identify them. Although poor performance was observed
(13% correct), recognition was above chance level (5%). Interestingly, self-recognition
was much better (46%), confirming the relevance of the level of experience with a source
in determining performance. In this case, facilitation might have originated both from
memory of the recording session, as well as from the more frequent exposure to one’s
own claps in everyday life. Performance in gender recognition was the worst, being at
chance level. Identified gender was determined on the basis of clapping rate (slower
for perceived males), amplitude (louder claps for perceived males), and spectral shape,
roughly the concentration of energy on low rather than high portions of the spectrum
(signals with more energy in the lower portion of the spectrum were identified as coming
from males). None of these variables differentiated among actual gender of the clappers.
It was concluded that listeners used acoustic stereotypes to judge gender, although these
criteria might have reflected a regularity in the population, of which the stimulus set was
not representative. In a second experiment, participants were asked to identify clapping
hand configurations in two stimulus sets. The first was generated by the author, who
clapped in a number of different configurations. The second set was that used in the first
experiment. While good recognition capabilities were found for the first set, performance
for the second set was much lower. Further, the same acoustical properties used to judge
gender in the first experiment were relevant in the second experiment.

Tousman, Pastore, and Schwartz (1989) tested recognition of clapping hand configu-
ration under more favorable experimental conditions. Hand configuration discrimination
was tested both within the same clapper and between clappers. Also, a training condition
with feedback on the correctness of the response was included. In agreement with the
limited capabilities documented by Repp (1987), impaired performance was found, even
in conditions of high training.

Li et al. (1991) studied auditory identification of the walkers’ gender, explaining lis-
teners’ performance both in terms of source properties, namely anthropomorphic mea-
sures of the walkers, and in terms of statistical properties of the signal spectra. A first
experiment found recognition performance well above chance, although identification per-
formance varied across walkers. Two source properties explained the judgments: walker
height and shoe size, “male” responses being more likely for taller walkers and larger shoe
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sizes. A second experiment examined explicitly the effect of shoe size. Walking sounds of
three females were investigated, walkers being asked to wear either their own shoes or two
different types of male shoes. Wearing male shoes, wider and longer than females shoes,
caused an increased probability of female walkers to be identified as males, although the
strength of the effect varied across walkers. Thus gender recognition is better conceived
as shoe size recognition. Several temporal and spectral descriptors were investigated to
explain identification data. Among the temporal descriptors, pace (the number of steps
per second) was strongly associated with identified gender, females being consistently
recognized in faster walkers. Interestingly this property did not differentiate between
walkers actual genders. Spectral descriptors were reduced to two uncorrelated factors,
which discriminated among actual genders. Roughly, female walkers were found to be
more probably identified in spectra with a higher concentration of energy in the upper
frequencies. Acoustical explanations for walker gender identification were validated in a
subsequent experiment based on the manipulation of recorded signals.

Warren and Verbrugge (1984) investigated bouncing and breaking sounds. A first
experiment tested identification with natural sounds, generated dropping glass objects
on the floor, which either bounced or broke. Almost perfect performance was observed.
Additional experiments tested the role of the temporal patterning of the signals, control-
ling for variations in spectral properties. Starting from the recordings of isolated impact
sounds of pieces of glass falling on the floor, several sequences were created, repeating
isolated impact sounds progressively closer in time. Such sequences were termed damped,
quasi-periodic pulse trains and reproduced the temporal patterning of bouncing sounds,
keeping constant spectral properties across bounces. Bouncing sequences were created by
overlapping four synchronized damped, quasi-periodic pulse trains. Breaking sequences
were synthesized by overlapping pulse trains asynchronously, with or without a 50-ms
noise burst added at sequences onset to simulate the initial rupture of the object. Inde-
pendently of the presence of the initial noise burst, extremely high auditory identification
rates were found, thus confirming the role of temporal patterning in the discrimination
between the two events.

Carello et al. (1998) investigated length estimation in wood rods dropped on a sur-
face. Two experiments were carried out, the former using longer rods than the latter.
Participants judged rod length by adjusting the position of a visible surface, as that
they could reach it with a rod of the estimated length. Overall participants were able
to estimate rod length well, metrical precision being higher in the first than in the sec-
ond experiment. Signal duration, amplitude, and spectral centroid were used to explain
performance. With the exception of amplitude for the second experiment, none of the
acoustical descriptors explained performance better than the actual rod lengths. Thus
perception was more tightly linked with properties of the distal stimulus than with those
of the proximal stimulus. Care should be taken in interpreting this result as supporting
the assumptions of direct perception, as the analysis of the acoustical event cannot be
considered complete. For example, no attempt was made to quantify either the temporal
structure of the events or the signal frequency. A rod dropped onto a surface generates a
sequence of impacts as it bounces over the floor and eventually rolls on it at the end of
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the bouncing phase. It is highly probable that the temporal distance among subsequent
bounces of the rod is influenced by its length. Also, the longer the rod, the lower the
signal frequency should be. An almost perfect explanatory variable for performance was
found instead in the inertia tensor, which quantifies the resistance of the object to being
rotated in different directions. Since this variable had previously been found to explain
length estimation with dynamic touch, an interesting link between audition and action
was suggested.

Warren, Kim, and Husney (1987) studied elasticity perception in bouncing. Both
auditory and visual information where investigated. A first experiment tested the ability
to control the bounce of a variable elasticity ball. Participants were asked to throw the
ball to the floor reaching a target height with the bounce. Before the experimental trials,
participants were exposed to different types of information concerning the balls: auditory
(participants heard the balls bouncing), visual (participants saw the balls bouncing),
or haptic alone (participants touched the balls), all modalities together when given the
opportunity to practice the task, or auditory plus visual. Good bounce control abilities
were observed. In particular, performance in the audiovisual and auditory information
conditions did not differ. A final experiment studied the auditory and visual information
for elasticity estimation. The auditory displays consisted of a brief constant-amplitude
190-Hz tone reiterated for each impact of the bouncing ball on the floor, with decreasing
inter onset intervals. Results showed auditory elasticity estimates to be based on the
duration of the periods separating consecutive bounces. Although obtained using highly
simplified auditory displays, these results show the use of a temporal property of the
auditory event for the estimation of an object property: the elasticity of the ball.

Guski (2000) conducted two experiments on signals generated by dropping balls of
different material and equal size, and thus different weight, from a variable height onto
a drum. Participants were asked to estimate the mass of the balls, the drop height, and
the physical work, defined as force to the participants. Impaired performance was found
for drop height estimation, but not for mass and force estimation. Force estimates were
equally well correlated with the temporal distance between the first and second impact,
as well as with peak signal level. A second experiment tested the perceptual relevance of
peak level, equalizing signals with respect to this acoustical parameter. Participants were
again asked to estimate the mass of the balls, the drop height, and the force. Peak level
equalization only minimally affected height and mass estimates, but strongly influenced
force estimates. It was concluded that height and mass estimation was based on the
temporal distance of the first to the second bounce.

Grassi (2005) (see also Grassi & Burro, 2003) investigated estimation of the size of
balls from bouncing sounds. In three experiments, listeners were asked to estimate the
size of a wooden ball dropped on a circular ceramic dish, adjusting the diameter of a
circle presented on a screen. In the first experiment only one diameter only was used for
the dish, whereas two were used in the second, and three in the third. Results showed
that participants were able to scale properly the size of the balls. Ball size estimates
were not independent of the size of the dishes, a decrease in the size of the dish being
associated with a decrease in the perceived size of the ball. Several acoustical predic-
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tors were used to explain performance: average RMS power, duration, peak amplitude,
spectral centroid, and temporal distance between the first and second bounces. Across
experiments, average RMS power was found to be the best predictor. The relevance of
the average RMS power confirmed results from a previous study that investigated the
effects of various signal manipulations on the ability of listeners to categorize ball size
(Grassi, 2002); (see also Grassi & Burro, 2003). The manipulation that affected per-
formance the least was the removal of the bounces successive to the first impact. The
manipulation that affected performance the most was RMS power equalization, applied
to signals deprived of all bounces but the first. It is unclear, however, whether RMS
power equalization without removal of the successive bounces would have led to the same
drop in performance. Finally, it is highly likely that listeners’ size estimates were asso-
ciated with signal frequency, as modulated by the size of the struck dish. However, no
tests were carried out that allow verification of this hypothesis.

The investigations summarized in this section demonstrate, in general, good source
perception capabilities. Impaired recognition was however observed with perception of
clapper gender and of hand configurations, when the stimulus set included different clap-
pers (Repp, 1987), in the subsequent experiments by Tousman et al. (1989) on clapper
recognition, and in the experiment by (Guski, 2000) on perception of ball drop height.
Concerning the acoustical determinants of perception, almost all the studies summarized
here suggested that judgments were based on the temporal patterning of the impacts
(Repp, 1987; Li et al., 1991; Warren and Verbrugge, 1984; Warren et al., 1987; and
also height and mass perception in Guski, 2000). As pointed out, temporal patterning
variables may explain performance also in the study by Carello et al. (1998). The only ex-
ception to this is found in the experiments carried by that showed perception of bouncing
ball size (Grassi & Burro, 2003) and force estimation (Guski, 2000) to be independent of
the distance between successive bounces. Experiments by Grassi and Burro (2003) also
showed, differently from results from isolated impact sounds, that variations in sounding
object properties affect perception of hammer properties.

4.4 Rolling sounds

Two experiments conducted by Fowler (1990) investigated the ability of listeners to
judge the steepness of ramps on the basis of rolling sounds. The ball rolled down a
sandpaper-covered tilted ramp, which could have one of five slopes, and then onto a
steel track, which could either be flat or tilted up. The duration of the ramp rolling
sound increased with decreasing ramp slope. The duration of the track rolling sound was
influenced by the track slope as well as by the ramp slope. For the flat track, it increased
with decreasing ramp slope, while for the tilted track it increased with increasing ramp
slope. In a first experiment, participants were presented with several configurations
created by concatenating ramp rolling sounds and flat or tilted tracks rolling sounds,
generated after the ball rolled down the steepest and shallowest ramps. Participants were
asked to tell whether the ramps were steep or shallow. They were presented the correct



56 Chapter 4. The empirical framework

response for the isolated ramp sounds and were informed of the slope of the track sound.
Participants were reminded that the duration of the track rolling was influenced by the
steepness of the ramp, but were presented no examples. Across conditions the probability
of identifying ramps as steep increased with their slope. However, steepness judgments
were also influenced by the track rolling sound. In particular, in agreement with the
physics of the investigated event, when the track was flat, the longer track sounds caused
ramps to be identified as shallower and vice versa. Also, consistently with the physics
of the investigated event, when the track was tilted up, the longer track sounds caused
ramps to be identified as steeper and vice versa. A second experiment examined the
relevance of the duration of the track sounds in determining ramp slope judgments. Only
the flat track sounds were used, as was the procedure for the first experiment. Different
track sounds were used. The first was a short track sound generated after rolling from a
steep ramp. The second was the “long” track sound cut to the short duration of a track
sound generated after rolling onto a steep ramp. Even though equalized in duration,
similar effects to those obtained in the first experiment were observed. Indeed, ramps
were judged as steeper when followed by a short, than by a “long” track sound. Thus,
acoustical information for ramp steepness, which accounts for the effects of tracks rolling
sounds, is not limited to duration.

Houben, Kohlrausch, and Hermes (2004) (see also Houben, 2002) studied estimation
of the size and speed of wood balls rolling on wood tracks. Experiments were carried
out with excerpts of the recorded rolling sounds with constant duration and loudness. A
first experiment tested participants’ abilities to discriminate and sort the size of rolling
balls. Good discrimination performance was observed. A second experiment tested speed
discrimination. Good performances was observed here as well, although strong differences
among participants were found. A replication of the speed discrimination experiment with
stimuli not equalized for loudness showed this variable to be relevant for speed estimation,
as in this condition performance was close to perfect. A last experiment tested listeners’
abilities to discriminate and sort the size of rolling balls with variation in their speed
and vice versa. An interaction effect was found in which variation in speed impaired
size discrimination performance and vice versa. Analysis of the acoustical properties of
stimuli investigated in the first two experiments showed both size and speed to influence
the spectral centroid of the signals. Thus the perceptual interaction between size and
speed was explained in terms of the influence of these latter parameters on the same
perceptually relevant acoustical feature.

Although the tasks and source properties investigated in studies by Fowler (1990) and
Houben et al. (2004) were different, a similar conclusion can be reached concerning the
acoustical determinants for the judgments. Fowler (1990) found signal duration to be
of secondary relevance for event perception, and Houben et al. (2004) found reasonably
good source perception performance even in stimuli equalized for duration.



4.5. Scraping sounds 57

4.5 Scraping sounds

Lederman (1979) studied estimation of the roughness, i.e. texture, of metallic plates,
when haptic, auditory or both auditory and haptic information were available. The
roughness of aluminum plates was manipulated by varying the distance between adja-
cent grooves of fixed width (Experiments 1-2) or by varying the width of the grooves
(Experiment 3). Across experiments, tactile information was found to dominate as no
differences were found between the multimodal and active-touch-only conditions. In the
auditory condition, signals were generated by the experimenter moving fingers on the
plates with variable force (Experiment 1) and also with variable speed (Experiment 3).
Auditory information was sufficient for roughness estimation as in both experiments es-
timates increased fairly monotonically with plate roughness. Perceived roughness was
also influenced also by force and speed. While increases in force were associated with
increases in roughness independently of speed, increases in speed were associated with
increases in roughness for low force levels and with decreases for high force levels. The
eventual role of pitch and loudness in determining estimates was discussed, although no
acoustical analyses were provided.

4.6 Liquid sounds

Cabe and Pittenger (2000) investigated listeners’ abilities to estimate and control the
filling of a vessel with liquid. When liquid is poured into a container, the resonating air
column decreases in length, causing an increase in the fundamental resonance frequency.
A first experiment tested the perceptual relevance of this variable. Participants were
presented pouring sounds in three conditions: filling, emptying, and constant water level,
where in the latter two cases water flowed out of the vessel at the a same or higher rate
than it was poured in. Participants were able to identify correctly the three different
events. A second experiment tested the control of vessel filling on the basis of acoustical
information. Participants had to stop pouring when water reached one of two different
levels: comfortable drinking level and to the brim. Participants were able to execute
the task consistently. A third experiment tested filling control with variation in the size
of the vessel and of the maximum pouring rate. Participants were asked to fill vessels
to the brim. Good performance was found, although it decreased with increasing vessel
size and with decreasing maximum flow rate. Size and flow rate effects were consistent
with the perceptual relevance of the fundamental resonance frequency of the air column.
Indeed, with lower flow rates, and larger vessels the temporal change of the fundamental
resonant frequency was slower, thus providing less information for filling control, and
leading eventually to impaired performance. A final experiment tested the ability of
listeners to predict the time required for a vessel to be completely filled on the basis of
acoustical signals generated by filling the vessel up to a variable level. Both the filling
level and the flow rate were varied. Participants were able to predict filling time with
reasonable accuracy, better performance being observed with faster flow rates.

Jansson (1993) studied estimation of the filling level of shaken vessels. Performance
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was compared across modalities. In the haptic condition, participants were asked to shake
the vessel. In the visual condition, they saw an actor shaking the vessel. In the auditory
condition they heard the sound generated by the actor shaking the vessel. Results sug-
gest a limited usefulness of acoustical information in specifying vessel filling, although a
general tendency for estimates to increase with actual filling level was found. In a second
experiment, performance with all sensory modalities together was also studied. The full-
information condition preceded the conditions based on only one modality. In this case,
auditory performance increased. Thus it can be concluded that impaired performance in
the first experiment was not caused by an absence of appropriate acoustical information,
but by the inability of participants to attend to it or to employ it in this task. This ability
increased after the training received when performing the full-information condition.

Source perception abilities were demonstrated also with liquid sounds. Comparison
of results across studies is however not possible, given the diversity in acoustical signals
and tasks.

4.7 Research on timbre perception

Timbre is defined as “that attribute of auditory sensation in terms of which a subject
can judge that two sounds similarly presented and having the same loudness and pitch are
dissimilar” (American National Standards Institute, 1973). Timbre, then, allows listeners
to tell that two tones with the same pitch, loudness, and duration, one played with an
oboe, the other played with a violin, differ. Also, timbre contributes to the identification
of musical instruments.

The standard definition of timbre has been often criticized, as it specifies only what
this attribute of auditory sensation is not (e.g. Hajda et al., 1997). For this reason the
concept of timbre has been defined as a “wastebasket category”, where “if two sounds are
different though having the same pitch and loudness, then they must differ in timbre”
(Ward, 1970). Following this definition, timbre perception studies have focused mainly
on sets of isolated sounds, equalized in pitch, loudness, and duration, in particular on
musical instrument tones.

Experimental evidence accumulated throughout the decades contributed much to the
understanding of the nature of timbre (see Hajda et al., 1997; McAdams, 1993; Handel,
1995, for a review of research in this field). Several regularities emerged across stud-
ies, highlighting the multidimensional nature of timbre,i.e., its dependence on multiple
perceptual attributes and underlying acoustical properties. Results concerning the main
acoustical determinants of musical instrument identification and of dissimilarity ratings
on musical tones are summarized in this section.

For both identification and dissimilarity ratings studies, evidence concerning the rele-
vance of source-based distinctions for the explanation of perception of musical instrument
sounds is also outlined. Part of previously published data has been analyzed to this pur-
pose. As pointed out at the beginning of this chapter, the main goal of this analysis is
to test for the low of relevance of source properties to the perception of musical content
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hypothesized by (Gaver, 1988, 1993b).

4.7.1 Musical instrument identification

4.7.1.1 The relevance of source properties

Families of musical instruments can be distinguished on the basis of the nature of the
vibrating body that generates the sound (von Hornbostel & Sachs, 1914, 1961). With
idiophones, it is the body of the instrument that vibrates, without need of additional
tension, thanks to the rigidity of the material of which it is made. Many percussion
instruments belong to this family (e.g. cymbals, xylophones, tubular bells, etc.). In
membranophones, the sound is generated by a vibrating stretched membrane, usually
placed over the aperture of an empty body which amplifies the generated sound. All
drums (e.g., snare drum, tympani), and also kazoos, belong to this family. In chordo-
phones, the sound is generated by vibrating stretched strings. Bowed string instruments
(e.g., viola, violin), guitars, harps, and the piano belong to this family. Finally, with
aereophones, also called wind instruments, the primary vibrating element is the air col-
umn itself. Aereophones can be further distinguished depending on whether they result
from the blowing an air jet through an opening (e.g., flutes, organ), through the buzzing
of single reeds (e.g., clarinets and saxophones) or double reeds (e.g., oboe and bassoon)
or through the buzzing of lip reeds ( vibrating lips such in brass instruments such as
trumpet or trombone) (Fletcher & Rossing, 1991).

Previous studies on musical instrument identification reveals the perceptual validity
of the distinction among families of musical instruments, highlighting high recognition
performance, particularly with respect to these gross source-based classes (e.g. Martin,
1999; Srinivasan, Sullivan, & Fujinaga, 2002). Part of those results are summarized and
further analyzed here. In particular, only research conducted on non-synthetic, unedited
tones, and which reported the matrices of identification confusions, was considered:

• Clark, Luce, Abrams, Schlossberg, and Rome (1963), CLA63;

• Berger (1964), BEG64;

• Strong and Clark (1967): STC67;

• Martin (1999): isolated tone condition, MAI99; solo excerpt condition, MAS99;

• Srinivasan, Sullivan, and Fujinaga (2002): 27 instrument condition, SS202; 9 in-
strument condition, SS902.

For each of the selected studies, the following statistics were calculated: the probability
of correctly identifying the musical instrument or the instrument family; the probability
of confusing a musical instrument with another instrument of the same family (within-
family errors) or with an instrument of a different family (between family errors). The
definition of musical instruments used for these analyses is less broad than that used by
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Table 4.1: Probability of correct identification of musical instruments and musical
instrument families, and probabilities of within- and between-family errors for the con-
sidered datasets. Chance probabilities are reported in parentheses. Chance probabilities
for the within- and between-family errors, as well as chance probabilities for correct
identification of musical instruments families, are averaged across families, because in
the datasets the different families are represented by a variable number of instruments.

Dataset Musical instrument Family Within-f. errors Between-f. errors

CLA63 0.705 (0.077) 0.982 (0.212) 0.281 (0.154) 0.015 (0.769)
BEG64 0.593 (0.100) 0.789 (0.250) 0.250 (0.150) 0.157 (0.750)
STC67 0.852 (0.111) 0.961 (0.250) 0.100 (0.139) 0.046 (0.750)
MAI99 0.437 (0.037) 0.877 (0.200) 0.443 (0.163) 0.120 (0.800)
MAS99 0.594 (0.037) 0.960 (0.200) 0.369 (0.163) 0.038 (0.800)
SS202 0.570 (0.037) 0.860 (0.250) 0.303 (0.222) 0.095 (0.750)
SS902 0.901 (0.111) 0.940 (0.200) 0.033 (0.089) 0.054 (0.711)

von Hornbostel and Sachs (1914, 1961), because the subfamilies of aereophones have also
been considered for this purpose. The results of this analysis are shown in Table 4.1.

As can be noted, the probability across studies of correctly identifying musical instru-
ment families is higher than that of correctly identifying musical instruments. This result
per se is not surprising, given the increased chance probability of correctly identifying
musical instrument families. Extremely interesting, instead, is the lower discriminability
of instruments belonging to the same family, shown by the higher probability of observing
within-family errors, as compared to the probability of between-family errors. Musical
instruments based on similar physical principles are therefore also strongly perceptually
confused. Finally it should be noted that the experimental sets in the examined research
included neither membranophones nor idiophones. It is highly likely that the data gath-
ered on these classes of instruments would show the same tendencies concerning within-
and between-family identification errors. Partial evidence on this issue is found in dis-
similarity rating data (see Section 4.7.2). Another reason for expecting at least limited
confusions between membranophones and chordophones on the one hand, and aereo-
phones on the other, stands on another source-related distinction, based on the nature of
the excitation process. Indeed the nature of the excitation that makes membranophones
and idiophones sound is highly different from that which leads to the generation of tones
in aereophones (see below). Such a distinction has been proven to be of high perceptual
relevance in dissimilarity rating studies (see Section 4.7.2).

4.7.1.2 The relevance of acoustical properties

The study of the acoustical basis for musical instrument identification has used a
signal-partitioning paradigm, according to which variations in identification performance
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was investigated with portions of tones presented in isolation or with tones without differ-
ent portions. Musical instrument tones can be distinguished depending on the temporal
extent of the excitation process that causes the primary source of acoustical energy to
vibrate (e.g., the string in the violin). Thus we distinguish between continuant and im-
pulsive excitations, or, equivalently, between continuant sounds (e.g., flute tones) and
impulsive sounds (e.g., piano tones). For continuant excitations, the supply of energy to
the source is extended over time (with flute tones the player continuously blows, causing
the air column inside the instrument to vibrate until the blowing stops), whereas for
impulsive tones, the excitation is limited to a restricted temporal span (the strike of the
hammer on the string for piano tones). Ideally this should be a timeless impulse, but in
practice it lasts from few microseconds to a few milliseconds. The difference in the exci-
tation process is reflected in the temporal structure of the generated tones. Continuant
sounds are usually partitioned into three sections. The usual subdivision is based on their
amplitude envelope, the temporal variation of the RMS (root mean square) amplitude
(see Hartmann, 1997, for a definition of RMS, and for more refined envelope extraction
procedures), although more strict criteria have been proposed based on both the tem-
poral variation of the RMS amplitude and of the spectral centroid (cf. Hajda et al.,
1997). The envelope of continuant sound can be divided into three portions. The attack
is considered as that portion emitted when the vibrating system achieves stability and is
characterized by a rise in amplitude. The steady state is the portion during which energy
is continuously supplied to the vibrating system. The decay is the portion during which
the supply of energy to the vibrating system has ceased and the amplitude decreases
abruptly. With impulsive sounds, instead, only two portions are found, the attack, and
the decay. Figure 4.2 shows the partitioning of the envelope of a continuant sound (a
French horn tone) and of an impulsive sound (a marimba tone).
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Figure 4.2: Partitioning of a continuant sound, a French horn tone (left) and of an
impulsive sound, a marimba tone (right).
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Several studies have investigated the relevance of tone partitions to the identification of
musical instruments using isolated tones. Across the studies that investigated continuant
tones (Clark et al., 1963; Berger, 1964; Elliott, 1975; Saldanha & Corso, 1964; Wedin &
Goude, 1972), a drop in identification performance with the removal of the attack, but
not with the removal of the decay was revealed. in these studies, the attack was defined
simply by its temporal extent (i.e., fixed number of milliseconds from onset). Hajda,
Kendall, and Carterette (1994) and Hajda (1999) applied a more rigorous model for the
partitioning of the envelope constituents, based on the relationship between the temporal
evolution of the spectral centroid and of the RMS amplitude. In contrast with previous
research conducted on continuant tones, the attack was found to be neither necessary
nor sufficient to the identification of continuant signals, yielding identification rates much
lower than for the steady state alone. Indeed the attack portions of previous studies
also included post-attack segments or portions of the steady state, which, in isolation,
were found by Hajda (1999) to yield identification rates comparable to those for entire
tones. This result, however, was valid only for long continuant tones, while with short
continuant tones removal of the attack caused them to be confused with impulsive tones.
Consistently with previous research, Hajda (1996, 1999) found decay portions not to
be relevant for the identification of continuant tones. A higher relevance of the steady
state to the identification of continuant signals was also revealed in musical contexts
by Kendall (1986) with a matching procedure. Participants were presented a model
melody played by a given musical instrument and were asked to choose which of three
test melodies, different from the model, were played by the same musical instrument
(to be exact the melody that was most similar to the model). Performance for steady
states alone was not different from performance for unaltered stimuli and was superior
to that for transients alone (attack and legato transients connecting the notes of the
melody). Only one study investigated the relative relevance of tone partitions for the
identification of musical instruments with impulsive sounds (Hajda et al., 1994; Hajda,
1999). Contrary to the major trend for the identification of continuant instruments,
removal of the attack was not found to hinder identification and yielded performance
levels close to the unaltered and decay-segment conditions. Thus, both attack transients
and decay segments contain sufficient information for identification. Finally it should be
noted that signal-partitioning studies provide evidence concerning where information for
musical instrument identification is found throughout the tone. However, they are not
useful for revealing precisely the nature of such information.

Another source of distinction between identification of impulsive and continuant in-
struments concerns the effects of reverse playback. While for long continuant tones reverse
playback does not hinder identification (Berger, 1964; Hajda, 1996, 1999), it impairs per-
formance for impulsive sounds. However, the distinction is not clear-cut, because with
short continuant tones, reverse playback results in a decrease in identification perfor-
mance, as with impulsive tones.

Two further effects are worth mentioning. First, identification performance of con-
tinuant tones is dependent on the pitch of the tested stimuli (Saldanha & Corso, 1964),
where across the tones generated with the same musical instrument correct identification
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was found varying as a function of pitch. Although extensive data were not provided
by the authors, it appears likely that pitches far from the normal playing range of a
given musical instrument are more likely to be misidentified (e.g., a very high tone of
a double bass may be misidentified as a violin tone). Pitch has also been found to be
relevant to musical instrument discrimination (Handel & Erickson, 2001). In one exper-
iment, listeners were presented two tones of different pitch generated by the same or by
different instruments, and were asked to rate their impression that they were generated
by different musical instruments. With pitch differences greater than one octave, tones
generated by the same instrument were judged as being generated by different instru-
ments, whereas when the separation was lower than one octave, the opposite, correct
judgment was given. Conversely, with pitch separations lower than one octave, listeners
made the error of judging different instrument pairs as generated by the same instrument,
although correct performance was much higher than in the same instrument condition for
pitch separations greater than one octave. Although directly relating this result to iden-
tification performance with isolated tones is not straightforward, this research highlights
again the salience of pitch to the judgment of musical instrument tones, particularly when
interstimulus pitch differences exceed one octave.

Another interesting effect with musical instrument identification concerns the change
in performance with musical context. Both Kendall (1986) and Martin (1999) demon-
strated that identification performance increases when listeners are presented with musi-
cal phrases rather than isolated tones. Two equally plausible explanations might account
for these effects. First, with musical contexts players have greater freedom in using the
expressive potentialities of musical instruments, thus revealing to a greater extent the
acoustical signatures of a particular instrument compared with when they are asked to
generate one isolated tone. Second, being presented musical phrases, composed by vari-
able pitched tones, listeners are forced to ignore pitch when emitting their judgment, so
that its biasing effect demonstrated with isolated tones fades away (Saldanha & Corso,
1964; Handel & Erickson, 2001). These explanations can also be reformulated using the
view of the ecological approach, stating that when a listener is presented with different
pitches generated by the same musical instrument, extraction of the invariant acoustical
structure that specifies a musical instrument over its pitch range is made easier.

4.7.2 Dissimilarity rating

4.7.2.1 The relevance of acoustical properties

In this section the main results concerning the acoustical determinants of dissimilarity
ratings of musical instrument sounds are presented. Both studies conducted on recorded
and simulated musical instrument tones are presented. Also, results from two studies
conducted on synthetic stimuli are considered (Caclin, 2004; Miller & Carterette, 1975).

Most of these studies made use of stimulus sets of constant, or perceptually equalized,
duration, loudness, and pitch. As pointed out in Section 3.3, dissimilarity rating data
are usually analyzed with MDS techniques, which map observed dissimilarity to the
distance of stimuli within Euclidean spaces. MDS spaces are thus usually interpreted
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with reference to the dimensions that define them, assumed to represent the criteria
used to estimate the dissimilarity. In timbre perception research, this has usually been
done with reference to known acoustical properties of the stimuli. The first part of
this section summarizes results on the acoustical interpretations of the dimensions of
previously published timbre spaces. A different approach for the analysis of timbre spaces
is used in the last part of this section, the so-called regional interpretations (Borg &
Groenen, 1997), applied to test for the presence of structure in the spaces connected to
the properties of the musical instruments as sound sources.

One of the most cited dissimilarity rating studies was conducted by Grey (1977) on
synthetic emulations of continuant tones, created by decreasing the temporal variability
of the frequency and amplitude of the spectral components of recorded signals. A three-
dimensional space was extracted. A subsequent study by Grey and Gordon () found the
first dimension to be strongly correlated with various measures of the spectral centroid.
A qualitative interpretation was given to the other two dimensions by Grey (1977). The
second dimension was related to the synchrony in the attack of the different spectral
components and with the amount of spectral time-variance. The third was related to the
presence of high-frequency inharmonic noise in the signals’ attack.

Krumhansl (1989) investigated synthetic tones which either emulated different musical
instruments or represented hybrids among pairs of musical instruments. Both impulsive
and continuant sounds were used. A three-dimensional space was extracted. The di-
mensions were explained acoustically in a subsequent study by Krimphoff, McAdams,
and Winsberg (1994). The first dimension, which distinguished continuant from impul-
sive tones, was strongly correlated with the Log rise time, defined as the logarithm of
the time from perceptual threshold (2% of maximum amplitude) to maximum ampli-
tude. The second dimension correlated with the spectral centroid. The third dimension
was defined spectral flux by Krumhansl (1989) and was thought to reflect spectral time-
variance, as the second dimension in Grey (1977). However, no measures of the spectral
time-variance were found by Krimphoff et al. (1994) to explain this dimension. Instead
this dimension was explained by a static spectral measure, spectral irregularity, which
measured the deviation in amplitude across triads of adjacent spectral components.

McAdams et al. (1995) studied a stimulus set highly similar to that investigated by
Krumhansl (1989). A three-dimensional space was found. Consistently with what was
found for the space by Krumhansl (1989), the first dimension was strongly correlated
with log rise time and distinguished impulsive from continuant tones, whereas the second
strongly correlated with spectral centroid. Notably, the first dimension correlated also
with a measure of signal duration, itself correlated with log rise time. The third dimen-
sion, differently from what was found for the space by Krumhansl (1989), was weakly
correlated with a measure of spectral time-variance, or spectral flux, given by the average
correlations among Fourier spectra computed in adjacent temporal windows along the
entire signal.

Impulsive and continuant sounds were also investigated by Iverson and Krumhansl
(1993) in a study focusing on the effects of signal partitioning on dissimilarity ratings.
Three conditions were investigated (unedited tones, tones minus attack, and attack only).
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Two-dimensional spaces were extracted for all the conditions. The position of stimuli
within the spaces for the different editing conditions was highly correlated. This result
led the authors to conclude that the perceptually salient attributes are found throughout
the entire tone. For all spaces, one of the dimensions strongly correlated with spectral
centroid. The other dimension, which tended to distinguish impulsive from continuant
signals, was related to the structure of the amplitude envelope. An analytic parameter
that correlated significantly with this dimension was found, however, only for the attack
condition: the time from onset to maximum amplitude.

Sets including both impulsive and continuant stimuli where also studied in Lakatos
(2000) and in Marozeau et al. (2003). In this latter study, sets also included variations in
pitch. Across the studies two- to four-dimensional spaces were found. For all the spaces,
one dimension strongly correlated with spectral centroid, and one dimension distinguished
impulsive from continuant tones. Lakatos (2000) explained the impulsive vs. continuant
dimension with log rise time, whereas Marozeau et al. (2003) used a measure of impul-
siveness, probably correlated with log rise time. The third dimension in the Marozeau
et al. (2003) spaces correlated with a measure of spectral spread, which distinguished
between chordophones and aereophones. Spectral spread was found to account better
for the spectral flux dimension in McAdams et al. (1995) than the previous measure of
spectral time-variance. The fourth dimension in Marozeau et al. (2003) spaces appeared
to be related to pitch, but a strong correlation was found only for the experimental set
that included the highest pitch variation (11 semitones), and not for the other set (2
semitones of pitch range).

In summary, for all the studies that investigated sets of both continuant and impulsive
tones, one of the extracted dimensions distinguished these two classes of sounds and was
almost always related to log rise time, whereas another of the dimensions was strongly
related to spectral centroid. Other dimensions, related to spectral time-variance, or to
spectral spread, emerged with less regularity, thus pointing toward the primary perceptual
relevance of spectral centroid and log rise time. A similar conclusion concerning the
perceptual relevance of measures of spectral time-variance was also reached by Caclin
(2004), with a study conducted on synthetic stimuli. Across the investigated conditions
spectral centroid and attack time were found to mask variations in spectral flux, modeled
as a rise in the spectral centroid in the first 100 ms of the signals.

Dimensions related to spectral time-variance emerged, instead, with studies conducted
with sets comprising only continuant sounds. Kendall, Carterette, and Hajda (1999)
conducted different experiments investigating sets of recorded natural-instrument tones
or mixed sets of recorded and synthetic tones. Across studies and conditions, dimensions
of the rotated classical MDS solutions were correlated with spectral centroid, with the
standard deviation of the time-variant spectral centroid, and, to a lesser extent, with
the mean coefficient of variation, a measure of spectral flux. Hajda (1999) investigated
continuant stimuli resynthesized from recorded signals. One of the sets included the same
time-variant properties of the original tones, while these were eliminated in the second set
(steady-state set). For both sets a two-dimensional space was extracted. The first of the
dimensions correlated strongly with the spectral centroid. The second dimension of the
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time-variant set correlated with a modified version of the mean coefficient of variation
and with ratings of the amount of vibrato. The second dimension of the steady-state
set remained unexplained. Handel and Erickson (2004) investigated a set of continuant
stimuli generated with three different wind instruments, varying pitch over two octaves.
A three-dimensional space was derived. The first dimension was strongly correlated with
pitch, the second with spectral centroid, the third with the rate of frequency vibrato.

A higher variability is found in results of studies that investigated sets of impulsive
signals alone. Serafini (1993) investigated Javanese gamelan instrument tones with iso-
lated tones or melodies. In both cases, two-dimensional spaces were derived. For both
conditions, the attack spectral centroid, extracted from the first 50 ms of the signals,
explained the first dimension of the spaces. The second dimension was explained only in
the melodic context and was correlated with the average amplitude in the middle part of
the tones. Harsberger, Kendall, and Carterette (1994) investigated a set of Indonesian
gong tones with variable pitch ranging over 4 octaves. A two-dimensional solution was
derived. The first dimension was related to pitch. A second dimension was also identified,
which reproduced variations in amplitude modulation. It should be noted that the angle
between the first and the second dimension was approximately 45◦ and that, equivalently,
the two dimensions were non-orthogonal. Hajda (1995) investigated sets of recorded and
synthetic impulsive tones. Across the many investigated conditions, two-dimensional
spaces were derived. In general, spaces were explained in terms of tone duration and in
terms of the percent change in the spectral centroid over the first 100 ms of the signal.
Across studies, then, different acoustical variables for dissimilarity ratings of impulsive
signals emerged as perceptually relevant. It should be noted that part of this variabil-
ity in results might be caused by a variation in the measures used to characterize the
acoustical structure of the signals.

A summary should be made on pitch effects. Independently of whether stimulus sets
comprised only continuant tones, only impulsive tones, or both, pitch-related dimensions
emerged when the range of pitch variation within the experimental set was equal or greater
than 11 semitones (Harsberger et al., 1994; Marozeau et al., 2003; Handel & Erickson,
2004), this independently of the fact that listeners were asked to ignore pitch in making
their responses. In line with this trend are results from one of the experiments reported
in Miller and Carterette (1975). The experimental set comprised pitch variations of two
octaves, variations in the amplitude envelope (impulsive, trapezoidal, and impulsive with
a sustained pre-offset portion), and variations in the rank of the most intense harmonic
component. A three-dimensional MDS solution revealed one dimension related to pitch
and two dimensions related to amplitude-envelope structure and perceived duration (de-
spite constant physical duration, impulsive envelopes were perceived as shorter than the
other envelope types).

Another summary should be made on duration effects. Of the above mentioned stud-
ies, Iverson and Krumhansl (1993), McAdams et al. (1995), Hajda (1995), Kendall et al.
(1999) used stimuli of variable duration, and tested the correlation of this variable with
experimental results. Duration was found to be relevant by Hajda (1995), ranging in
different sets from 3.1 to 5.2 ms and from 3.1 to 7.6 ms. Further, McAdams et al. (1995)
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reported an effect of duration, ranging from 495 to 1096 ms. It should be noted however
that this variable was strongly correlated with log rise time. The relevance of this latter
variable across many different studies makes it a more likely candidate to explain the
duration-related dimension. Finally, both Iverson and Krumhansl (1993), and Kendall
et al. (1999) found no effect of this variable, which ranged approximately from 2 to 3.29
sec in the study by Iverson and Krumhansl (1993). Also, perceived duration was hy-
pothesized as a factor to explain one of the MDS dimensions by Miller and Carterette
(1975). To summarize, it is plausible to hypothesize that, as with pitch, duration ef-
fects emerge with increases in its range of variation within experimental sets. However,
available results do not allow strong conclusions to be drawn.

4.7.2.2 The relevance of source properties

In order to test for the relevance of source-based distinctions in explaining listeners’
judgments, previously published analyses of dissimilarity rating data were considered.
A broad criterion was used for this purpose, which falls within the category of regional
interpretations of MDS (Borg & Groenen, 1997), to test whether stimuli belonging to dif-
ferent source-based classes occupy disjoint regions in the MDS spaces. A positive outcome
for this test was considered as evidence for the relevance of source-based distinctions in
explaining the structure of listeners judgments and perceptions. The distinction among
main classes of musical instruments (aereophones, chordophones, membranophones, and
idiophones), as well as the distinction between impulsive and continuant signals were con-
sidered. The following studies conducted on real and synthetic isolated musical sounds,
which included at least two classes of musical instruments, were included in the analyses:

• Wedin and Goude (1972): entire tones condition, WE72E; tones minus attack,
WE72A;

• Wessel (1973), WES73;

• Grey (1977), GRE77;

• Krumhansl (1989), KRU89;

• Serafini (1993), SER93;

• Iverson and Krumhansl (1993): entire tones condition, IV93E; attack only, IV93A;
tones minus attack condition, IV93R;

• Hajda (1995), HAJ95 (recorded tones only);

• McAdams, Winsberg, Donnadieu, De Soete, and Krimphoff (1995), MAC95;

• Kendall, Carterette, and Hajda (1999), KEN99;

• Lakatos (2000): harmonic set, LA00H; percussive set LA00P; combined set,
LA00C;



68 Chapter 4. The empirical framework

• Marozeau, de Cheveigné, McAdams, and Winsberg (2003): pitch variation of 1
tone, MA03A; pitch variation of 11 semitones, MA03B.

Table 4.2 describes these studies, the nature of the sets of investigated stimuli, and
the represented categories of musical instruments and types of excitation. For dissimilar-
ity rating data by Wedin and Goude (1972), the MDS spaces computed by Hajda et al.
(1997) were considered. Krumhansl (1989) and McAdams et al. (1995) investigated sets
of synthetic musical instruments sounds, part which were hybrids between two different
instruments. Data for the hybrids were not considered given the impossibility of assigning
them to unique classes of musical instruments (e.g., hybrids between chordophones and
aereophones). Kendall et al. (1999) studied dissimilarity ratings on natural and synthetic
tones. Only data for the natural tones (Figure 4 in Kendall et al., 1999) were considered,
which were associated with higher proportions of correct musical instrument identifica-
tion than synthetic signals. Among the data collected by Hajda (1995), only those spaces
computed for judgments of recorded instruments were considered. For data by Hajda
(1995) and Lakatos (2000) one additional class for the type of excitation, referred to as
multiple impulses was considered, according to which the vibrating body is struck repeat-
edly in a short time span, as with xylophones when a tremolo is simulated (Hajda, 1995),
or where multiple vibrating bodies are struck close in time, as with the bamboo chimes
investigated by Lakatos (2000). The martelé style of playing for the violin, investigated
in Lakatos (2000), was considered as generating an impulse signal, given the extremely
short duration of the bowing that excites the violin string.
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Table 4.2: Datasets, number of dimensions of MDS spaces, and stimulus properties in the considered dissimilarity rating studies
on musical timbres. Aereo. = aereophones; chordo. = chordophones; membr. = membranophones; idio. = idiophones; cont =
continuant; imp = impulsive; m. i. = multiple impulses. The three rightmost columns show whether significant partitionings were
found (Y) or not (N), and, in parentheses, the number of dimensions of the MDS spaces needed to highlight the partitioning. For
those cases where partitionings were not found (N), relevant partitionings were highlighted discarding a variable number of data
points. For these cases the musical instrument and the number of discarded data points are shown in parentheses.

Musical instruments class Excitation type Partitionings
Dataset N Dim. Aereo. Cordo. Membr. Idio. Cont. Imp. M. I. Mus. ins. Exc. Mus. ins. + Exc.

WE72E 2 6 2 8 Y (2)
WE72R 2 6 2 8 Y (2)
WES73 2 6 3 9 Y (1)
SER93 2 1 5 6 Y(1)
GRE77 3 13 3 13 N (2, flute)
KRU89 3 7 5 1 8 6 Y (2) Y (1)
IV93E 2 11 3 2 13 3 Y (1) Y (1)
IV93A 2 11 3 2 13 3 N (2, violin) Y (2)
IV93R 2 11 3 2 13 3 Y (2) Y (2)
HAJ95 2 3 5 6 2 Y (2) Y (2)
MAC95 3 6 5 1 7 5 Y (2) Y (1)
KEN99 2 10 1 11 Y (2)
LA00H 2 12 5 13 4 N (1, organ) Y (1)
LA00P 3 6 12 3 13 2 N Y (2) Y (3)
LA00C 2 6 4 4 6 9 11 N Y (2) N (2, cuica; steel drum)
MA03A 4 10 8 12 6 Y (1) Y (1)
MA03B 4 10 8 12 6 Y (1) Y (1)
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We tested, then, whether these distinctions were reflected in the distribution of stimuli
within the associated MDS spaces. We assumed that evidence for the perceptual relevance
of these distinctions existed if they defined disjoint regions of the MDS spaces. For
example, in the case of a unidimensional space, the distinction among impulsive, and
continuant sounds would be considered perceptually relevant if above a given location
along the dimension all stimuli were impulsive, and below all stimuli were continuant. The
boundaries between disjoint regions were assumed to be linear, i.e., when two dimensions
were considered, the boundary was a line, and a plane/hyper-plane when three/four
dimensions were considered. Such a choice was made for the ease of computations, and
was not based on considerations of psychophysical nature. A better possibility was to
consider also non-linear boundaries (e.g., quadratic functions in bi-dimensional spaces),
where the probability of observing disjoint regions in MDS spaces would have been higher
or equal to that when only linear boundaries were considered. As such, it should be then
noted that the linear-boundary assumption makes the test for the hypothesis of the
relevance of source-based distinctions to dissimilarity ratings even more conservative.

Logistic regression models were used (Hosmer & Lemeshow, 1989; Agresti, 1996).
Disjoint regions in the MDS spaces, defined by the source-based criteria presented above,
were sought, predicting the source categories using the MDS coordinates as indepen-
dent variables. In particular, we tested whether the MDS coordinates allowed a perfect
prediction of the source categories, a condition known as perfect separation (Albert &
Anderson, 1984). When such a condition occurred, disjoint regions were found in the
MDS spaces, containing only members of one of the categories, whose boundaries were
defined geometrically as mentioned above. When complete separation was found using all
the dimensions of the MDS spaces, we checked whether a lower number of dimensions was
sufficient to yield the same outcome. The musical instrument classes, and the excitation
type classes were tested both in isolation and, with reference to Lakatos’ (2000) data, in
conjunction, so that, for example, bowed and struck cymbal sounds belonged to different
classes (idiophone-continuant and idiophone-impulsive). An example of this analysis is
shown in Figure 4.3. Analysis of the MDS solution of McAdams et al. (1995) revealed
partitions corresponding to musical instrument class (aereophones, chordophones, and
idiophones), as well as partitions corresponding to type of excitation (impulsive vs. con-
tinuant). Both dimensions 1, and 3, were necessary to discriminate among classes of
musical instruments, whereas dimension 1 was sufficient to perfectly separate impulsive
sounds from continuant sounds. The boundaries among these classes, computed with
logistic regression models, are also shown.

Table 4.2 summarizes the results of this analysis. For each of the considered datasets
it is shown whether musical instruments belonging to different classes, and generated
with different types of excitation occupied disjoint regions of the MDS spaces. The same
outcome is shown, when appropriate, with reference to the classes defined considering
jointly the type of excitation and the musical instrument class. Also shown is minimum
number of MDS dimensions required to separate the investigated classes.

Out of the 17 considered MDS spaces, 12 revealed partitionings based on musical
instrument classes. With 3 of the remaining studies, the failure to reveal disjoint regions
occupied by musical instruments was caused by only one stimulus in the dataset. With
the remaining two datasets (harmonic and combined sets; Lakatos, 2000), significant
partitionings were found when musical instrument class and excitation type where con-
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Figure 4.3: Partitions based on the musical instrument class and on the type of excitation
revealed in the MDS solution of McAdams et al. (1995). BSN = bassoon; CNT =
clarinet; EHN = English horn; GTR = guitar; HCD = harpsichord; HRN = French
horn; HRP = harp; PNO = piano; STG = string; TBN = trombone; TPT = trumpet;
VBS = vibraphone. Circle = aereophone; square = chordophone; triangle = idiophone.
Black = impulsive excitation; white = continuant excitation. Continuous lines show the
boundaries between musical instruments classes; dashed lines show the boundary between
impulsive and continuant sounds.

sidered jointly. However, with the combined set in Lakatos (2000), a perfect partitioning
was found only when data for the steel drum and the cuica were removed (see Figure 4.4).
Concerning the type of excitation that initiates vibration in the musical instrument (im-
pulsive, continuant, and multiple impulses), with all considered datasets different types
of excitation occupied disjoint regions in the MDS spaces.

In summary, across studies the evidence supports the perceptual relevance of the
distinction between aereophones, chordophones, membranophones, and idiophones, even
though not all studies revealed clear cut partitionings. Instead, strong evidence for the
perceptual relevance of the distinction between types of excitation was found, where all
studies revealed significant partitionings based on this source property.

4.7.3 Discussion

Previous data on identification of musical instruments and dissimilarity ratings was
analyzed in order to test for the relevance of source properties in explaining experimental
results.

Independently of the methodology used to test perception distinctions based on the
nature of the generators of the acoustical signals, which defined the musical instrument
family, and/or based on the nature of the excitation of the generators were found, to a
gross extent, mapped in perceptual data. In particular previous studies on identification
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Figure 4.4: Partitions based on the musical instrument class, and on the type of excitation
revealed in the MDS solution of Lakatos (2000) for the combined set. CLR = B flat
clarinet; CLS = celesta; CUC = cuica; CYB = cymbal (bowed); CYS = cymbal (struck);
FHN = French horn; FLT = flute; HRP = harp; HRS = harpsichord; LGD = log drum;
PNO = piano; RCR = baroque recorder; SNR = snare drum; STD = steel drum; SXT =
tenor sax; TBB = tubular bells; TRM = C trumpet; TYM = tympani; VBB = vibraphone
(bowed); VLM = violin (martelé). Circle = aereophone; square = chordophone; triangle
= idiophone; star = membranophone. Black = impulsive excitation; white = continuant
excitation. Continuous lines show the boundaries between musical instrument categories.

found tones generated with musical instruments belonging to the same family to be
highly confused, and tones generated with different-family instruments to be seldom
confused. Source-based distinctions were found mapped to dissimilarity ratings data too.
In particular categories of musical instruments and/or types of excitation were found, to
a variable extent, occupying disjoint regions within the MDS spaces.

Overall these analyses revealed that source properties explain perception of musi-
cal instrument tones and, as a consequence, that despite their “quasi-harmonic nature”
(cf. Gaver, 1988) this class of signals carry perceptually meaningful source-related in-
formation. This result points toward the usefulness of research conducted on musical
instrument sounds to the understanding of source perception. For example, it is quite
interesting to note that the totality of dissimilarity ratings studies revealed clear-cut dis-
tinctions based on the nature of the excitation, while less clear distinctions were found
when only the nature of the generator (i.e., musical instrument family) was considered. It
must then be concluded that the nature of the excitation has a higher perceptual salience
than the nature of the generator. It should be finally noted that studies on musical in-
strument tones can also clarify issues concerning the acoustical determinants of source
perception with environmental sounds. For example, studies on musical instrument tones
found pitch, or, roughly, signal fundamental frequency, to be a strong determinant for
listeners’ judgments when its variation in the stimulus set was greater than one octave
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(see Section 4.7.2). Consistently, results concerning material identification highlighted
a relevance of signal frequency to judgments only when the stimulus set included large
frequency variations (see Section 4.2.2). Also, one of the major acoustical determinants
for timbre perception, spectral centroid, has found to be associated with judgments of
source properties by several of the studies conducted with environmental sounds.

The relevance of source properties to the perception of musical instrument tones
contradicts the definition of musical listening by Gaver (1988, 1993a), conceived as focused
on the properties of the proximal stimulus, the sound, rather than on those of the distal
stimulus, the source. Thus, either studies conducted on isolated musical tones, as the vast
majority of those reviewed here, produce results not generalizable to musical listening, or
this latter concept has to be redefined. It is this latter possibility that we would like to
explore. Both studies conducted on environmental and musical sounds revealed a tie of
perception with the properties of the distal stimulus. Nonetheless, it is undoubtable that
when listening to a musical composition for marimbas the length of the struck bars, or
the hardness of the mallets is far from our thoughts, while the same is not true when we
hear the sound of a large, or small object falling on the floor. The distinction between
everyday listening and musical listening might be better redefined on the basis of the
properties of the linguistic content activated in the two contexts. Indeed, while in both
cases our perceptions map properties of the source, as well as properties of the acoustical
signals, the amount of source-related linguistic content would be much higher in everyday
conditions than in musical listening contexts.

4.8 Conclusions

In Chapter 2, two theories of perception were presented: the ecological and the
information-processing approaches. Several points of opposition between the two the-
ories were found. The ecological approach postulated unique specification of the distal
stimulus (the sound source) in invariant properties of the proximal stimulus (the acousti-
cal signal), whereas the information-processing approach postulated such a relationship
to be ambiguous. The ecological approach assumed perception to be unmediated by in-
ternal representations, and to be unaided by additional information provided by past
experience, whereas the information-processing approach made the opposite assump-
tions. In other words, the ecological approach postulated perception to be direct, and
the information-processing approach postulated perception to be mediated. Finally, the
ecological approach assumed perception to be veridical and, ultimately, denied the appro-
priateness of labeling perception as in error, while such an assumption was not made by
the information-processing approach, which contemplated errors of perception as useful
to the understanding of the functioning of the perceptual system. Experimental evidence
on source perception was reviewed in this chapter.

Only a few studies have attempted to test for the presence of invariants or acousti-
cal parameters that uniquely specified the source property whose perception was being
investigated. Among these Li et al. (1991) found linear combinations of different spec-



74 Chapter 4. The empirical framework

tral descriptors to discriminate among actual walker genders, and Warren and Verbrugge
(1984) pointed out the temporal patterning of impacts in bouncing and breaking sounds
to discriminate among the two events. Notably with both studies the highlighted in-
variant acoustical information was used by participants to judge the investigated source
properties. On the other hand, results from several studies on the acoustical determi-
nants of judgments showed perception to rely on noninvariant acoustical properties. For
example, geometry perception was explained in terms of the modal frequencies of the
sounding object, influenced by source properties other than geometry, namely the mate-
rial of the sounding object (see Section 4.2.1). These latter results might point toward a
limited usefulness of the concept of invariant in explaining source perception. It should
be noted, however, that experimental judgments may have been based on noninvariant
properties of the proximal stimulus simply because invariant acoustical parameters were
not available in the experimental context. Thus the notion of invariant can be rejected as
empirically useless only if both listeners base their judgments on noninvariant acoustical
properties and source-specific information is highlighted. As pointed out above, this test
is seldom found in the literature on source perception.

Concerning the direct versus indirect perception debate, at the end of Chapter 2 it was
stated that a valid empirical test for the correctness of the direct perception assumption
was based on the demonstration of percept-percept couplings, i.e., the mutual influence
of perceptual dimensions. Evidence in favor of the indirect approach was found, however,
only for the visual modality. None of the studies reviewed in this chapter found percept-
percept couplings in audition. This issue is thus still open.

Concerning veridicality, good source perception capabilities were found across stud-
ies. Nonetheless, several systematic biases revealed a misalignment between actual and
perceived source properties. For example, the perceived geometry of struck plates was
also influenced by their material (Gaver, 1988; Kunkler-Peck & Turvey, 2000; Tucker &
Brown, 2003), or the perceived size of bouncing balls was influenced by the size of the ob-
ject on which they bounced (Grassi, 2005). Following the considerations made in Section
2.1.4, these results cannot be interpreted as contradicting the veridicality assumption of
the ecological approach, as they simply reveal that the dimensions of perception do not
faithfully map those of physics. This issue is thus still open. It should be pointed out,
however, that ecological theorists deny in ultimate stance, the appropriateness of apply-
ing the term error and the true and false labels to the facts of perception (see Section
2.1.4). For this reason, any study which might find nonveridical perception (i.e., false or
in error) will never undermine the ecological approach.

Finally, empirical evidence on the perception of musical instrument tones was reviewed
and reanalyzed in order to test for the relevance of source-based distinctions in explaining
data. Independently of the experimental methodology used, source-based distinctions
were found to be reflected in participant judgments. This result was used to argue against
the hypothesis made by Gaver (1988, 1993a) according to which source properties are at
best secondary to musical listening, this latter focusing primarily on the properties of
the acoustical signal. As a consequence, independently of whether investigations focus
on musical material or on environmental sounds, both source and acoustical properties
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should be conceived as equally useful to the understanding of audition (cf. Section 3.1).





Chapter 5

Plan of studies

Is perception veridical? Is perception direct? Whatever the truth, the perceiver makes
use of the available sensory information to extract properties of the environment. Thus,
ascertaining the environmental properties relevant to the perceiver and the properties
of the sensory information upon which perception is based is a relevant issue, in and of
itself, to the study of the perception of sound sources. This problem has motivated the
empirical investigations to be presented in Chapters 6-8.

All studies focused on the hammer/sounding object impact sound source described in
Section 3.2. The study in Chapter 6 complements a series of experiments conducted by
Giordano (2003) on the identification of the material type of sounding objects, investigat-
ing the acoustical determinants for identification and testing for the presence of sufficient
information for perfect performance. In Chapters 7 and 8, this work is referred to as Gior-
dano and McAdams (submitted). The study in Chapter 7 tests for the relevance of the
properties of the hammer/sounding object interaction in determining perceived hammer
properties and for the perceptual independence of hammer and sounding object. These
issues are investigated by asking listeners to rate the hardness of either the hammer or
the sounding object. Finally, the study in Chapter 8 investigates the relative relevance
to dissimilarity ratings of hammer properties, sounding object properties, and properties
of their interaction.

Throughout these studies both the acoustical and physical or source-based determi-
nants of perception were investigated. An effort was made to limit assumptions concern-
ing the specific nature of the determinants, using the most complete possible character-
izations (see Section 3.1). Thus, a large set of acoustical descriptors has been used to
explain participants’ judgment in all studies. Among these descriptors, the acoustical
measure of damping (tanφ) was included, as it had been hypothesized to mediate per-
ception of the material of the sounding object by Wildes and Richards (1988). The need
to avoid assumptions has also determined the choice to extend the analysis of physical
determinants beyond the properties of the sounding object, where in both Chapters 7
and 8 the properties of the interaction between hammer and sounding object were also
considered, and in Chapter 8 the properties of the hammer were also included among the
variables potentially useful to the explanation of perception.

77
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With all the investigations particular care has been taken to generate knowledge gen-
eralizable to everyday conditions or, in other words, to maximize the ecological validity of
experimental results. Different methodological choices were made to this purpose. First,
participants were given minimal nonauditory source-related information, and no feedback
on response correctness was provided. In this way, participants were more likely to use
response criteria closer to those used to perceive source properties under everyday condi-
tions, rather than response criteria learned in the experimental setting through examples
of source-acoustical signal pairings or through feedback on response correctness1. Second,
stimulus sets were generated varying several different source properties. In this way the
experimental context aimed to reproduce the source uncertainty that might character-
ize many listening conditions, where sources are not constrained to vary along a single
property.

As outlined above, different experimental techniques were used throughout the stud-
ies. In Chapters 6 and 7, participants were instructed to judge explicitly a given property
of the sound source. In both cases, the focus was on material-related properties: in Chap-
ter 6 participants were asked to identify the material type of the sounding object, and
in Chapter 7 they rated the hardness of either the hammer or the sounding object. As
pointed out in Chapter 8, the use of techniques based on the explicit judgment of sound
source properties might limit the ecological validity of the studies, because it might focus
the attention of listeners on source and acoustical properties that are not of primary con-
cern outside the experimental context. For this reason in Chapter 8 perception was tested
using a technique that did not require the use of source-related linguistic labels: dissimi-
larity ratings. At any rate, whatever the task used to test perception in the laboratory,
generalization to everyday conditions requires assuming that the experimental judgment
is representative of everyday perception. Given the difficulties inherent in testing this as-
sumption, more safely generalizable results shall emerge from the comparison of studies
based on different experimental tasks. Accordingly, one can more safely conclude that a
given source property is relevant to everyday perception if it explains data gathered with
different experimental judgments. This final summary is presented in Chapter 9 where
results concerning the acoustical and physical determinants of judgments gathered in the
different studies are compared.

Finally, with all the studies the relationship between source and acoustical properties
was investigated, ascertaining the presence of sufficient acoustical information for unbi-
ased perception of the manipulated source properties, i.e. for an alignment of perception
with the physical properties of the source. Following the considerations made in Sec-
tion 4.8 such a test also allowed us to verify the usefulness of the concept of invariant
to the explanation of source perception. In Chapters 7 and 8, this analysis also served
the purpose of linking together the studies of source and acoustical determinants of the
judgments. In other words, it allowed an understanding of why source property A and
acoustical property B explained equally well the behavioral data on the basis of the fact
that B was, above all the acoustical properties, the one most strongly associated with

1Feedback-based techniques model the so-called “best case scenario” which assumes highly practiced
listeners (Lutfi & Oh, 1997).
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source property A.





Chapter 6

Material identification of real impact
sounds

Bruno L. Giordano† and Stephen McAdams††

Abstract

Listeners’ performance in auditory material identification tasks was found to be per-
fect with respect to gross material categories, comprising materials of vastly different
properties. Impaired performance was observed when materials with similar mechanical
properties were involved, identification being based on the size of the objects with ma-
terial type having no effect. Several acoustical criteria for identification, including an
acoustical measure of damping, were tested concerning their ability to explain listener
performance. The damping descriptor only accounted for the discrimination between
materials belonging to different gross categories, while discrimination within the same
gross category appeared to be based mainly on signal frequency. Sufficient acoustical
information for perfect material identification was found. Procedural biases for the ori-
gin of the effects of size could be discarded, pointing toward their cognitive, rather than
methodological, nature.

6.1 Introduction

A growing branch of research investigates the perceptual correlates of the properties of
sound sources. This branch has been variously labelled ecological acoustics (Vanderveer,
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1979), auditive kinetics (Guski, 2000), psychomecanics (McAdams, 2000), or, generally,
sound source recognition. The object of study in this field can be described at three
different levels: the physical or mechanical level (the properties of the sound source),
the acoustical level (the properties of the sound wave emitted by the source), and the
perceptual level (the properties of the sound event as perceived by the listener). The
research design in sound source recognition analyzes all the pairwise relationships among
these levels (Li et al., 1991). This design was applied to one of the most investigated
issues: identification of material type in impact sounds.

Several previous works investigated material identification with synthetic or real sig-
nals, focusing particularly on the effects of acoustical measures of damping. Wildes and
Richards (1988) defined a shape invariant acoustical parameter for material type, the
coefficient of internal friction tanφ, which models material damping:

tanφ =
α

πf
(6.1)

where α is the damping coefficient of the vibrational component, i.e. the inverse of
the time required for the component to decay to 1/e of its original amplitude, and f is its
frequency. The higher tanφ the greater the damping of the material, and the faster the
decay time decreases with increasing frequency. Wildes and Richards (1988) proposed
material type recognition to be based on the tanφ coefficient.

The effect of damping measures on auditory material judgments was tested in several
studies. Klatzky et al. (2000) investigated stimuli synthesized according to a physical
model of a struck bar (van den Doel & Pai, 1998), varying a parameter inversely pro-
portional to the tanφ coefficient, as well as the frequency of the lowest vibrational mode,
later referred to as frequency, which spanned over 3.3 octaves. Four response categories
were used: rubber, wood, steel, and glass. Both experimental variables affected the judg-
ments: rubber and wood were chosen for higher tanφ values than glass and steel; glass
and wood were chosen for higher frequencies than steel and rubber. Avanzini and Roc-
chesso (2001a) investigated material identification with stimuli generated according to
the physical model of a one-mode resonator, varying the tanφ coefficient, and frequency
(range: 1 octave). The same response categories were used, and results were analogous
to those of Klatzky et al. (2000), although frequency effects were less clear. Roussarie
(1999) investigated stimuli synthesized according to a physical model of a struck plate
(Lambourg, 1997), varying damping coefficients, elastic properties, and density of the
simulated plates around those characterizing glass and aluminum. The properties of the
simulated hammer were also manipulated, using parameters typical of either wood or
rubber. Two response categories were adopted: glass and aluminum. Responses were
found to be influenced only by the damping properties of the plates, strongly correlated
with an acoustical parameter analogous to tanφ and with the average spectral center of
gravity, respectively. Variations in density and elasticity, associated with a variation in
frequency equivalent to a musical interval of a perfect fifth, had no effect. In summary all
of the cited studies demonstrated the relevance of damping measures for material iden-
tification, while frequency effects were demonstrated only with experimental sets where



6.1. Introduction 83

this acoustical feature ranged over at least one octave.

Other studies focused on material identification performance. Gaver (1988) asked
participants to judge whether variable-length struck bars were made of iron or wood.
High recognition performance was observed, responses being uninfluenced by the geo-
metrical properties of the objects. Similar results were obtained with stimuli synthesized
according to a physical model of a struck bar. Kunkler-Peck and Turvey (2000) gener-
ated stimuli by striking triangular, rectangular, and square plates made of steel, wood
or plexiglas. Material recognition was almost perfect, and only a secondary tendency to
associate materials with shapes was found. Perfect material recognition performance was
not confirmed, however, in a study conducted on synthetic signals (Lutfi & Oh, 1997).
Stimuli were synthesized according to the wave equation of a struck clamped bar, with
stimulus variability created by perturbing the density and elasticity terms. Participants
were asked which of two stimuli was generated by striking a given target material (iron
or glass), the alternatives being different metals, crystal or quartz. Signal frequency was
given a disproportionate weight by listeners, resulting in poor performance.

Inconsistencies between results by Kunkler-Peck and Turvey (2000) and by Lutfi and
Oh (1997) were explained by Carello, Wagman, and Turvey (2003) in terms of the lack
of acoustical richness that might characterize synthetic signals, and thus of the absence
of sufficient information for the task. Additional studies, however, showed that impaired
performance is also found with real signals. Giordano (2003) reported preliminary results
of three experiments conducted with real signals generated by striking rectangular plates
made of steel, glass, wood, and plexiglas. Different stimulus sets were investigated,
varying the height/width ratio of the plates and their area (both with freely vibrating
and externally damped plates), or varying the area of the plates and the material of
the hammer. The height/width ratio and hammer material variables had no significant
effect. With freely vibrating plates steel and glass were almost perfectly discriminated
from wood and plexiglas, and vice versa. In line with results by Gaver (1988), Kunkler-
Peck and Turvey (2000), discrimination between these gross categories was not influenced
by the geometrical properties of the objects. External damping caused glass-plate signals
to be confused with wood and plexiglas sounds while categorization of steel plates was
not influenced by this manipulation.

The strong confusion between wood and plexiglas was confirmed in another study
conducted on real signals (Tucker & Brown, 2003). Stimuli were generated by striking
wood, plexiglas, and aluminum plates of constant area and variable shape. Wood and
plexiglas were strongly confused with one another and were almost perfectly discriminated
from steel. A second experiment, performed on underwater recordings of the same struck
plates, gave the same results. A large portion of the data (69% for the first, 62% for
the second) was found to be explained by a parameter related to tanφ. Studies by Lutfi
and Oh (1997), Giordano (2003), Tucker and Brown (2003) thus point to the presence
of limited material recognition capabilities, perfect only when discriminations among
materials of vastly different properties (e.g., woods and metals) are involved.

Studies by Kunkler-Peck and Turvey (2000), and Tucker and Brown (2003) also found
material identification to be independent of the geometrical properties of the objects when
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a discrimination between wood and plexiglas was involved. Such results, however, are not
consistent with further effects reported by Giordano (2003). With experiments conducted
on freely vibrating plates, discrimination between steel and glass, and between wood and
plexiglas was in fact found to be based on the area of the plates: larger plates were
more often labelled as steel and plexiglas than as glass and wood. Analogous tendencies
were found with externally damped plates. These response patterns appeared strongly
consistent across listeners, although a small percentage of participants showed an opposite
effect of area on wood and plexiglas categorizations, the former material being associated
with larger plates than the latter. Given the increase of frequency with a decrease in
the size of an object the association of wood and glass to low-area plates and steel and
plexiglas to large-area plates would seem to confirm results by Klatzky et al. (2000).
The informal nature of the acoustical analyses presented in Giordano (2003), however,
does not allow us to draw conclusions on this point. Indeed other acoustical parameters
than frequency, affected by a variation in size, might have been used by listeners in
selecting their responses. Also, one potential explanation for the emergence of size effects
on material identification in Giordano (2003) was that no acoustical information was
present in the stimulus sets to discriminate between steel and glass, on the one hand, and
between wood and plexiglas signals, on the other. The absence of relevant information
for these discriminations might indeed have led participants to focus on source properties
irrelevant to the task, namely size, for which a variation in the acoustical features was
present. However, no tests for the presence of sufficient acoustical information for perfect
material identification were performed.

Despite all the work made on this topic, little is known about the acoustical criteria
used in material identification. In fact with previous research behavioral data were ex-
plained with limited sets of descriptors that included, at best, an acoustical measure of
the damping properties, frequency, and the average spectral center of gravity (Roussarie,
1999). Furthermore, the observed behavioral relevance of acoustical measures of damping
like tanφ is not sufficient to conclude that they are used by listeners to identify the mate-
rial of the objects. Indeed, other acoustical properties, associated with variations of tanφ,
might be used by participants to judge material type. For example signals characterized
by lower tanφ values should also have a longer duration. Also, a change in tanφ should
be associated with a change in the temporal variability of loudness, where the higher
the tanφ value, and thus the faster the decay of amplitude for each spectral component,
the faster the decrease in loudness. A recent dissimilarity rating study (McAdams et al.,
2004) demonstrated the perceptual relevance of acoustical variables other than the damp-
ing descriptors for the judgment of impact sounds. With this study signals synthesized
according to a physical model of a struck bar (Chaigne & Doutaut, 1997; Doutaut et al.,
1998) were investigated. Participants were asked to rate the dissimilarity of pairwise
presented sounds. Stimulus sets were generated varying a parameter related to damping,
η, which models the frequency dependence of damping using a quadratic function, and
either the density of the bar or its length. Two-dimensional spaces were found to account
for the dissimilarity ratings in both experiments. One of the dimensions was related to
the η coefficient, and the other dimension was related to either the density or the length
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of the bar.
Frequency explained the location of the stimuli along the density/length dimension.

A linear combination of a level decay-rate descriptor and of the average spectral center
of gravity explained the location of stimuli along the η-related dimension. Given the
known relationship between identification and dissimilarity ratings (e.g., Grey, 1977; see
also McAdams, 1993), one is supported in expecting similar acoustical parameters to
influence auditory material identification.

A new study on material identification was performed, using a subset of the real
signals studied in Giordano (2003). The complete research design in sound source recog-
nition was adopted (Li et al., 1991). Analysis of the relationship between the physical,
acoustical, and perceptual levels allowed for testing the physical and acoustical determi-
nants of material identification. In particular, the relationship between auditory material
identification and a wide set of acoustical descriptors was investigated, comparing their
explanatory power with that of the acoustical measure of damping, tanφ. An analysis
of the relationship between the acoustical and physical levels allowed us to test for the
presence of sufficient acoustical information for perfect material recognition. Given the
interindividual differences for the wood and plexiglas recognition strategies reported by
Giordano (2003), an analysis of the similarities among data from different participants
was also performed.

6.2 Methods

6.2.1 Stimuli

Sounds were generated striking plates made of four different materials: plexiglas (poly-
methyl methacrylate), soda-lime glass, steel, and Tanganyka walnut. All plates were
2 mm thick. All plates were square. Five different values were used for the length of
the sides of the plates: 8.66, 12.24, 17.32, 24.49 and 34.64 cm, yielding areas from 75
to 1200 cm2. Each plate was drilled close to the right and left top corners and close to
the left and right borders, at the middle of their height (diameter: 4 mm). The upper
holes were used to suspend the plates; the lower ones to stabilize them after being struck,
thus avoiding amplitude modulations due to an excessive movement of the plate relative
to the microphone. Plates were struck with a steel pendulum (diameter: 2 cm; weight:
35.72 g).

The apparatus used to suspend the plates was similar to that used by Kunkler-Peck
and Turvey (2000) (see Figure 6.1). The main structure was made of pine wood. Both
the plates and the pendulum were hung from the top shelf with nylon lines (diameter:
1 mm.). The lateral holes of the plates were attached to two 150-g weights with nylon
lines, passing through holes drilled in two horizontal planks attached to both sides of the
structure. The pendulum was hung from the top shelf, 15 cm from the plane in which the
plates lay, and was released from a fixed guide attached to the front of the top shelf so
that its starting angle was kept constant. Plates were struck in their centers. No audible
multiple impacts of the pendulum on the plate were observed.
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Figure 6.1: Sketch of the device used to suspend and strike the plates. In dark grey the
pendulum and the stabilizing weights.

Sounds were generated in an acoustically isolated room with highly absorbing walls
and were recorded using a TASCAM DA-P1 DAT recorder (48000-Hz sampling rate, 16-
bit resolution) and Beyer Dynamic digital microphone (MCD101/MPD200) positioned
45 cm from the center of the plate, opposite to the struck surface. Recordings were
transferred to a computer hard disk through the digital input of a Sound Blaster Live
Platinum sound card. Signals longer than 1 sec were reduced to this duration by applying
a 5-ms linear decay. Informal listening tests showed that material identification was not
influenced by this sound wave editing process. Signals were not equalized in loudness.
The presentation level was the maximum level which kept the background noise, constant
across the samples, inaudible. The peak levels of the signals ranged from 54 to 72 dB
SPL.

6.2.2 Procedure

Stimuli where presented through AKG K240 headphones, connected to a NIKKO NA-
690 amplifier, which received the output of the Sound Blaster Live soundcard of the PC
used to program the experiment. Participants sat inside a sound-proof booth. Stimulus
presentation and data collection were programmed into the Mathworks Matlab environ-
ment, using the facilities provided by the Psychophysics Toolbox extensions (Brainard,
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1997; Pelli, 1997). Participants were told that on each trial they would be presented a
single sound generated by striking an object made of one of four different materials. In
order to make instructions straightforward, it was decided to use generic linguistic labels
for all materials: glass for soda-lime glass, metal for steel, plastic for plexiglas, and wood
for Tanganyka walnut. Given that the stimulus set comprised only one material type per
generic category, it was assumed that this linguistic choice did not affect participants’
responses. No mention was made of the geometrical properties of the objects, minimizing
the non-auditory information given to participants. After presentation of the stimulus,
participants were asked to identify the material of the struck object. Before giving the
response, participants were allowed to replay the stimulus as many times as needed. Re-
sponses were given by pressing appropriate keyboard keys. The 20 stimuli were presented
in blocked-randomized order for each of seven repetitions, for a total of 140 trials.

6.2.3 Participants

Twenty-five listeners took part in the experiment on a voluntary basis (age: 22 - 49
years; 17 males, 8 females). All of them reported having normal hearing.

6.3 Acoustical descriptors

The analysis model used to extract the tanφ parameter, and the loudness and bright-
ness descriptors was meant to simulate the output of the cochlea in response to the
incoming acoustical signal. Outer and middle ear filtering were simulated by means of a
cascade of two IIR and one FIR filter, in order to account for peak sensitivity at 2 kHz,
and for loss of sensitivity at lower and higher frequencies. The transfer function was de-
rived from measures of the minimum audible field (Killion, 1978). Processing of the signal
inside the cochlea was simulated with a gammatone filter bank (Patterson, Allerhand, &
Gigure, 1995), with center frequencies fc uniformly spaced on an equal-resolution scale
(Moore & Glasberg, 1983), between 30 and 16000 Hz. The power in output from the
cochlear filters was then added to the power delayed by 1/4fc (Marozeau et al., 2003).

Tanφ was extracted from this representation. Damping factors α for the signal output
from each channel were computed using the regression model log(P ) = a + bT , where
P is power, T is time, and b = −α/2. The regression model was applied to the signal
from peak power to a fixed threshold power. Figure 6.2 shows the analysis of a harmonic
complex given by the sum of six damped sinusoids with a fundamental frequency of 2000
Hz. Damping factors have been chosen to yield a tanφ of 0.01. Also shown is the upper
limit for the damping factor of the signal in output from the cochlear channels, calculated
analyzing an unitary amplitude impulse with this procedure.

Computation of tanφ from the extracted damping factors was based on the assumption
that the perceptual relevance of the output of each cochlear filter was not constant. In
particular it was assumed that the higher the total power in output from the filter, the
higher the perceptual relevance of the signal in determining tanφ. Thus tanφ was defined
as:
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Figure 6.2: Extraction of the damping factors from the output of the analysis model.
Filled circles show the upper limit for the damping factor, empty circles show the damping
factors extracted from a six-component harmonic complex with fundamental frequency
of 2000 Hz and tanφ of 0.01; filled triangles show the damping factors of the input signal.
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(6.2)

where fci is the center frequency in Hertz, and wi is the sum of power from peak value
to threshold. This procedure yielded, for the signal shown in Figure 6.2, a tanφ value of
0.0101.

A second representation was used to extract loudness and brightness descriptors. The
representation used to compute the tanφ parameter was downsampled, convolving it
with a 10-ms square window, yielding a temporal resolution similar to that for loudness
integration (Plack & Moore, 1990). The power in each channel was finally raised to the
power of 0.25 to approximate partial loudness (Hartmann, 1997). For each temporal
frame of the final representation, both loudness and brightness measures were derived.
Loudness was defined as the sum of the partial loudnesses computed from the output
of each cochlear channel (Zwicker & Fastl, 1999). Given that loudness was calculated
on the sound files, without taking into account the actual presentation levels, its unit of
measure was termed “pseudo-sone”. Brightness was measured by means of the spectral
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center of gravity (SCG), defined as the specific loudness weighted average of frequency on
the ERB-rate scale. Finally a duration (Dur) measure was extracted, defining the offset
as that instant where the signal reached the loudness of the background noise (about 0.2
pseudo-sones).

For both the loudness and SCG functions over time, an attack and an average mea-
sure were extracted (Louatt, SCGatt; Loumea, SCGmea). For 17 of the sounds the SCGatt

measure corresponded to the maximum SCG value, while for the remaining three signals
the peak was found in the third analysis frame (20-30 ms from onset). With loudness,
the attack corresponded to maximum loudness in nine signals, while for the remaining
11 maximum loudness was found in the second analysis frame (10-20 ms from onset).
Further descriptors characterized the temporal evolution of loudness and brightness and
were extracted with linear regression procedures. The loudness function was character-
ized using two measures. The first one (Lousl1) measured the slope from the attack value
to the point where loudness equalled half of the attack value. The second measured the
slope from the point were loudness was double the final value up to the end (Lousl2).
The SCG-over-time function was found to be non monotonic for 15 signals, for which
an initial decrease was followed by a final increase. A slope measure was extracted con-
sidering the initial portion of the SCG-over-time function, from attack to the minimum
value (SCGslo). Figure 6.3 shows the loudness and SCG over time functions for the sig-
nal generated by striking the 150-cm2 glass plate. Also shown are the linear regression
functions used to extract the slope measures.
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Figure 6.3: Temporal functions of loudness and SCG for the signal generated by striking
the 150 cm2 glass plate. Also shown are the linear regression functions used to extracted
the slope measures.

Finally a measure of the frequency of the lowest spectral component F was extracted,
on the basis of the fast Fourier transform of the first 4096 samples of the signals (Han-
ning window). F was defined as the frequency of the first amplitude peak exceeding a
fixed threshold. Amplitude threshold was defined as the maximum amplitude of the low
frequency background noise across the recorded samples. Table 6.1 shows for each sig-
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nal the extracted acoustical indices. Approximate density measures for the investigated
materials are also given. Notably, tanφ discriminated perfectly among material types,
where an increase in this measure is found from plexiglas to wood to glass to steel.
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Table 6.1: Acoustical descriptors extracted from each signal. Mat=material; S = steel; G = glass, W = wood; P = plexiglas; ρ=density;
p.s.=pseudo-sones. See text for an explanation of the meaning of each acoustical descriptor.

Mat. Area ρ tanφ× 10−3 Dur F Louatt Loumea Lousl1 Lousl2 SCGatt SCGmea SCGslo

(cm2) (kg/m3) (s) (Hz) (p.s.) (p.s.) (p.s./s) (p.s./s) (ERB–rate) (ERB–rate) (ERB–rate/s)

S 75 7708.30 1.05 0.98 1535.15 7.24 0.95 -138.84 -0.62 25.98 21.41 -6.00
S 150 7708.30 0.86 0.98 773.44 6.89 1.45 -45.61 -0.96 24.41 19.90 -5.90
S 300 7708.30 0.90 0.98 386.72 6.17 1.81 -25.04 -1.24 23.27 20.64 -2.85
S 600 7708.30 0.37 0.98 187.50 6.80 3.15 -11.96 -2.50 24.10 21.69 -2.63
S 1200 7708.30 0.27 0.98 93.75 5.84 3.88 -4.78 -2.93 23.83 20.35 -2.97
G 75 2301.70 1.52 0.52 1406.25 8.09 1.25 -153.39 -1.17 25.38 22.48 -7.70
G 150 2301.70 4.46 0.47 750.00 7.97 1.09 -175.29 -0.93 23.76 18.59 -31.70
G 300 2301.70 2.59 0.63 386.72 8.58 1.50 -105.47 -1.12 23.07 19.33 -5.72
G 600 2301.70 1.68 0.98 187.50 7.06 1.47 -42.14 -0.69 22.96 16.86 -7.26
G 1200 2301.70 2.55 0.94 105.47 6.59 1.34 -38.41 -0.54 22.56 17.20 -5.56
W 75 718.33 19.29 0.17 527.34 5.19 0.93 -175.51 -1.40 23.51 18.18 -171.61
W 150 718.33 22.33 0.19 257.81 4.55 0.95 -131.95 -2.03 22.34 16.44 -102.38
W 300 718.33 19.03 0.30 128.91 4.56 0.83 -121.13 -1.12 21.40 15.75 -44.01
W 600 718.33 19.78 0.16 58.60 4.15 1.07 -104.69 -3.41 20.98 16.69 -52.39
W 1200 718.33 17.55 0.23 23.44 4.06 1.05 -64.57 -2.64 21.00 16.10 -36.04
P 75 1413.30 26.09 0.10 527.34 4.78 1.11 -176.74 -3.99 23.26 18.36 -153.04
P 150 1413.30 39.62 0.10 281.25 4.05 1.15 -127.72 -4.52 22.11 17.25 -148.12
P 300 1413.30 41.03 0.13 140.63 3.83 1.10 -110.59 -3.19 21.33 16.84 -114.28
P 600 1413.30 31.03 0.16 70.31 3.71 0.91 -99.08 -2.50 20.98 16.46 -123.87
P 1200 1413.30 24.50 0.17 35.16 3.79 0.91 -84.09 -2.46 20.80 15.38 -85.39
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6.4 Results

Due to the repetitions, for each sound a distribution of responses across the four
categories was possible for each listener. Analyses were conducted on the individual
modes of these distributions, hereafter referred to as “modal responses”.

6.4.1 From Physics to Perception

Response profiles of small groups of participants presented macroscopic differences
with respect to data pooled across all participants. Statistical criteria were applied to
extract groups of homogeneous response profiles. Cluster analysis was used to this effect.
Distances among individual response profiles were calculated using a general nominal
dissimilarity measure, defined as the proportion of consistent categorizations among two
participants (Gordon, 1999). An agglomerative hierarchical algorithm (average linkage)
was used. The choice of the number of clusters to extract from the hierarchical solution
was based on the analysis of the variation of a set of statistical indices across partitioning
levels. These indices measure the goodness-of-fit between the input data and the resulting
clustering partitions (Milligan, 1996). Among the available indices, a subset was chosen
that had been found to have superior performance in recovering the correct number
of clusters (Milligan, 1981; Milligan & Cooper, 1985): the c index (Hubert & Levin,
1976), the Goodman-Kruskal γ (Baker & Hubert, 1972), and the point biserial correlation
(Milligan, 1980). For the first index, lower scores indicate higher goodness-of-fit, and
better partitions, while for the latter two, better partitions are characterized by higher
scores. Following the approach suggested by Gordon (1999), indications concerning the
correct number of clusters were sought in local maxima/minima across partition levels,
and the correct number of clusters was established on the basis of the concordance among
indices. Figure 6.4 shows the value of the three indices as a function of the number of
clusters. Local maxima or minima used to extract the correct number of clusters are also
shown.

The final number of clusters was taken to be equal to three as this partitioning level
was indicated by all the three indices. The three clusters contained, respectively, 21, 3,
and 1 participant(s). Tables 6.2 and 6.3 show the frequency of the modal response for
each stimulus for the first and second clusters of participants. Table 6.4 shows the modal
response for the participant in the third cluster. Within the first group of participants,
the responses metal and glass never occurred for wood or plexiglas sounds; the responses
wood and plastic were only given once for the glass and steel sounds. Also a strong
tendency to associate the responses glass and wood with smaller plates and the responses
metal and plastic with larger plates was found. The same tendencies characterized the
second cluster of participants, the only difference being the inversion of the effect of the
area of the plates on the responses wood and plastic, associated, respectively, with larger
and smaller wood, or plexiglas plates. The participant in the third cluster was the only
one who responded metal for larger wood and plexiglas plates. Also the modal responses
for this participant did not include the plastic category. Subsequent statistical modelings
were performed only on data from the main cluster with 21 participants.
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Figure 6.4: Statistical indices used to evaluate the number of clusters present in the
dataset, across partitioning levels. White circles mark local maxima for the point biserial
correlation, and for the Goodman-Kruskal γ index, and local minima for the c index.

Table 6.2: Contingency table for the modal response in the first cluster of participants
(N=21). Material: S = Steel, G = Glass, W = Wood, P = plexiglas; Area: A1-A5 =
75-1200 cm2. Response categories in italics.

Metal Glass
S 1 3 17 21 21 20 18 4 0 0
G 2 2 18 21 21 19 18 3 0 0
W 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0

Wood Plastic
S 0 0 0 0 0 0 0 0 0 0
G 0 1 0 0 0 0 0 0 0 0
W 19 13 10 13 2 2 8 11 8 19
P 21 21 16 6 3 0 0 5 15 18

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
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Table 6.3: Contingency table for the modal response in the second cluster of participants
(N=3). Material: S = Steel, G = Glass, W = Wood, P = plexiglas; Area: A1-A5 =
75-1200 cm2. Response categories in italics.

Metal Glass
S 0 3 3 3 3 3 0 0 0 0
G 0 1 2 3 3 3 2 1 0 0
W 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0

Wood Plastic
S 0 0 0 0 0 0 0 0 0 0
G 0 1 0 0 0 0 0 0 0 0
W 0 1 2 3 2 3 2 1 0 1
P 0 0 0 2 2 3 3 3 1 1

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Table 6.4: Modal response for the participant in the third cluster. Material: S = Steel,
G = Glass, W = Wood, P = plexiglas; Area: A1-A5 = 75-1200 cm2. Response categories
in italics (M = metal).

S G M M M M
G G W M M M
W W W W M M
P W W W M M

A1 A2 A3 A4 A5
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Statistical models were then constructed in order to test for the relevance of the
sound source properties in determining the judgments. Separate logistic regression mod-
els (Agresti, 1996) were constructed for the perceptual discriminations between metal
and glass on the one hand, and between wood and plastic on the other. The variable
selection approach suggested by Hosmer and Lemeshow (1989) was adopted in order to
generate parsimonious models for observed data. Thus, before entering predictors into
multivariate models, the significance of their effect was tested in the univariate mod-
els. Both the material, and the area of the plates, were coded as categorical variables.
Data predicted by the regression models were compared with observed data using the
deviance, and Hosmer-Lemeshow (Hosmer & Lemeshow, 1989) goodness-of-fit measures.
Non-significant statistics indicated the equivalence of observed and predicted data, and
thus the validity of inferences based on the regression models. Logistic regression could
not be used to model the discrimination between wood and plastic on one hand, and
glass and metal on the other, because of the almost perfect performance level observed.
Simple χ2 association tests were thus adopted.

Discrimination between metal/glass and wood/plastic was influenced by the material,
but not by the area of the plates (χ2(3) = 416.038, p < 0.001, χ2(4) = 0.038, p = 1.000).
Furthermore the frequency of choosing the responses metal or glass was equivalent for
steel and glass plates (χ2(1) = 1.005, p = 0.316), and that of choosing the responses
wood or plastic was equivalent for wood and plexiglas plates (χ2(1) = 0, p = 1). The
probabilities of choosing the response metal over the response glass, and that of choosing
the response wood over the response plastic, were not influenced by the material of
the plates (Wald χ2(1) = 0.052, p = 0.820, Wald χ2(1) = 1.962, p = 0.161). The
effect of area, on the other hand, was highly significant in both cases (Wald χ2(4) =
47.386, p < 0.001 for metal versus glass, Wald χ2(4) = 48.52, p < 0.001 for wood versus
plastic). Finally goodness-of-fit statistics showed the observed data to be well accounted
for by area effects alone: for both the metal-glass and wood-plastic models, the Hosmer-
Lemeshow and deviance statistics were non-significant (glass-metal: deviance= 0, p= 1,
Hosmer-Lemeshow χ2(2) = 0.009, p = 0.996; wood-plastic: deviance= 0, p = 1, Hosmer-
Lemeshow χ2(3) = 0, p = 1).

6.4.1.1 Discussion

In line with results from previous research conducted on real signals (Gaver, 1988;
Kunkler-Peck & Turvey, 2000; Giordano, 2003; Tucker & Brown, 2003), participants
showed perfect recognition abilities when discrimination between gross material categories
(metal-glass and wood-plastic) were involved, the geometrical properties of the objects
having no effect. Analysis of response profiles showed that such an ability characterizes
the near totality of listeners. Such gross material categories are characterized by vast
differences in physical properties such as density (see Table 6.1), steel and glass being
denser that wood and plexiglas, or elasticity, steel and glass being stiffer than wood and
plexiglas (cf. Waterman & Ashby, 1997). In principle, then, both density, and elastic
properties could explain the observed perfect identification performance.
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Consistently with results by Giordano (2003) and Tucker and Brown (2003), but
inconsistently with results by Kunkler-Peck and Turvey (2000), participants were not
able to discriminate between wood and plexiglas. The same effect, consistently with
the impaired discrimination performances reported by Lutfi (2001), was observed for the
discrimination between harder materials, i.e., steel and glass. Indeed, for these discrim-
inations physical materials had no effect, i.e. steel was perceptually equivalent to glass,
and wood to plexiglas. Inconsistently with results by Kunkler-Peck and Turvey (2000)
and Tucker and Brown (2003), the choice of the response categories appeared to be based
on the geometrical properties of the objects. All participants, in fact, associated the
response glass with smaller plates than metal, and the vast majority of them associated
the response wood with smaller plates than plastic. The possible sources for the incon-
sistencies between the present results and those of Kunkler-Peck and Turvey (2000) and
Tucker and Brown (2003) concerning geometry effects, will be addressed in Section 6.4.2.

In the introduction, it was hypothesized that the inability of listeners to discriminate
between wood and plexiglas, and between steel and glass, were caused by the absence of
acoustical differences between the investigated steel and glass signals, on the one hand,
and between the wood and plexiglas signals, on the other. However, it must be pointed
out that, even though no significant acoustical differences were present between these two
sets of signals, the observed strong concordance among listeners in associating material
types with object size points toward a cognitive origin for these effects, rather than
to a procedural bias. Indeed, if these associations were caused by a general tendency
in participants to focus on the only source property that carried significant acoustical
variations, an equal number of participants associating given material types to opposite
sizes would have been expected. This was not the case in the current data.

6.4.2 From Acoustics to Perception

The acoustical basis for the perceptual discrimination between metal and glass, and
between wood and plastic was investigated, using the procedure outlined in Section 6.4.1.
A different approach was used for the discrimination between wood and plastic on the
one hand, and between metal and glass on the other, and will be presented in Section
6.4.2.

Before building the final regression models, a choice concerning the transform of each
acoustical predictor was made. This problem is particularly relevant to regression mod-
els, because the transform of the predictors affects their association with the behavioral
outcome. The investigated transforms were limited to linear (identity transform) and
logarithmic for all indices, plus the ERB-rate transform for F . The univariate models
with the different transforms of the same predictor were compared. The chosen model
should be the one closer to the unknown true probability distribution from which obser-
vations were sampled (Golden, 2000). This distance is commonly estimated using the
log-likelihood of the model, or penalized versions of this statistic which adjust for the
number of parameters in the model (Akaike Information Criterion, AIC), and for the
sample size (Bayes Information Criterion, BIC). In the case of the log-likelihood, the
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higher its value, the closer the model is to the unknown true probability distribution.
Thus, for each acoustical descriptor, the transform for which the regression model had

the highest log-likelihood was chosen. For the Lousl1, Lousl2, and SCGslo descriptors the
logarithmic transform was evaluated using the absolute value of the measures. Table 6.5
reports, for each predictor, the log-likelihood for the linear and logarithmic models, and
the log-likelihood for the ERB-rate(F ) model. Table 6.6 shows the correlations among
the acoustical indices, transformed according to this analysis, for both subsets of stimuli.
The upper triangular matrix reports correlations for the metal-glass dataset; the lower
triangular matrix reports correlations for the wood-plastic dataset.

Table 6.5: Log–likelihood (LL) of the models computed to select the transform for the
acoustical predictors. MG = metal vs. glass dataset; WP = wood vs. plastic dataset.
The LL of the models with the selected transform is shown in bold face.

Data Acoustical LL linear LL logarithmic LL ERB
set descriptor model model model

tanφ -135.71 -133.10
Dur -124.33 -122.66
F -57.50 -48.53 -50.25

Louatt -123.61 -122.02
MG Loumea -86.70 -85.29

Lousl1 -89.08 -88.37
Lousl2 -124.79 -131.52
SCGatt -87.93 -87.84
SCGmea -127.49 -127.24
SCGslo -119.08 -108.97
tanφ -135.23 -135.55
Dur -126.59 -121.59
F -105.30 -101.79 -103.34

Louatt -127.87 -127.97
WP Loumea -130.25 -130.85

Lousl1 -103.58 -103.02
Lousl2 -134.52 -138.72
SCGatt -110.08 -109.87
SCGmea -103.86 -104.03
SCGslo -118.63 -121.96
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Table 6.6: Correlation among acoustical predictors, transformed according to the analysis summarized in Table 6.5.
The upper triangular matrix reports correlations for the wood–plastic dataset, and the lower triangular matrix reports
correlations for the metal–glass dataset. Significant correlations (df=8, p< 0.05) are shown in bold face.

PPPPPPPPPMG
WP

tanφ Dur F Louatt Loumea Lousl1 Lousl2 SCGatt SCGmea SCGslo

tanφ -0.692 0.219 -0.49 0.499 0.099 -0.603 -0.047 0.178 -0.476
Dur -0.637 -0.461 0.086 -0.752 -0.41 0.844 -0.377 -0.649 0.718
F 0.315 -0.471 0.722 0.172 0.968 -0.092 0.917 0.802 -0.783

Louatt 0.693 -0.783 0.596 -0.142 0.761 0.345 0.857 0.616 -0.355
Loumea -0.804 0.416 -0.694 -0.619 0.074 -0.902 0.164 0.493 -0.239
Lousl1 0.81 -0.669 0.786 0.847 -0.929 -0.026 0.884 0.784 -0.732
Lousl2 0.8 -0.191 0.456 0.455 -0.934 0.778 -0.021 -0.357 0.27
SCGatt -0.265 -0.125 0.749 0.203 -0.239 0.322 -0.038 0.852 -0.745
SCGmea -0.534 -0.081 0.487 0.022 0.213 -0.036 -0.45 0.764 -0.784
SCGslo 0.792 -0.74 0.455 0.637 -0.685 0.744 0.54 0.065 -0.354
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Given the presence of strong correlations among predictors, in principle different re-
gression models may account for the same data. This couldn’t be highlighted using model
selection techniques such as backward elimination, forward selection or stepwise selection.
In fact these procedures generate a single model as output, and during the model creation
process may discard effects which appear unrelated to the outcome because a strongly
correlated predictor is already included. It was thus decided to compute all possible
regression models, starting from the univariate ones and progressively increase the num-
ber of predictors until at least one of the models was associated with a non-significant
goodness-of-fit statistic.

For the metal-glass dataset, the F predictor alone was sufficient to account for the
observed data (deviance(8) = 7.723, p = 0.259; Hosmer-Lemeshow χ2(8) = 9.700,
p = 0.138). The probability of choosing the metal response was found to increase with
decreasing F .

For the wood-plastic dataset, none of the acoustical predictors alone could account
sufficiently well for the data. Five of the two predictor models were associated with non-
significant goodness-of-fit statistics (deviance(8) ≤ 13.533, p ≥ 0.060; Hosmer-Lemeshow
χ2(8) ≤ 11.948, p ≥ 0.154). For the first two models the most important predictor,
i.e. that associated with the highest standardized parameter estimate, was F , the second
predictor being either Loumea or Lousl2. The probability of choosing the response “wood”
increased with increasing F and Loumea and with decreasing Lousl2, i.e. with faster
loudness decays. For the other three models the most important predictor was Lousl1,
the second predictor being either Loumea, Lousl2 or Dur. The probability of choosing
the response “wood” increased with decreasing Lousl1, and Lousl2, with decreasing Dur
and increasing Loumea. It is worth nothing that the parameters F and Lousl1 are highly
correlated for the wood-plastic dataset. Figure 6.5 shows the selected regression model
for the metal-glass dataset, and the F - Lousl2 model for the wood-plastic dataset.

6.4.2.1 Discussion

Consistent with the results of Klatzky et al. (2000), discrimination between glass
and metal was based on the frequency of the signals, glass being associated with higher
frequencies than metal. The high relevance of frequency for the discrimination between
hard materials is also consistent with results from Lutfi and Oh (1997). As pointed out in
the introduction, impaired discrimination performance reported by Lutfi and Oh (1997)
was due to an excessive weighting of signal frequency. A similar explanation for impaired
performance might apply here.

The relevance of frequency for the discrimination between metal and glass is, however,
not consistent with results by Roussarie (1999). As pointed out in the introduction, the
simplest explanation for this inconsistency is based on the range of variation of frequency
within the tested signals sets, one perfect fifth in Roussarie (1999), 4.05 octaves with the
present study.

Frequency was also found to explain the perceptual discrimination between wood and
plastic, where, consistently with Klatzky et al. (2000), the first category was chosen for
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Figure 6.5: Left panel: observed and predicted proportions of choosing the response
“metal” as a function of the F parameter. Filled circles = steel; empty circles = glass.
Right panel: observed and predicted proportion of choosing the response “wood” as a
function of the linear predictor in the F -Lousl2 model. Solid circles = wood; empty circles
= plexiglas.

higher frequencies than the second. However, this variable alone was not sufficient to
account for observed data. In fact, average signal loudness, and the Lousl2 parameter
had a secondary but significant association with participants’ responses. The same data
were also explained in terms of Lousl1, strongly correlated with F , and either duration,
average loudness, or Lousl2 as secondary variables.

Following a principle of parsimony, a common acoustical explanation for both the
glass-metal and wood-plastic data was sought. It can be concluded, then, that these
discriminations were based mainly on signal frequency, an acoustical parameter that also
explains the relevance of the size of the objects in determining judgments. These effects
are also consistent with those of McAdams et al. (2004), where the location of the stimuli
along the bar length/density dimensions was explained by signal frequency.

Finally, these analyses demonstrate that the acoustical measure of damping, tanφ,
does not account for several auditory material discriminations.

6.4.3 From Acoustics to Physics

It was finally tested whether any acoustical decision rule existed that would have
allowed participants to achieve perfect identification performance. Given the perfect
auditory discrimination of steel and glass, on the one hand, and wood and plexiglas on
the other, this question is equivalent to asking which are the most plausible acoustical
indices used by participants to make this judgment.

As anticipated in Section 6.3, tanφ perfectly discriminated among materials. However,
in Section 6.4.2 it was found that this parameter could not explain behavioral data
for the metal-glass, and wood-plastic discriminations, thus casting some doubt on the



6.4. Results 101

perceptual relevance of this variable for these judgments. Consequently, an analysis
of perfect performance decision rules for these discriminations was carried out without
considering the tanφ parameter.

Given two categories, and one acoustical parameter, the perfect decision rule can
be assumed to correspond to a threshold value, above and below which objects belong
to one and only one category. Given two acoustical parameters the threshold can be
assumed to be a line in a bidimensional space. Logistic regression models were used,
considering material type as dependent variable. Those models associated to perfect
identification performance were sought. This outcome defines complete separation, i.e.
perfect prediction of the dependent variable (Albert & Anderson, 1984). When none
of the acoustical parameters alone yielded complete separation, bivariate models were
considered. Given that the threshold, in the bivariate case, was assumed to correspond
to a line in the acoustical space defined by a pair of acoustical descriptors, their ability to
discriminate perfectly among materials might have been influenced by a change in their
transform. Thus the same transform selected in Section 6.4.2 was adopted. Table 6.7
shows, for each of the investigated discriminations, the acoustical variables found to yield
complete separation.

Four different response criteria lead to optimal discrimination between steel and glass
on the one hand, and between wood and plexiglas on the other. The first of these gross
categories was thus associated with higher values of the Louatt, Dur, and SCGslo descrip-
tors, and with lower values of the tanφ parameter. It is highly likely that at least one
of these acoustical parameters had been used by participants to make this discrimina-
tion. Several optimal criteria, based on pairs of acoustical descriptors, were found for the
steel-glass (11 pairs) and wood-plexiglas discriminations (8 pairs). Two different criteria
could have led to perfect material identification in all investigated discriminations, the
first based on Dur and SCGmea, the other based on Louatt and F . Figure 6.6 shows
the optimal discrimination criteria based on the Dur and SCGmea parameters. Given
the results of these analyses, it can be concluded that sufficient information for perfect
material identification was present in the investigated signals, but apparently not used
by listeners.

It is also interesting to compare optimal and behavioral weighting of F . For the
steel-glass discrimination, three of the optimal criteria associated steel with higher F
values. Participants weighted this variable in the opposite way, associating metal with
lower frequencies. For the wood-plexiglas discrimination the optimal criterion based on
F associated wood to lower F values than plexiglas, while participants weighted this
variable in the opposite way.

6.4.3.1 Discussion

Several indices were found to account for the perceptual discrimination between the
super-ordinate categories of metal-glass and wood-plastic. Among them, the tanφ param-
eter which, consistently with results by Klatzky et al. (2000), and Avanzini and Rocchesso
(2001a), had a lower value for the glass-metal category than for the wood-plastic cate-
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Table 6.7: Acoustical descriptors found to discriminate perfectly between the contrasted
materials. For each acoustical descriptor the sign of the association with the bold face
category is also shown (e.g., the model in the bottom row shows that wood is associated
with a combination of higher Louatt, and higher SCGslo values).

Dataset Acoustical descriptors

Steel or Glass Dur(+)
vs. Louatt(+)

Wood or Plexiglas SCGslo(+)
Dur(+) SCGatt(+)
Dur(+) SCGmea(+)
Dur(+) SCGslo(+)
F (+) Louatt(−)

Steel F (+) Lousl1(+)
vs. F (+) SCGslo(+)

Glass Louatt(−) SCGatt(+)
Louatt(−) SCGmea(+)
Lousl1(+) SCGatt(+)
SCGatt(+) SCGslo(+)
SCGmea(+) SCGslo(+)

F (−) Louatt(+)
Dur(+) Louatt(+)

Wood Dur(+) Loumea(+)
vs. Dur(+) Lousl1(−)

Plexiglas Dur(+) SCGmea(+)
Louatt(+) Lousl1(+)
Louatt(+) SCGatt(−)
Louatt(+) SCGslo(+)

gory. Other parameters, however, were able to explain the same discrimination, Dur,
Louatt, and SCGslo. It should be noted that, in two of the three experiments reported by
McAdams et al. (2004), SCGslo was found to explain the perceptual relevance of material
damping, a criterion used to judge dissimilarity of impact sounds. Given the fact that
multiple indices explain this discrimination equally well, no conclusions can be drawn
concerning which of them is used to discriminate between these super-ordinate material
categories. Thus it cannot be excluded that for this judgment tanφ is attended to by
listeners.

This conclusion, however, can’t be drawn for the discriminations within the gross
categories. Indeed, although tanφ was found, for the investigated stimuli, to discriminate
perfectly among all materials, the observed absence of perfect identification revealed this
acoustical parameter not to be used to discriminate between wood and plexiglas, and
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Figure 6.6: Optimal criteria for material categorization. Dashed lines show the equal
probability boundaries (thresholds) for the optimal criteria. Black circles = steel, white
circles = glass; black triangles = wood, white triangles = plexiglas.

between steel and glass. It has been shown that multiple decision rules, based on pairs of
acoustical indices, would have allowed perfect discrimination within the gross categories.
Thus acoustical information for perfect identification performance was present, so that
we can rule out the hypothesis that participants’ focusing on plate size was caused by
the absence of acoustical differences between materials in the same gross category.

Among the optimal decision rules for the discrimination between steel and glass, three
made use of frequency, where the optimal criterion, contrary to the behavioral criterion,
associated glass signals with lower frequencies than steel. Also one of the optimal criteria
for the discrimination between wood and plexiglas was based on frequency, and, similarly
to what was found for the steel-glass discrimination, the behavioral weighting was oppo-
site with respect to the optimal one. Indeed, participants associated wood with higher
frequencies, where the optimal criterion associated this category with lower frequencies.
Thus two causes for impaired performance might be found. First, the wrong weighting of
signal frequency, second the absence of focus on the other acoustical parameters necessary
for perfect identification, such as attack loudness.

Why the impaired wood-plexiglas discrimination was not observed by Kunkler-Peck
and Turvey (2000), in contradistinction to the current results and those of Giordano
(2003) and Tucker and Brown (2003) remains unclear. Two explanations seem reason-
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able. Kunkler-Peck and Turvey (2000) generated stimuli live, while in the other studies
recorded stimuli were used. Live generation might have provided additional information
for material type. Firstly, the repetitions provided to the participants were not acous-
tically identical, thus favoring the extraction of invariant acoustical information specific
to material type. Secondly, manipulation of the plates (hanging them on the supporting
device after each trial) might have generated additional acoustical signals (e.g. scraping
sounds) potentially informative with respect to the object’s material.

Another point which remains to be explained is the fact that with our data geometrical
properties of the objects were found to significantly affect responses, while this result was
not observed by Kunkler-Peck and Turvey (2000) or Tucker and Brown (2003). A range
explanation might be used, where the shape factor manipulated in Kunkler-Peck and
Turvey (2000) and Tucker and Brown (2003) caused less acoustical variations than the
area variation for the signals investigated in the current research. This would explain
also why Giordano (2003) found area, but not shape, to influence the wood-plexiglas and
steel-glass discriminations.

Several hypotheses can be advanced concerning the origin of the observed response
profiles, based on the properties of the impacted sound sources experienced on an everyday
basis, i.e. on the regularities of everyday listening. Available measures of the mechanical
properties of a wide range of engineering materials show that plastics (polymers) and
woods are characterized by large differences when compared to metals and glasses (Wa-
terman & Ashby, 1997). Given these large differences among material properties, and
their influence on signal properties (Fletcher & Rossing, 1991), it follows that, despite
variations in the geometrical properties of the source, signals originating from wood and
plastic objects would always be differentiated from those originating from metal and glass
objects. For this reason, both the absence of effects of geometrical properties on auditory
discrimination among the gross categories, and the perfect performance observed with
the almost totality of participants, do not appear surprising.

Several speculative hypotheses can be advanced for the origin of the material-size
associations for the discriminations within the gross categories. The simplest are based
on the geometrical properties. The glass impact sounds we may experience everyday are
probably generated by smaller objects than the metal ones (e.g., klinking glasses): large,
freely vibrating glass objects, such as those used to generate part of the investigated
stimuli, in fact would probably be too fragile to be of any ordinary use. The validity
of an explanation based on object size might be questioned because we also experience
signals generated by striking small metallic objects such as coins or keys in everyday life.
These sources, however, generate more complex acoustical events than those investigated
with the current research, being characterized by multiple, rather than single impacts,
interleaved with signals generated by more complex interactions among objects (e.g.,
friction). However, generalization of source recognition effects demonstrated with impact
sounds to signals generated by different interactions among solid objects does not ap-
pear legitimate. Consequently the size explanation for the glass-metal identification still
seems valid. However, an explanation based on object size does not appear convincing in
explaining the wood-plastic discrimination.
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Given that the wood-plastic discrimination was also based mainly on frequency, in
principle any source property that significantly affects this signal property might be a
potential candidate to explain the observed effects.

An increase in the frequency of the vibrational modes of an object is determined, for
example, by a decrease in the size of the objects, an increase in thickness, a decrease
in density, and an increase in Young’s modulus or simply in stiffness (cf. Fletcher &
Rossing, 1991). One might therefore hypothesize that the observed association of wood
with higher frequencies than plastic might be due to the fact that the wood sounds
we experience everyday are generated by thicker objects than for plastic sounds. This
might be true, given that with plastic materials production of thin layers should be
easier than with woods. The same explanation does not seem reasonable for the metal-
glass case. Concerning Young’s modulus, one should expect woods and glasses to be
characterized by higher stiffness than, respectively, plastics and metals. Such a clear
difference is not however found in measures of engineering materials (Waterman & Ashby,
1997). Alternatively, one might explain these effects in terms of density, where one would
expect glass to be typically characterized by a lower density than metals, and plastic
to be characterized by a higher density than woods. This is indeed what is found with
engineering materials, where woods are characterized by a lower density than plastics,
and metals are characterized, on average, by a higher density than glasses (Waterman &
Ashby, 1997). The use of an identical explanation for both the glass-metal, and wood-
plastic discriminations, makes this hypothesis particularly attractive.

6.5 Conclusions

Material identification from impact sounds was investigated. All the pairwise relation-
ships between source features, signal properties, and recognized source properties were
studied.

Analysis of the relations between source properties and recognition performance high-
lighted perfect discrimination of the gross material categories metal-glass and wood-
plastic, as well as impaired discrimination of materials within the same gross categories.
Within these categories participants were found to identify object materials on the basis
of size. Only secondary discrepancies among participants responses were observed.

Acoustical criteria for material categorization were also investigated. An acousti-
cal measure of damping, tanφ, was contrasted, in its ability to explain the behavioral
data with that of a large set of signal descriptors. This damping measure was found
to account only for the discrimination between the gross metal-glass and wood-plastic
categories. The same discrimination was equally well accounted for by other signal prop-
erties: duration, peak loudness and spectral center of gravity decay rate. Consequently
only partial support for the perceptual relevance of tanφ was found.

Discrimination within the gross categories was found to be based mainly on signal
frequency, although the wood-plastic discrimination was found to be equally well ac-
counted for by loudness decay descriptors, and, as secondary variables, signal duration,
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and average loudness.
Analysis of the relationship between signal and source properties highlighted the pres-

ence of sufficient information for perfect discrimination among materials. Observed mate-
rial recognition biases were hypothesized to be caused by regularities in the sound sources
frequently encountered in everyday listening. Several alternatives were discussed.
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Chapter 7

Hardness scaling of synthetic impact
sounds

Bruno L. Giordano†, Stephen McAdams†† and Davide Rocchesso§

Abstract

The perceptual independence of hammer and sounding object properties was inves-
tigated with reference to the perceptual continuum of hardness using synthetic signals
simulating an impact sound source. Perceived hammer hardness was strongly influenced
by a parameter specifying the properties of its interaction with the sounding object, but
also by variations in the properties of the latter. Perceived sounding object hardness was
influenced by sounding object properties and to a secondary extent by the interaction
parameter. Results showed limited but consistent abilities supporting the perceptual in-
dependence between hammer and sounding object, in spite of the fact that participants
were given minimal non-auditory, source-related information. Analogous conclusions were
drawn from the study of the acoustical criteria for hardness estimation. Similarities were
found between the estimation of sounding object hardness and identification of sounding
object material type.
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7.1 Introduction

The study of sound source perception highlights the mapping between source proper-
ties and percepts on the one hand, and acoustical properties and percepts on the other
(Li et al., 1991). The aim of this analysis is to give a complete account of the interaction
of listeners with their acoustical environment, highlighting abilities and eventual biases in
source recognition, as well as the perceptually relevant acoustical variables. Ballas (1993)
carried out a survey on the frequency with which sounds other than speech or music are
encountered in everyday life, finding impact sounds (e.g., typing, footsteps, car door clos-
ing), generated by a brief interaction between two solid objects, to be among the most
frequently encountered. Not surprisingly most of the studies in this field have focused on
this class of sounds (Gaver, 1988; Freed, 1990; Lakatos et al., 1997; Lutfi & Oh, 1997;
McAdams et al., 1998; Roussarie, 1999; Guski, 2000; Klatzky et al., 2000; Kunkler-Peck
& Turvey, 2000; Avanzini & Rocchesso, 2001a; Lutfi, 2001; Giordano, 2003; Houix, 2003;
Tucker & Brown, 2003; McAdams et al., 2004; Giordano & McAdams, submitted; Grassi,
2005). In all of this research, the acoustical signal was generated by striking a vibrating
object, the sounding object, with a highly damped object, the hammer.

An interesting issue emerging from this literature concerns the perceptual indepen-
dence of hammer and sounding object, i.e. the absence of influence of sounding object
properties on hammer perception and vice versa. Several previous studies conducted on
isolated impact sounds highlighted perceptual independence, revealing a surprisingly fine
tuning of the auditory system to the properties of the impacted sound sources. Roussarie
(1999) and Giordano (2003) investigated identification of the material of the sounding
object upon variations in the simulated/real hammer1. In both studies, participants per-
formance was uninfluenced by hammer variations. Freed (1990) investigated participants’
abilities to estimate the hardness of variable-material hammers from the sound they gen-
erated striking metallic pans of different sizes. Ratings were scaled with actual hardness
and were independent of the size of the pans. McAdams et al. (1998) investigated the
perceptual independence of hammer and sounding object with sounds generated by strik-
ing variable hardness xylophone bars and variable tension/size tympani membranes with
variable hardness hammers. Also, in two of the experiments sounding objects were struck
with variable force. Participants were asked to identify either the hammer or the sound-
ing object. When temporal constraints on the response were given (speeded judgment),
hammer and sounding object were found not to be perceptually independent. However,
when no time limits on the response were given (unspeeded judgment), a condition closer
to those investigated in the above-mentioned research, results supported perceptual in-
dependence. Results in contrast with the notion of perceptual independence of hammer
and sounding object were found by Grassi (2005) in a study conducted on sequences of
impact sounds, i.e. bouncing sounds. Participants were presented with sounds of variable
size balls bouncing over variable size ceramic dishes, and were asked to estimate the size
of the balls. Size estimates were scaled with the actual size of the balls and affected by

1Roussarie (1999) modeled the hammer by varying an interaction property, the force stiffness coeffi-
cient.
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a variation in the size of the sounding object.

A tentative explanation for the disagreement among previous studies involves the
amount of non-auditory, source-related information available to participants. It might
indeed be hypothesized that everyday listeners do not discriminate hammers from sound-
ing objects, and that they can learn to do so by means of proper training. Consistently,
McAdams et al. (1998) provided participants extensive feedback on the correctness of the
response, Roussarie (1999) demonstrated to participants the acoustical effects of hammer
variations asking them to avoid considering hammer differences for their responses, and
Freed (1990) showed participants the hardest and softest mallets striking the largest and
smallest pans, while Grassi (2005) did not give feedback on response correctness, and did
not inform participants concerning the variation in the size of the sounding object. This
training-based hypothesis might also explain why McAdams et al. (1998) did not find
perceptual independence in the speeded condition, where the imposed time constraints
increased the likelihood of participants basing their judgments on over-learned response
strategies used in everyday life, which, according to our hypothesis, do not discriminate
between hammer and sounding object. However, this explanation is not able to account
for all experimental data, as Giordano (2003) found independence even in the absence of
training or feedback.

Additional factors might then be taken into account to explain inconsistencies: 1)
the extent of the variations in the acoustical structure associated with changes in the
hammer or in the sounding object, e.g., with the study by Giordano (2003) the acoustical
changes associated with variations in the hammer material might have been insufficient
to influence significantly participants responses; 2) the nature of the investigated sounds,
e.g., Grassi (2005) investigated bouncing sounds, while all the other studies investigated
sets of isolated impact sounds; 3) the type of judgment requested of participants (iden-
tification vs. scaling); 4) the source property under estimation (hardness, size, material
type). Choosing among these different factors is however not possible with the available
data. A good choice, then, would be to test for perceptual independence in untrained
participants using the same set of stimuli, the same type of judgment, and the same
source property when investigating perception of both objects. These indications were
followed in this study, testing perception of the hardness of both the hammer and the
sounding object impacted by the hammer.

Two additional relevant issues concern the acoustical and source properties upon
which independent hammer and sounding object perception might be based and, more
specifically, the source and acoustical properties for hardness estimation. From the acous-
tical point of view, the high damping of the vibrations of the hammer makes the signal
it radiates likely to go undetected by the auditory system, being at best masked by that
radiating from the sounding object. Consequently, perception of the properties of both
objects might be assumed to rely on the signal radiating from the sounding object.

Following these considerations, hammer properties seem a bad candidate to explain
hammer perception, as their influence on the sounding object signal is not direct, but
mediated by the properties of its interaction with the latter. Consequently, hammer
perception should not rely directly on hammer properties, but on interaction properties.
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Among these an interesting candidate is found in the duration τ of the contact between
the two objects during the stroke, which increases with increasing hammer stiffness and
weight, and with decreasing hammer striking velocity (Landau & Lifshitz, 1981; Chaigne
& Doutaut, 1997). The influence of τ on the structure of the radiated signal stands in
the fact that those sounding object vibrational modes with a period higher than τ are
not excited by the blow (Benade, 1979). Consequently, a decrease in hammer stiffness,
and an increase in τ , determine a decrease in the loudness of the radiated signal, and
in the amount of energy at high frequencies, or, conversely, in the spectral center of
gravity (SCG). Not surprisingly, loudness and SCG-related descriptors (average value and
temporal variability of the initial portion of the signals) were reported by Freed (1990)
to be strongly associated with hammer hardness estimates. Similar acoustical variables
are expected to account for hammer hardness perception in the current study. It should
be noted that τ variations are likely to explain at least in part data from Freed (1990)
and Grassi (2005), where increasing hammer hardness and weight were associated with
decreasing τ values. However, none of the previous studies investigated systematically
the influence of interaction properties on hammer perception.

Studies focusing on perception of the properties of the sounding object can be roughly
divided into those that investigated geometry perception (Gaver, 1988; Lakatos et al.,
1997; Kunkler-Peck & Turvey, 2000; Lutfi, 2001; Houix, 2003; Tucker & Brown, 2003)
and those interested in material type identification (Gaver, 1988; Lutfi & Oh, 1997; Rous-
sarie, 1999; Klatzky et al., 2000; Kunkler-Peck & Turvey, 2000; Avanzini & Rocchesso,
2001a; Giordano, 2003; Tucker & Brown, 2003; Giordano & McAdams, submitted). Triv-
ially, in both cases sounding object perception was based on the properties of the sounding
object and on the properties of the signal it radiates, namely the frequency and decay
time of the spectral components, as well as on the time-variant distribution of energy
across the spectrum. In particular, material identification studies found harder materials
(metal and glass vs. plastic and wood) to be recognized in sounding objects characterized
by lower damping and higher density and elasticity. Also an influence of the size of the
objects on material identification was observed, smaller objects being more often catego-
rizzed as glass and wood than as metal and plastic (Giordano & McAdams, submitted).
From the acoustical point of view, signals characterized by a longer duration, a higher
attack loudness, a lower rate of decay of the SCG, and by lower values of an acoustical
measure of damping, later referred to as tanφaud (Giordano & McAdams, submitted) were
more often identified as harder materials. Also, identification was influenced by the fre-
quency of the lowest spectral component F (Klatzky et al., 2000; Giordano & McAdams,
submitted). Finally, the absence of effects of hammer variations observed by Roussarie
(1999) and Giordano (2003), points toward a negligible relevance of interaction properties
to material identification. Logically, estimation of sounding object hardness should be
based on similar source and acoustical properties as for material type identification. This
hypothesis is supported by a semantic differential study conducted by Ohta et al. (1999)
on impact sounds were stimuli perceived as metallic were rated high on a soft-hard scale.
It was further tested in the present study.

Finally, the above analysis would require a reformulation of the concept of indepen-
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dence of the perception of hammer and sounding object, the former, as hypothesized,
based on interaction properties as τ , the latter on the properties of the sounding object.
It should however be noted that τ is also influenced by the properties of the sounding
object, namely its weight and elasticity (Landau & Lifshitz, 1981; Chaigne & Doutaut,
1997). As a consequence, the outcome of perceptual independence, associated with that
of a strong link with hammer perception and properties of the hammer/sounding object
interaction, would pose a conceptual problem. Indeed, it remains to be explained why
a source property influenced by the properties of the sounding object would be ignored
when judging its properties.

With this study the perception of hammer and sounding object properties was inves-
tigated with reference to the perceptual continuum of hardness using synthetic signals.
This allowed us to address the problem of the perceptual independence of hammer and
sounding object, testing for the relevance of interaction properties to hammer perception,
and investigating the relationship between perception of sounding object hardness and
identification of material type.

7.2 Methods

7.2.1 Physically-based impact model

Stimuli were generated using a model of inertial mass hitting a resonating object. An
implementation of the model originally proposed by Hunt and Crossley (1975), widely
used in applied mechanics and robotics (Marhefka & Orin, 1999) and recently proposed
for sound synthesis (Avanzini & Rocchesso, 2001b), was used. In the model, the contact
force is expressed as

f(x(t), v(t)) =

{
Kx(t)α + λx(t)α · v(t) = Kx(t)α (1 + µv(t)) x > 0,

0 x ≤ 0,
(7.1)

where v(t) = ẋ(t) is the compression velocity, and K and α are the force stiffness coeffi-
cient and a geometry-dependent exponent, respectively. The parameter λ is a damping
weight, and µ = λ/K is a mathematically convenient term called the “viscoelastic char-
acteristic” by Marhefka and Orin (1999). In the software realization of the model, the
parameters K, α, and λ can be directly manipulated, together with the mass of the
impacting object (Avanzini, Rath, & Rocchesso, 2002).

The impact model (Eq. 7.1) can be used as a coupling mechanism between two
modal resonators. For our purposes, we used the simplified configuration where only
one of the two objects actually resonates, the other being just an inertial mass whose
displacement is indicated by x(h). According to modal analysis, the resonator is described
through equations in which the variables x

(r)
l are referred to as the modal displacements.

Each mode obeys a second-order oscillator equation. Assuming the resonating object
has N (r) modes, its displacement at a given point x is given by a linear combination of
the modal displacements:

∑N(r)

j=1 t
(r)
kj x

(r)
l . Assuming that the interaction occurs at point
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m = 1 . . . N (r) of the resonator, the continuous-time equations of the coupled system are
given by:

ẍ(h) =
1

m(h)
(f (h)

e + f)

ẍ
(r)
j + g

(r)
j ẋ

(r)
j +

[
ω

(r)
j

]2
x

(r)
j =

1

m
(r)
jm

(f (r)
e − f) (for j = 1 . . . N (r))

x = xm =
∑N(r)

j=1 t
(r)
mjx

(r)
j − t(h)x(h),

v = vm =
∑N(r)

j=1 t
(r)
mjẋ

(r)
j − t(h)ẋ(h),

f(x, v) =

{
kx(t)α + λx(t)α · v(t), x > 0,

0, x ≤ 0,

(7.2)

where the parameters ω(r) and g(r) are the oscillator center frequencies and damping
coefficients, respectively. The parameters 1/m(r) control the “inertial” properties of the
modal oscillators (m(r) has the dimension of a mass). The terms f (h)

e , f (r)
e represent

external forces.
The continuous-time system (7.2) is discretized using the one-step Adams-Moulton

method (Lambert, 1993), also known as bilinear transformation. The resulting discrete-
time system appears as a parallel bank of second-order low-pass resonant filters, each
accounting for one specific mode of the resonator. Details about the discrete-time system
have been discussed elsewhere (Rocchesso & Fontana, 2003) and will not be addressed in
this paper.

For the purpose of the experiments described in this paper, the resonator was set to
have N (r) = 5 modes, tuned according to the most prominent resonances of a clamped
bar (Fletcher & Rossing, 1991). In the impact model, each mode is also characterized
by its decay time te (time to reduce the amplitude by a factor e), computed according to
the notions of internal and external damping (van den Doel & Pai, 1998) as

1

te
=
fi

τd
+

1

τext

= πfi tanφ+
1

τext

, (7.3)

where fi is the modal center frequency, tanφ is the internal friction parameter (Wildes
& Richards, 1988; Klatzky et al., 2000), and 1/τext is the external friction parameter.

Avanzini and Rocchesso (2001b) derived an equation that relates the contact time τ
to the physical parameters of the contact model, in the special case where the resonator
is a rigid wall (i.e., it does not resonate at all):

τ =

(
m(h)

K

) 1
α+1

·
(

µ2

α+ 1

) α
α+1

·
∫ vin

vout

dv

(1 + µv)
[
−µ(v − vin) + log

∣∣∣ 1+µv
1+µvin

∣∣∣] α
α+1

. (7.4)

It can be easily shown that the power-law dependence t0 ∼ (m(h)/K)1/(α+1) holds. In
order to see how the contact time varies when the resonator is not perfectly rigid, nu-
merical simulations were performed (Avanzini & Rocchesso, 2001b), and it emerged that
τ is always higher than the value predicted by equation (7.4), due to the compliance of
the struck object.
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7.2.2 Synthesis parameters

The model of section 7.2.1 has been implemented as indicated in Avanzini et al. (2002).
Table 7.1 reports the model parameters kept constant for all the experimental stimuli.
It should be noted that the geometry-dependent exponent α was set as for contacting
spheres in Hertz’s theory, and that the value chosen for the interaction damping parameter
λ characterizes a lossless interaction.

Table 7.1: Parameters of the impact model kept constant for all experimental stimuli.
Parameter Symbol Value Units

Hammer mass m(h) 0.5 kg
Geometry-dependent exponent α 1.5
Interaction damping λ 0 kg /mαs
Strike velocity ẋ(h)(t = 0) -5 m/s
External friction τext 0.5 s

Modal frequencies 2πω
(r)
j were set by multiplying the lowest modal frequency F by

{1, 6.26, 17.54, 34.37, 56.82}. Three values were used for F (50, 200, 800 Hz), interpreted
as modeling variations in bar length and/or density and/or elastic properties. Three
values were used for the internal friction parameter tanφ (31.83, 7.96, 1.99 × 10−3),
interpreted as modeling variations in the material of the bar (Wildes & Richards, 1988;
van den Doel & Pai, 1998). Three values were used for the force stiffness coefficient K
(5e+006, 2.24e+008, 1e+010 N/mα), corresponding, according to equation 7.4, to three
different values for the contact time τ (2.55 0.56 0.12 ms), and interpreted as modeling
the properties of the hammer-bar interaction. In particular increasing values of K, and
decreasing values of τ could be interpreted as modeling an increase in the stiffness of
both the hammer and the bar. A set of 27 stimuli was synthesized, combining the chosen
values for the model parameters F , K, and tanφ.

7.2.3 Acoustical descriptors

Signals were analyzed using the same procedure adopted by Giordano and McAdams
(submitted), meant to simulate the processing that takes place in the peripheral auditory
system. The first descriptor can be conceived as a global damping measure, which,
above all, takes into account the frequency resolution of the auditory system (tanφaud).
Four loudness descriptors and a duration measure Dur were extracted from the temporal
function of signals’ loudness, in pseudo-sones2. Dur was defined as the temporal extent
of the signal for which loudness was above a fixed threshold (0.2 pseudo-sones). Loudness
descriptors were an attack measure, Louatt, the loudness of the first 10 ms of the signal,
an average measure, Loumea, and the slope of the initial and final portions of the temporal

2The unit of measure for loudness is termed pseudo-sone as it is calculated directly on the sound file,
without taking into account the actual presentation levels.
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function of loudness, respectively Lousl1 and Lousl2. From the peripheral auditory system
model a time-variant measure of brightness was also extracted, the spectral center of
gravity SCG, defined as the specific-loudness-weighted average of frequency, measured
on the ERB-rate scale (Moore & Glasberg, 1983). Three descriptors were extracted from
this measure: an attack value, SCGatt, the SCG of the first 10 ms of the signal, an average
measure SCGmea, and the slope of the initial portion of the function, SCGslo. Both the
SCG and loudness slope measures were extracted by means of linear regression (see
Giordano & McAdams, submitted, for a detailed description of the procedure). Finally,
the frequency of the lowest spectral component F was also considered, specified by the
value of this parameter in the synthesis model. Table 7.2 reports for each stimulus the
value of the acoustical descriptors.
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Table 7.2: Acoustical descriptors extracted from each signal. p.s.=pseudo-sones. See text for an explanation of the meaning of each
acoustical descriptor.

F tanφ× 10−3 K × 108 tanφaud × 10−3 Dur Louatt Loumea Lousl1 Lousl2 SCGatt SCGmea SCGslo

(Hz) (Nm−α) (s) (p.s.) (p.s.) (p.s./s) (p.s./s) (ERB-rate) (ERB-rate) (ERB-rate/s)

50 31.83 0.05 47.92 0.26 1.43 0.48 -16.86 -1.26 13.08 9.25 -43.09
50 31.83 2.24 42.75 0.21 5.42 1.15 -155.47 -2.36 16.20 10.88 -48.48
50 31.83 100 47.11 0.17 8.45 1.62 -307.63 -2.15 20.99 12.21 -89.58
50 7.96 0.05 17.16 0.64 1.50 0.51 -5.83 -0.61 13.18 9.50 -9.92
50 7.96 2.24 12.25 0.61 6.03 1.05 -79.62 -0.89 16.32 11.12 -12.00
50 7.96 100 11.76 0.56 10.59 1.31 -208.16 -0.84 21.03 11.87 -30.77
50 1.99 0.05 8.10 1.20 1.55 0.57 -2.32 -0.38 13.22 10.01 -2.67
50 1.99 2.24 4.42 1.38 6.27 1.14 -23.52 -0.45 16.36 11.90 -4.59
50 1.99 100 3.78 1.31 10.74 1.59 -54.01 -0.46 21.04 13.22 -9.47
200 31.83 0.05 41.78 0.20 1.24 0.53 -11.09 -2.36 13.70 10.39 -157.26
200 31.83 2.24 44.75 0.23 4.08 0.90 -123.86 -2.33 16.15 10.66 -90.57
200 31.83 100 54.28 0.19 7.32 1.18 -258.58 -2.38 21.65 11.65 -204.05
200 7.96 0.05 12.37 0.60 1.31 0.53 -3.73 -0.74 13.85 10.34 -18.16
200 7.96 2.24 12.20 0.69 4.65 0.85 -57.34 -0.76 16.39 10.69 -21.03
200 7.96 100 14.00 0.57 8.40 0.98 -247.30 -0.77 22.10 11.85 -45.75
200 1.99 0.05 5.54 1.26 1.37 0.54 -1.81 -0.35 13.92 10.35 -4.67
200 1.99 2.24 4.65 1.48 4.89 0.92 -16.27 -0.35 16.47 11.24 -6.37
200 1.99 100 4.53 1.22 9.57 1.15 -88.15 -0.38 22.25 13.09 -17.84
800 31.83 0.05 52.87 0.04 0.63 0.38 -18.25 -14.15 15.02 14.46 -110.05
800 31.83 2.24 48.65 0.08 3.81 1.37 -122.72 -12.44 16.29 15.9 -180.42
800 31.83 100 42.65 0.09 6.13 1.86 -176.43 -9.76 20.62 16.76 -274.37
800 7.96 0.05 17.42 0.09 0.66 0.34 -11.81 -3.13 15.22 16.00 -95.58
800 7.96 2.24 12.00 0.29 4.25 1.16 -43.96 -2.48 16.46 16.32 -144.78
800 7.96 100 10.13 0.31 6.83 1.55 -119.04 -2.43 21.08 16.74 -41.91
800 1.99 0.05 5.76 0.25 0.67 0.31 -5.63 -0.91 15.28 16.75 -179.01
800 1.99 2.24 3.55 0.88 4.41 1.14 -13.70 -0.83 16.52 16.35 -127.88
800 1.99 100 2.97 0.94 7.69 1.52 -39.42 -0.83 21.26 16.80 -11.78
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The relationship between synthesis parameters and the structure of the generated
signals was studied with the experimental stimuli. The purpose of this analysis was to
test for the presence of sufficient acoustical information for the perceptual independence
of hammer and sounding object, i.e. for the presence of acoustical parameters speci-
fying uniquely the investigated parameters of the synthesis model. Univariate ANOVA
models were computed, with the synthesis parameters as independent variables, and the
acoustical descriptors as dependent variables. The F measure of signal frequency was not
considered among the dependent variables. The η2

p measure of effect size was adopted
(Cohen, 1973) to highlight which acoustical descriptor had the strongest association with
each of the synthesis parameters. With univariate ANOVA models η2

p is equivalent to
R2, the proportion of variance in the dependent variable explained by the independent
variable. The results of this analysis are shown in Table 7.3.

Table 7.3: Univariate ANOVA models computed to study the relationship between
synthesis parameters and acoustical structure. For each descriptor, the F statistic and
the associated p-value are reported. For all models the degrees of freedom of the F
statistic are (2,24). For each model, the η2

p measure of effect size is also reported.
Particularly large effects (η2

p > 0.7) are shown in bold face.

Synthesis parameters
Acoustical F tanφ K
descriptor F/p-value η2

p F/p-value η2
p F/p-value η2

p

tanφaud 0.00/1.000 0.000 470.41/<0.001 0.975 0.04/0.957 0.004
Dur 2.20/0.132 0.155 32.98/<0.001 0.733 0.21/0.810 0.017
Louatt 0.76/0.476 0.060 0.20/0.822 0.016 101.27/<0.001 0.894
Loumea 0.72/0.498 0.057 0.18/0.837 0.015 54.81/<0.001 0.820
Lousl1 0.35/0.710 0.028 3.74/0.039 0.238 14.19/<0.001 0.542
Lousl2 5.08/0.014 0.297 6.84/0.004 0.363 0.03/0.969 0.003
SCGatt 0.12/0.890 0.010 0.02/0.981 0.002 335.63/<0.001 0.965
SCGmea 73.69/<0.001 0.860 0.22/0.801 0.018 1.19/0.323 0.090
SCGslo 5.87/0.008 0.329 5.92/0.008 0.330 0.06/0.943 0.005
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Variations in F were associated with significant variations in Lousl2, SCGmea, and
SCGslo. Among these, SCGmea had the strongest association with F , and was not sig-
nificantly affected by variations in the other synthesis parameters. In particular SCGmea

was increased with increasing F . Variations in tanφ were associated with significant
variations in tanφaud, Dur, Lousl1, Lousl2, and SCGslo. Among these tanφaud and Dur
had a particularly strong association with tanφ, where the first increased and the second
decreased with increasing tanφ. Also, these two parameters were not significantly af-
fected by F and K. Finally K significantly affected Louatt, Loumea, Lousl1, and SCGatt.
Louatt, Loumea, and SCGatt had the strongest association with K, all of them increasing
with increasing K. None of these acoustical descriptors were significantly affected by F
and tanφ. In conclusion, sufficient acoustical information for independent perception of
hammer and sounding object was highlighted, each of the synthesis parameters affecting
strongly different signal properties.

7.2.4 Procedure

Stimuli were presented through Sennheiser HE60 headphones, connected to a Sennheiser
HEV70 amplifier, which received the output of the sound card of the PC used to pro-
gram the experiment. Stimulus presentation and data collection were programmed into
the Mathworks Matlab environment. Participants sat inside a silent room. Signal peak
level ranged from 41 to 88 dB SPL.

Participants were told they had to judge sounds generated by the interaction of two
objects, a hammer, which does not vibrate after the impact, and a sounding object. They
were then described verbally a few hammer/sounding object impacted sounds sources
(e.g., finger tapping on a glass), and they were asked which of the two objects was the
hammer and which was the sounding object (e.g., the finger is the hammer, the glass is the
sounding object). All of them responded correctly with all the examples. Two conditions
were investigated, participants being asked to estimate either the hardness of the hammer
or that of the sounding object. Correct understanding of the dimension of judgment was
tested by asking participants to identify between two sounds the one generated using the
hardest hammer or the hardest sounding object. Two hammers (felt and wood) and two
sounding objects (metallic and plastic bowls) were used. Sounds were generated live, out
of participant sight. Two pairs of sounds were presented, generated, depending on the
condition, with the same sounding object or with the same hammer, and with each of the
hammers or sounding objects. No feedback on response correctness was given. Finally,
participants were asked to estimate the hardness of the hammer/sounding object on a 1 -
100 scale (from really soft to really hard), typing a numerical estimate with the keyboard
after presentation of each sound. Before giving the response, participants were allowed to
replay the stimulus as many times as needed. The twenty-seven stimuli were presented
in blocked-randomized order for each of ten repetitions for a total of 270 trials.
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7.2.5 Participants

Fifty-one listeners took part in the experiment on a voluntary basis (age: 19 - 53; 33
females, 18 males). Twenty-four were assigned to the hammer condition, twenty-seven to
the sounding-object condition. All of them reported having normal hearing.

7.3 Results

Three of the participants assigned to the sounding object condition failed with one or
both of the hardness discrimination trials during the instruction phase. Their data were
not considered further. Analyses were conducted on individual estimates averaged across
repetitions. Data from the first block of trials, meant to familiarize participants with the
task, were not considered.

Inspection of individual data revealed strong differences concerning the effects of the
F parameter. Consequently, statistical criteria were used to isolate groups of participants
with homogeneous response profiles. A hierarchical cluster analysis (average linkage) was
performed on a Euclidean measure of the dissimilarity among individual response profiles.
The choice of the number of clusters to be extracted from the hierarchical solution was
based on the analysis of the variation of a set of statistical indices across partitioning
levels, measuring the goodness-of-fit between the input data and the resulting clustering
partitions (Milligan, 1996). Among the available indices, a subset was chosen that had
been found to have superior performance in recovering the correct number of clusters
(Milligan, 1981; Milligan & Cooper, 1985): the Calinski-Harabasz index (Calinski &
Harabasz, 1974), the Goodman-Kruskal γ (Baker & Hubert, 1972), and the point biserial
correlation (Milligan, 1980). For all the indices better partitions are characterized by
higher scores. Following the approach suggested by Gordon (1999), indications concerning
the correct number of clusters were sought in local maxima across partition levels, and
the correct number of clusters was established on the basis of the concordance among
indices. Figure 7.1 shows the value of the three indices as a function of the number of
clusters. Local maxima or minima used to extract the final number of clusters are also
shown.

The final number of clusters was taken to be equal to two as this partitioning level
was indicated by all three indices. The two clusters contained 12 and 36 participants,
respectively. Of the participants in the first cluster, seven had been assigned to the ham-
mer condition, five to the sounding-object condition. The distribution of participants in
the two clusters was independent of the experimental condition (χ2(1)=0.444, p=0.505).

A repeated-measures ANOVA model was computed with the synthesis variables as
within-subjects factors and the condition and cluster belongingness as between-subjects
factors. The interaction between condition and cluster belongingness as well as the one-
way effect of condition were not significant (p≥ 0.061), while the effect of the cluster
belongingness factor was significant (F(1,44) = 20.696, p < 0.001), indicating the un-
interesting tendency of participants in the second cluster to emit lower estimates than
those in the first. All the interactions between within- and between-subjects factors,
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Figure 7.1: Statistical indices used to evaluate the number of clusters present in the
dataset across partitioning levels. White circles mark local maxima. C-H = Calinski-
Harabasz index; p.b.c = point biserial correlation; γ = Goodman-Kruskhal γ.

which included both between-subjects variables, were not significant (p≥ 0.200). These
results point toward the orthogonality of the effects of interindividual differences and of
instructions. Table 7.4 reports the significance of all the other effects in the model, as
well as the η2

p measure of the size of each effect (Cohen, 1973).
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Table 7.4: General ANOVA model computed to investigate the effect of synthesis parameters, of the experimental
condition, and of the cluster belongingness factor on hardness estimates. Significant p-values are shown bold.

Interaction with condition Interaction with cluster
Effect F(d.f.) p-value/η2

p F(d.f.) p-value/η2
p F(d.f.) p-value/η2

p

F 6.925(2,88) 0.003/0.125 1.681(2,88) 0.192/0.037 49.728(2,88) <0.001/0.531
tanφ 36.098(2,88) <0.001/0.451 0.667(2,88) 0.516/0.015 15.834(2,88) <0.001/0.265
K 75.937(2,88) <0.001/0.633 7.708(2,88) 0.001/0.149 1.297(2,88) 0.279/0.029
F × tanφ 0.282(4,176) 0.889/0.006 0.495(4,176) 0.740/0.011 2.283(4,176) 0.062/0.049
F ×K 4.550(4,176) 0.002/0.094 0.941(4,176) 0.442/0.021 21.940(4,176) <0.001/0.333
tanφ×K 19.170(4,176) <0.001/0.303 0.595(4,176) 0.667/0.013 2.545(4,176) 0.041/0.055
F × tanφ×K 0.980(8,352) 0.451/0.022 0.460(8,532) 0.884/0.010 3.382(8,352) 0.001/0.071
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In general all synthesis variables affected hardness estimates. However their effect was
modulated by the condition and by idiosyncratic response tendencies. Two additional
repeated-measures ANOVA models were computed to study the significant interactions
of within-subjects factors with synthesis parameters, analyzing separately the effects of
condition and cluster belongingness. The results of these analyses are shown in Tables
7.6 and 7.5.

Table 7.5: ANOVA models created to investigate the interaction between condition, and
synthesis parameters. Significant p-values are shown bold.

Hammer Sounding object
Effect F(d.f.) p-value η2

p F(d.f.) p-value η2
p

F 2.713(2,46) 0.077 0.106 1.993(2,46) 0.148 0.080
tanφ 29.937(2,46) <0.001 0.566 38.617(2,46) <0.001 0.627
K 56.202(2,46) <0.001 0.710 37.731(2,46) <0.001 0.621
F × tanφ 0.432(4,92) 0.785 0.018 0.988(4,92) 0.418 0.041
F ×K 7.814(4,92) <0.001 0.254 5.242(4,92) 0.001 0.186
tanφ×K 21.266(4,92) <0.001 0.480 11.843(4,92) <0.001 0.340
F × tanφ×K 1.159(8,184) 0.326 0.048 1.649(8,184) 0.114 0.067

Independently of the condition, hardness estimates increased with increasing K and
with decreasing tanφ (see Figure 7.2). However, the weight of K in determining estimates
differed across conditions, as highlighted by the significance of the interaction between
condition and K. This interaction was caused by a change in the weight of K in determin-
ing hardness estimates (see Table 7.5). Indeed, as highlighted by the η2

p statistic, while
tanφ had a slightly higher relevance than K in determining judgments in the sounding
object condition, K was much more relevant than tanφ in the hammer condition.

Table 7.6: ANOVA models created to investigate the interaction between cluster
belongingness, and synthesis parameters. Significant p-values are shown bold.

Cluster 1 Cluster 2
Effect F(d.f.) p-value η2

p F(d.f.) p-value η2
p

F 24.069(2,22) <0.001 0.686 32.933(2,70) <0.001 0.485
tanφ 1.508(2,22) 0.243 0.121 99.755(2,70) <0.001 0.740
K 41.085(2,22) <0.001 0.789 43.558(2,70) <0.001 0.554
F × tanφ 1.108(4,44) 0.365 0.091 1.865(4,140) 0.120 0.051
F ×K 10.095(4,44) <0.001 0.479 30.968(4,140) <0.001 0.469
tanφ×K 5.145(4,44) 0.002 0.319 28.942(4,140) <0.001 0.453
F × tanφ×K 1.550(8,88) 0.152 0.124 4.377(4,140) <0.001 0.111
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Figure 7.2: Hardness estimates as a function of K with tanφ as factor. Left panel:
hammer condition; right panel: sounding-object condition. Factor level increases from
white circles to white squares to black circles. Error bars bracket 95% confidence intervals
about the mean.

Separate analyses of data from participants belonging to the two clusters revealed re-
sponses to be centered on different synthesis parameters in the two cases. As highlighted
by the η2

p statistic, participants in the first cluster focused on K, and secondarily on F ;
participants in the second cluster focused on tanφ, and secondarily on K. The origin
of the significance of the interaction of the cluster belongingness factor with the synthe-
sis parameters differs across cases. The rather secondary interaction with the three-way
interaction among synthesis parameters is due to the significance of this effect for partici-
pants in the first cluster, but not for those in the second cluster. Similarly, the interaction
with the tanφ parameter is due to the significance of the tanφ effect for participants in
the second cluster, where hardness estimates increased with decreasing tanφ, but not for
participants in the first cluster. The remaining significant interactions are explained by a
change in the shape of effects across clusters. Figure 7.3 shows the interactions between
F and K and between tanφ and K for both clusters.

The origin of the interaction between cluster belongingness and the K-tanφ inter-
action stands in the fact that the effect of tanφ in modulating the effect of K is much
stronger for participants in the second cluster. The interaction with the F -K interaction
is caused by the fact that stronger effects of K are found for the lowest F level in the
first cluster, and for the highest F level in the second cluster. The interaction with F
is instead due to the fact that while for participants in the first cluster hardness esti-
mates increased with increasing F , the opposite weighting was given by participants in
the second cluster. Finally, independently of cluster belongingness, hardness estimates
increased with increasing K.

In summary, the relevance of the synthesis parameters to hardness ratings was influ-
enced by two orthogonal tendencies: idiosyncratic response tendencies and, to a much
lesser extent, the object of the estimation (hammer vs. sounding object).



7.3. Results 123

20

40

60

80
H

ar
d.

 e
st

im
at

es

20

40

60

80

H
ar

d.
 e

st
im

at
es

5e+6 2.24e+8 1e+10

20

40

60

80

K (N m−α)

H
ar

d.
 e

st
im

at
es

50 200 800

20

40

60

80

F (Hz)

H
ar

d.
 e

st
im

at
es

Figure 7.3: Left panels: hardness estimates as a function of K with tanφ as factor. Right
panels: hardness estimates as a function of F with K as factor. Upper panels: cluster
1; lower panels: cluster 2. Factor level increases from white circles to white squares to
black circles. Error bars bracket 95% confidence intervals about the mean.

7.3.1 Discussion

Perceived hammer hardness was strongly influenced by variations in the interaction
parameter K where, consistently with its physical interpretation, increasing K values
were associated with increasing hardness estimates. This effect supports the hypothesized
relevance of interaction parameters to the perception of hammer properties, and supports
also the hypothesized perceptual relevance of the contact time τ , directly influenced by
K. In contrast with data from Freed (1990), hammer hardness was influenced by F . The
origin of this inconsistency might well be the fact that Freed (1990) explicitly instructed
participants to ignore variations in the size of the sounding object, while participants
in the current study did not receive specific instructions in this sense. The perceptual
relevance of tanφ to hammer hardness is instead a novel finding, given that the only
study on the perception of this source attribute (Freed, 1990) did not include variations
in the material of the sounding object.

Similarities were found between the criteria for sounding object hardness estimation
and those for material identification. The tanφ parameter was indeed relevant in de-
termining sounding object hardness for the majority of participants, increasing hardness
estimates being given for decreasing tanφ values, while with identification studies higher
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tanφ values were associated with the recognition of harder materials (metal and glass,
Klatzky et al., 2000; Giordano & McAdams, submitted). The relevance of F in deter-
mining sounding object hardness estimates is also consistent with the relevance of F to
material identification responses (Klatzky et al., 2000; Giordano & McAdams, submit-
ted). This result is further analyzed in Section 7.4.1. A point of departure between
hardness perception and material identification is instead found in the observed rele-
vance of K to sounding object hardness, inconsistent with material identification results
by Roussarie (1999) and Giordano (2003).

Limited support for the perceptual independence of hammer and sounding object
was found. Indeed, independently of idiosyncratic response tendencies, hammer hardness
was found influenced by variations in the sounding object parameters F , and tanφ, and
sounding object hardness was found influenced by variations in the interaction parameter
K. Then, consistently with results by Grassi (2005) and with the hypotheses outlined in
Section 7.1, in absence of a specific training listeners were found unable to tell apart the
two objects involved in the generation of the impact sounds. This conclusion is however
mitigated by the increased perceptual relevance of K in the hammer condition, which
revealed a partial tendency of listeners to focus on different source properties, depending
on the object under judgment.

7.4 Acoustical criteria for hardness scaling

The acoustical criteria used by participants to estimate hardness from sound were
investigated using regression techniques. Four datasets were modeled separately: partic-
ipants belonging to the two clusters assigned to the sounding-object and hammer condi-
tions. Regression models were built using average hardness estimates for each of the four
datasets. The following procedure was used to build and select the regression models:

1. for each of the α acoustical descriptors, estimate the monotone transform relating α
with the hardness ratings ψ, estimating the parameters of the non-linear regression
model ψ = a+ b |α|c;

2. test the significance of the association of each transformed acoustical descriptor with
the behavioral outcome, and discard from further modeling those not significantly
associated (Hosmer & Lemeshow, 1989);

3. compute all the possible univariate and multivariate regression models in a linear
regression framework, raising each of the predictors to the exponent c computed at
point 1.;

4. select as final models those with the fewest number of predictors whose adjusted
R2 value is equal to or higher than a threshold value of 0.85, i.e., select the most
economical models that fit the observed data well.
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The results of this analysis are summarized in Table 7.7. For each predictor in the
final regression models the standardized parameter estimate is also reported, where the
higher the absolute value of this statistic, the stronger its weight in determining the mod-
eled behavioral response. Figure 7.4 plots the best regression model for each considered
dataset.

Table 7.7: Regression models built to study the acoustical criteria for hardness estimation
in each of the four considered datasets. Cl. = cluster. For each dataset, the exponent
and the standardized parameter estimate for each of the predictors in the model are
reported. Also reported is the adjusted R2 goodness-of-fit measure.

Dataset Pred.exp. Stand. estim. Pred.exp. Stand. estim. Adj.R2

Hammer/Cl.1 Lou1.01
att 0.871 F 2.70×103

0.700 0.945

SCG−2.34
att -0.828 F 2.70×103

0.344 0.893

SCG−2.34
att -0.707 SCG6.38×103

mea 0.362 0.876

Hammer/Cl.2 Dur9.06×103
0.643 Lou−0.41

att -0.497 0.883

Dur9.06×103
0.767 SCG9.46

att 0.460 0.877

Lou−0.41
att -0.632 |Lousl2|−0.24 0.590 0.861

Sound.Obj./Cl.1 F 18.38×103
0.649 SCG−18.06

att -0.457 0.852

Sound.Obj./Cl.2 Dur0.31 0.966 — — 0.930

7.4.1 Discussion

In line with results discussed in Section 7.3.1, analysis of the acoustical correlates high-
lighted limited support for the perceptual independence of hammer and sounding object.
Indeed, for the vast majority of participants both acoustical parameters specifying the
sounding object, and the acoustical parameters specifying the interaction parameter K
were used for hardness estimation. This conclusion is however weakened by two findings.
Firstly, the fact that for the majority of participants in the sounding object condition,
judgments were based exclusively on signal duration and were uninfluenced by the in-
teraction parameter K (see Section 7.2.3). Secondly, in line with results summarized in
Section 7.3.1, two of the acoustical correlates of K, Louatt and SCGatt, were much more
relevant to hammer hardness rather than to sounding object hardness. Thus, even when
only minimal non-auditory, source-related information was available, listeners showed
a somewhat limited ability to discriminate acoustically between hammer and sounding
object.
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Figure 7.4: Best regression model for each of the analyzed datasets. Observed hardness
estimates are plotted as a function of the linear predictor. Solid lines show the regression
functions. Top-left panel: hammer condition, cluster 1; top-right panel: hammer con-
dition, cluster 2; bottom-left panel: sounding object condition, cluster 1; bottom-right
panel: sounding object condition, cluster 2.

Several results concerning the acoustical criteria for sounding object hardness esti-
mation support the hypothesized link of this perceptual dimension with material iden-
tification. In particular, both in the current study and in the study by Giordano and
McAdams (submitted), stiffer materials were associated with longer signals. Also consis-
tent is the effect of signal frequency, highlighted by Klatzky et al. (2000) and by Giordano
and McAdams (submitted). It should however be noted that, while in the current study
frequency and duration were relevant to different groups of participants, Giordano and
McAdams (submitted) showed that both of these variables are taken into account by the
same listener. The source of this inconsistency is not clear. Another point of departure
is found in the relevance of SCGatt to sounding object hardness, found to be unrelated
to material identification by Giordano and McAdams (submitted). It should however be
noted that this acoustical variable was significant for a smaller part of the participants,
and had a smaller perceptual relevance than the sounding object parameter F .

Concerning hammer hardness, several inconsistencies are found with respect to the
data of Freed (1990). With this study, both signal frequency and duration influenced ham-
mer hardness, while none of these measures seem to explain the data of Freed (1990). In
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line with discussion of Section 7.3.1, this inconsistency might be explained on the basis of
the difference in instructions between the two studies: in Freed (1990) listeners were aided
in developing response strategies independently of the acoustical correlates of sounding
object variations. Instead, the relevance of loudness and SCG-related descriptors, as well
as the relevance of the initial portion of the signals observed by Freed (1990), is consis-
tent with the results of the current study. A more rigorous comparison was then carried
out by extracting the SCGatt measure from the time-varying analyses published by Freed
(1990), and testing its power in explaining hammer hardness estimates. There were insuf-
ficient data to test for the relevance of Louatt in explaining Freed’s (1990) data3. Linear
regression was used, with the average hardness ratings for the different mallet/pan-size
combinations as dependent variable and the SCGatt parameter as predictor. This analy-
sis highlighted a strong association of hardness estimates with SCGatt (Adj.R2 = 0.848),
where, consistently with the current study, hardness estimates increased with increasing
SCGatt. The effects of pan size, and of mallet hardness on SCGatt were studied with a
two-way ANOVA. In line with results reported in Section 7.2.3, the effect of pan size was
just below the critical p-value (F(3,15) = 2.04, p = 0.025), and had a quite small effect
size (η2

p = 0.453) as compared to that of hammer hardness (F(5,15) = 26.61, p < 0.001,
η2

p = 0.947).

7.5 Conclusions

Auditory perception of hardness was investigated for both the objects involved in
impact sound generation: the hammer and the sounding object. Perceived hammer
hardness was strongly influenced by a property of its interaction with the sounding object,
the force stiffness coefficient K, which influences the duration τ of the contact between
the two objects during the impact (Landau & Lifshitz, 1981; Chaigne & Doutaut, 1997).
This result gives support to the hypothesis according to which hammer perception does
not rely directly on the properties of the hammer, but on the properties of its interaction
with the sounding object. From the acoustical point of view, hammer hardness estimates
were influenced by two of the parameters specifying K, attack loudness and spectral
center of gravity SCG, and, depending on idiosyncratic response tendencies, on one of two
acoustical parameters specifying the properties of the sounding object: signal duration,
strongly related with the tanφ parameter used to model the material of the sounding
object, and frequency. The relevance of the attack SCG was consistent with previous
data from Freed (1990), while the relevance of duration and frequency were not. This
inconsistency was explained with the difference in experimental conditions which, in the
study by Freed (1990), aided participants in avoiding basing their judgments on acoustical
correlates of sounding object properties.

3The time-varying acoustical analyses published in Freed (1990) were not computed for the experi-
mental stimuli, equalized in loudness, but for the unequalized signals. Even though loudness equalization
was not likely to influence strongly SCGatt, the likelihood of an influence on Louatt was much higher.
Consequently this descriptor was not taken into account.
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Several similarities were outlined between judgments of sounding object hardness and
identification of sounding object material type. In particular, consistently with results by
Giordano and McAdams (submitted), hardness estimates were influenced by the material
of the sounding object, as modeled with the tanφ parameter, and, from the acoustical
point of view, by signal duration or frequency. However, while for material identifica-
tion both signal duration and frequency were used by the same participant for material
identification (Giordano & McAdams, submitted), different participants based hardness
estimation on one of these two acoustical parameters in isolation. Inconsistently with
previous findings on material identification, perceived hardness was influenced by the
interaction property K and, for a minority of participants, by the attack SCG. These
results, in summary, pointed toward the presence of secondary but relevant differences
between judgments of hardness and of material type.

The perceptual independence of hammer and sounding object was finally addressed.
Results from the current study support the notion according to which independent per-
ception was observed in previous studies (Freed, 1990; McAdams et al., 1998; Roussarie,
1999; Giordano, 2003) thanks to the focus on different source properties: interaction
properties for hammer perception, sounding object properties for sounding object per-
ception. Analysis of the previous literature highlighted the amount of non-auditory,
source-related information available to listeners as potentially determining the outcome
of perceptual independence. Thus, consistently with results by Grassi (2005), with min-
imal non-auditory, source-related information participants in the current study did not
perceive these properties independently. Nonetheless, the perceptual relevance of K and
of the related acoustical parameters increased when participants were asked to estimate
hammer hardness rather than sounding object hardness. Thus, partial abilities of inde-
pendent perception were observed even in naive listeners, abilities that could easily be
improved with proper training. It finally remains to be explained why untrained partic-
ipants chose to rely secondarily on interaction parameters when judging the hardness of
the sounding object. Indeed, as pointed out in Section 7.1, both K and τ are influenced
by variations in the properties of the sounding object, and, in the specific, in its stiffness.
The most plausible reason for this strategy is that listeners chose to focus on source
parameters and acoustical variables, which specify unambiguously the sounding object,
interaction variables also being influenced by the properties of the hammer.



Chapter 8

Dissimilarity ratings of real impact
sounds

Bruno L. Giordano† and Stephen McAdams††

Abstract

Dissimilarity ratings of impacted sound sources were studied, with reference to both
mechanical and acoustical parameters. The perceptual relevance of the properties of the
vibrating object, the sounding object, was compared with that of the properties of the
striking object, the hammer, and with that of the properties of the interaction between the
hammer and the sounding object. Results showed judgments to rely on the properties of
the sounding object, and, for the minority of participants, also on interaction properties.
From the acoustical point of view, judgments were found to be based on signal duration,
on an acoustical measure of damping, on signal frequency and on the attack spectral
center of gravity. No evidence for the perceptual relevance of the hammer was found. It
was then concluded that in everyday conditions auditory perception relies mainly on the
properties of the sounding object. A study of the relationship between acoustical structure
and source parameters was also performed, highlighting the acoustical parameters most
likely mediating perception of the considered source properties.

8.1 Introduction

The vast majority of sounds we encounter everyday are generated by real objects
in interaction. The task of the perceptual system is that of extracting information on
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the relevant objects in the environment, the sound sources, starting from the properties
of the proximal stimulus, the acoustical signal. The problem of source perception has
been mainly studied with reference to a particular source, that of isolated impact sounds,
composed of two objects: a highly damped object, the hammer, which strikes a vibrating
object, the sounding object. Previous studies tested the ability to recover the properties
of each of these objects, as well as the properties of the acoustical signals underlying
performance. Gaver (1988), Lakatos et al. (1997), Kunkler-Peck and Turvey (2000), Lutfi
(2001), Houix (2003), Tucker and Brown (2003) studied perception of the geometrical
properties of the sounding object; Lutfi and Oh (1997), Roussarie (1999), Klatzky et al.
(2000), Kunkler-Peck and Turvey (2000), Avanzini and Rocchesso (2001a), Giordano
(2003), Giordano and McAdams (submitted) studied identification of the material type
of the sounding object. Freed (1990) investigated perception of the hardness of the
hammer. Finally, the perceptual correlates of the properties of the interaction between
hammer and sounding object were studied in Chapter 7.

With the vast majority of these studies, participants were asked to judge explicitly
a physical property of the sound source. Such an approach is not free of drawbacks.
Firstly, it restricts the tests of perception to linguistic categories immediately understood
by the participant, (e.g., material type, size), where perception of source properties whose
definition is unclear to the participant can be tested only through alternative linguistic
labels. For example, in a study conducted on sequences of impact sounds, i.e. bouncing
sounds, Guski (2000) tested perception of the work done by a ball falling onto a drum
asking participants to estimate the “impact force”. Such a choice might bias judgments in
uncontrolled ways, and might undermine the internal validity of results, i.e. the corre-
spondence of the measuring variable (e.g., judged impact force) to the measured variable
of interest (e.g., the source property work). Secondly, and most importantly, tests based
on direct judgment come with a problem of ecological validity, i.e. the possibility of
generalizing results to everyday conditions. When explicitly asking for the judgment of a
given source property the experimenter is likely to direct the attention of listeners toward
that source property. Generalization of these results to everyday conditions is possible
only if it is assumed that the source property is attended to even in the absence of these
experimental constraints, or if we assume that the overall context of everyday listening
has the same effects as the experimental one. Such assumptions might however be inap-
propriate. Experimental techniques based on judgments of dissimilarity are not affected
by these problems, where perception of source properties can be tested without facing
issues concerning their linguistic definition, and without directing listeners’ attention to-
ward the source property of interest. Typically participants are asked to estimate the
dissimilarity of pairwise presented stimuli (e.g. McAdams et al., 2004). Data are then
analyzed with multidimensional scaling (MDS) models, that map observed dissimilarities
to the distance of stimuli within a geometric representation, usually a Euclidean space
with a given number of dimensions (see Borg & Groenen, 1997, for a good introduction
to MDS). Dimensions, i.e. the coordinates of stimuli along the axes of the MDS space,
are then interpreted with reference to known properties of the stimuli, i.e., source and
acoustical properties. The criteria used by participants to rate the dissimilarity are fi-



8.1. Introduction 131

nally assumed to be based on those stimuli properties that explain the dimensions of the
spaces.

The technique of dissimilarity rating has been previously used for the study of iso-
lated impact sounds by Gaver (1988), Roussarie (1999) and McAdams et al. (2004). In
two separate experiments, Gaver (1988) investigated signals generated striking either real
or simulated wood and iron bars of variable length. Two-dimensional MDS spaces were
derived in both cases, the first dimension categorically partitioning wood sounds from
iron sounds, the second being explained by the length of the bars. Roussarie (1999)
investigated signals generated with the simulation of a struck plate. The properties of
the plates (damping coefficients, density, elastic coefficients) were varied around those
characterizing aluminum and glass. Two sets of signals were created, varying across sets
the value of an interaction parameter, the force stiffness coefficient, interpreted as re-
flecting the properties of the hammer. The lowest and highest values were interpreted
as modeling rubber and wood hammers, respectively. Two and three-dimensional solu-
tions, respectively, were derived for the wood hammer, and rubber hammer datasets. In
both cases the first dimension strongly correlated with the damping of the plate. Two
acoustical parameters were found to explain the first dimension. First, the spectral cen-
ter of gravity (SCG). Second, a parameter similar to the acoustical measure of damping
tanφ found to be associated with auditory identification of material type (Klatzky et al.,
2000; Giordano & McAdams, submitted): the slope of the function relating the damping
factors of the spectral components to their frequencies. The second dimension was found
to be related to the flexural and torsional wave velocities, as modulated by the elastic-
ity and density of the plates. The second dimension was explained acoustically by two
measures of pitch, the frequency of the spectral peak, and the frequency of the lowest
resonant mode. Notably the MDS spaces for the two stimulus sets were found to be
highly correlated, result interpreted as supporting the absence of perceptual relevance of
the force stiffness coefficient or, in the interpretation of the author, of hammer material.
McAdams et al. (2004) investigated simulated struck bars. In a first experiment signals
were synthesized manipulating the damping and density of the bar. A two-dimensional
space was found, the first dimension being related to the damping parameter, and to
the SCG temporal decay, the second dimension being related to bar density and signal
frequency. Two stimulus sets, judged in separate sessions, were investigated in the second
experiment, varying bar damping and length, one of the sets being characterized by lower
frequencies than the other. Two-dimensional spaces were found with both datasets. In
both cases, one of the dimensions was related to bar length and signal frequency. The
other dimension was related to bar damping and to level decay descriptors for the higher
frequency set, or to SCG-related descriptors in the lower frequency set. Data from all
experiments were explained in terms of signal frequency, related to either bar density or
length, and in terms of a linear combination of the average SCG and the level decay in
the last portion of the signals, parameters related to bar material.

In summary across studies dissimilarity ratings were based on two independent cri-
teria, related to different source properties. The first criterion was associated with the
material type of the sounding object (Gaver, 1988), and to a material type-related prop-
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erty, damping (Roussarie, 1999; McAdams et al., 2004). The second criterion was related
to the size of the sounding object (Gaver, 1988; McAdams et al., 2004) or, alternatively,
with other sounding object properties that discriminate between material types: density
and elasticity (Roussarie, 1999; McAdams et al., 2004). From the acoustical point of
view, the damping-related criterion was associated with different acoustical variables: a
parameter similar to the acoustical measure of damping tanφ, the overall SCG (Rous-
sarie, 1999; McAdams et al., 2004), the SCG decay rate (McAdams et al., 2004), and the
level decay rate (McAdams et al., 2004). The size-related criterion was, to the contrary,
invariably related to a frequency component of the signal (Roussarie, 1999; McAdams
et al., 2004).

None of these studies compared the perceptual relevance of hammer and sounding ob-
ject properties. Also the perceptual relevance of the parameters characterizing the inter-
action between the two objects was only secondarily addressed in the study by Roussarie
(1999). Indeed, as the force stiffness coefficient was varied across experimental sessions,
participants were never given the possibility to compare different values of this param-
eter, forcing judgments to be unrelated to this source property. Finally, following the
same arguments made by Giordano and McAdams (submitted) concerning the acoustical
criteria for material identification, the perceptual relevance of mechanical damping, and
of acoustical measures of damping, point to the perceptual relevance of a simple prop-
erty of the signals, duration. Indeed, the higher the damping of a sounding object, the
shorter the signal. However, none of the previous studies related dissimilarity ratings
with measures of signal duration.

With this study perception of impact sound sources was investigated, using the ex-
perimental technique of dissimilarity rating. Properties of the sounding objects, of the
hammers, and of the interaction between hammers and sounding objects were compared
in their perceptual relevance, providing a more complete framework to understand per-
ception of impact sounds in everyday conditions. A large set of descriptors to investigate
the acoustical criteria for dissimilarity rating was adopted. Finally, a study on the re-
lationship between the properties of the impact sound source and the structure of the
acoustical signals was performed in order to highlight the acoustical parameters more
likely to mediate perception of the investigated source properties.

8.2 Physical and acoustical characterization of im-

pacted sound sources

A large set of impact sound sources, and impact sounds, was created. The same
paradigm adopted in previous research on the perception of impact sounds was used for
sound generation (e.g. Lakatos et al., 1997; Kunkler-Peck & Turvey, 2000). Accordingly,
the sound source was composed of two objects, a vibrating object, a plate, struck by
a highly damped object, referred to as the hammer. All sources were characterized
both physically and acoustically. Physical characterization was carried out by measuring
the properties of plates and hammers, as well as the parameters characterizing their
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interaction. Acoustical characterization was carried out by analyzing signals with the
same methodology outlined in Giordano and McAdams (submitted). A study of the
acoustical correlates of the source properties was finally performed.

8.2.1 Plate properties

Plates were made of seven different materials: aluminum (Alu.), alumina ceramic
(Cer.), soda-lime glass (Gla.), oak, pine (Pin.), polymethyl methacrylate or plexiglas
(Ple.), and steel (Ste.). All plates were approximately square in shape, and had approxi-
mately the same thickness (1 cm). For each material three areas were used, approximately
225, 450, and 900 cm2. A different steel was used for the largest of the steel plates. Each
plate was drilled at four locations with a 3 mm ∅ screw, for mounting in the device used
to strike them (see Section 8.2.3). Two top holes were located 1.5 cm from the top border,
and from the left/right borders. Two lateral holes where located at the middle height,
1.5 cm from the left/right borders. Oak and pine plates were cut along the grain, i.e. the
grain was parallel to the length of the plates. The largest wood plates were prepared by
gluing side by side three planks of the same width. Plate weight was measured with an
accuracy of ± 2 g for weights up to 2500 g, of ± 5 g for weights from 2500 to 5000 g.
Plate area was calculated assuming an angle of π/2 between the upper and right sides,
and between the left and lower sides. Density estimation took into account the volume
of the drills. Table 8.1 reports this initial set of plate properties.

8.2.1.1 Estimation of the elastic properties

McIntyre and Woodhouse (1988) and Chaigne and Lambourg (2001) outline a method-
ology for the rough estimation of the elastic properties of thin plates, based on the mea-
surement of the frequency of a limited number of their vibrational modes. This method-
ology was used here to estimate the rigidities D, or, equivalently, the Young moduli E,
Poisson’s ratios ν and the shear modulus G, relating the stresses operating on the plate
to the resulting strains or deformations (cf. Lambourg, 1997).

With orthotropic materials, as for pine and oak, elastic properties are symmetric with
respect to three orthogonal axes. In the special case of orthotropic thin plates with
axes of symmetry parallel to the sides, the case for the investigated wood plates, elastic
properties are characterized by four independent elastic constants, the rigidities D1,...,4.
These can be estimated on the basis of Equations (8.1).

D1 ' 0.0789
ρf 2

(2,0)l
4
x

h2
;D2 ' 0.6

√
D1D3;D3 ' 0.0789

ρf 2
(0,2)l

4
y

h2
;D4 = f 2

(1,1)

4π2

144

ρ (lxly)
2

h2

(8.1)
where f(1,1) is the frequency of the first torsional mode; f(2,0) is the frequency of the first
bending mode along the length lx of the plate, i.e. along the dimension parallel to the
grain; f(0,2) is the frequency of the first bending mode along the width ly of the plate; h
is the thickness of the plate; ρ is the density.
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Table 8.1: Properties of the investigated plates.

Material Area Thickness Left h. Right h. Upper w. Lower w. Weight Density ρ
(cm2) (mm) (mm) (mm) (mm) (mm) (g) (kg/m3)

Alu. 224.62 10.0 149.5 150.0 150.0 150.0 598 2665.57
Alu. 448.91 10.0 211.5 212.0 212.0 212.0 1200 2674.83
Alu. 899.55 10.1 299.7 299.5 300.0 300.5 2394 2635.81
Cer. 224.25 9.0 149.0 150.0 150.0 150.0 436 2163.01
Cer. 449.44 9.1 212.0 212.0 212.0 212.0 872 2133.42
Cer. 900.00 9.2 300.0 300.0 300.0 300.0 1720 2077.95
Gla. 225.00 10.0 150.0 150.0 150.0 150.0 562 2500.92
Gla. 449.65 10.0 212.2 212.0 212.0 212.0 1116 2483.48
Gla. 901.50 10.0 300.0 301.0 300.0 300.0 2228 2472.21
Oak 229.50 10.2 150.0 150.0 153.0 153.0 170 727.11
Oak 449.44 10.0 212.0 212.0 212.0 212.0 356 792.60
Oak 894.00 10.2 300.0 300.0 301.0 295.0 788 864.42
Pin. 223.46 10.0 150.0 150.0 149.2 148.75 148 663.14
Pin. 447.85 10.0 212.0 211.0 212.0 211.5 312 697.10
Pin. 886.50 10.0 300.0 300.0 295.0 296.0 592 668.01
Ple. 225.00 10.0 150.0 150.0 150.0 150.0 264 1174.81
Ple. 447.85 10.2 212.0 211.0 212.0 211.5 540 1182.87
Ple. 901.50 10.2 300.0 301.0 300.0 300.0 1104 1200.99
Rub. 226.13 9.0 150.0 150.0 150.5 151.0 312 1534.99
Rub. 449.44 9.0 212.0 212.0 212.0 212.0 644 1593.11
Rub. 903.15 9.5 300.5 300.9 300.5 300.2 1278 1489.99
Ste. 225.00 10.0 150.0 150.0 150.2 149.8 1736 7725.26
Ste. 445.10 10.0 210.9 210.0 211.5 211.5 3460 7778.44
Ste. 900.00 10.1 300.0 300.0 300.0 300.0 7110 7824.24

The Young moduli Ex,y, Poisson’s ratios νxy,yx, and the shear modulus Gxy, are related
to the rigidities D1,...,4 by Equations (8.2).

Ex =
12D1D3 − 3D2

2

D3

;Ey =
12D1D3 − 3D2

2

D1

; νxy =
D2

2D3

; νyx =
D2

2D1

;Gxy = 3D4 with
Ex

Ey

=
νxy

νyx

(8.2)
where it is assumed that νxyνyx = 0.32.

With isotropic materials (aluminum, ceramic, glass, plexiglas, steel) physical proper-
ties are constant along every direction, and only two independent coefficients are needed
to characterize their elastic behavior. In particular Young’s modulus E and Poisson’s
ratio ν can be estimated with Equations (8.3).
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f 2
O + f 2

X

]
;E ' 0.46

(
1− ν2

) (
f 2

O + f 2
X

)
ρl4/h2;G =

E

2 (1 + ν)
; (8.3)

where where fO is the frequency of the ring vibrational mode given by the in-phase com-
bination of the (2, 0) and (0, 2) bending modes; fX is the frequency of the X vibrational
mode, given by the out-phase combination of the (2, 0) and (0, 2) bending modes; l is
the length of the plate. It should be noted that in the isotropic case Ex = Ey = E and
νxy = νyx = ν.

For the isotropic case, the rigidities D1,...,4 are related to E and ν by Equations (8.4).

D1 = D3 = E/12
(
1− ν2

)
;D2 = 2D1 −D4;D4 = E/6 (1 + ν) ; (8.4)

8.2.1.1.1 Measurement of the modal frequencies Measurement of the frequen-
cies of the vibrational modes of interest was based on the observation of the patterns
of nodal lines. For both isotropic and orthotropic materials the nodal lines of the first
torsional mode (1, 1) form a cross with arms parallel to the width and length of the plate,
crossed at its center. For orthotropic materials, the (2,0) mode has nodes with, approx-
imately, the shape of two lines parallel to the height, while the two nodal lines for the
(0,2) mode are parallel to the width. For isotropic plates the nodal pattern for the X
mode is a cross whose arms connect opposite corners of the plate, while the nodal pattern
for the O, or ring, mode is a circle centered on the center of the plate.

The Chladni technique was used. Plates were placed on four small cork supports,
placed at nodal positions for the modes of interest, covered with particles of a light mate-
rial, and excited with a sinusoidal signal. Two different setups were used for the different
materials. Acoustical excitation was used for aluminum, glass, oak, pine, sillimanite, and
steel, where the signal emanated from a loudspeaker placed above the plate. Plexiglas
plates were excited mechanically with an LDS model V203 shaker, placed below the plate,
and attached to an antinodal location. Both the loudspeaker and the shaker received as
input a sinusoidal signal generated with a Leader LAG125 audio generator, amplified
with a KH-MB140 amplifier. A Racal Instruments 9911 frequency meter, connected to
the tone generator, was used to measure the frequency of the signal. Table 8.2 reports the
frequencies of the vibrational modes of interest. Although not used for the calculation of
the elastic coefficients, the frequency of the (1,1) mode is also reported for the isotropic
plates.

8.2.1.1.2 Estimated elastic coefficients The elastic properties of the different
plates were estimated by applying equations 8.1-8.3. For orthotropic plates, the aver-
age of the upper and lower width was used as ly, and the average of the right and left
length was used as lx. For the isotropic plates, the average of the length of all sides was
used as l. The resulting measures are reported in Tables 8.3 and 8.4.
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Table 8.2: Modal frequencies used to estimate the elastic coefficients of the plates.

Material Area f(1,1) fX fO

(cm2) (Hz) (Hz) (Hz)

Alum. 225 1413.38 2120.47 2690.68
450 715.96 1073.03 1361.49
900 358.2 534.21 672.18

Cer. 225 872.62 1252.61 1320.74
450 468.62 676.97 706.37
900 215.57 308.73 320.32

Gla. 225 1525.82 2238.15 2623.28
450 780.38 1141.25 1340.06
900 393.3 571.89 668.42

Ple. 225 605.12 863.95 1101.5
450 242.23 439.12 542.05
900 135.44 198.51 264.44

Ste. 225 1455.76 2153.65 2607.93
450 751.96 1106.43 1319.65
900 370.2 556.81 672.88

Material Area f(1,1) f(2,0) f(0,2)

(cm2) (Hz) (Hz) (Hz)

Oak 225 604.69 1234.74 2411.5
450 262.88 595.3 1031.65
900 153.99 333.75 517.38

Pin. 225 630.3 1245.98 2475.24
450 310.5 635.72 1185.28
900 147.78 325.97 539.63



8.2. Physical and acoustical characterization of impacted sound sources 137

Table 8.3: Elastic coefficients estimated for the isotropic plates.

Material Area (cm2) D1 (GPa) D4 (GPa) E (GPa) ν

Alu. 225 6.051 7.915 63.919 0.346
Alu. 450 6.209 8.123 65.598 0.346
Alu. 900 5.909 7.869 62.987 0.334
Cer. 225 1.706 3.144 20.342 0.078
Cer. 450 1.91 3.579 22.824 0.063
Cer. 900 1.509 2.853 18.051 0.055
Gla. 225 5.771 8.852 65.492 0.233
Gla. 450 5.964 9.116 67.588 0.236
Gla. 900 5.96 9.191 67.77 0.229
Ple. 225 0.447 0.578 4.695 0.353
Ple. 450 0.425 0.589 4.623 0.307
Ple. 900 0.393 0.461 3.913 0.413
Ste. 225 17.15 24.701 189.681 0.28
Ste. 450 17.519 25.993 196.221 0.258
Ste. 900 18.167 26.272 201.282 0.277
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Table 8.4: Elastic coefficients estimated for the orthotropic plates.

Material Area (cm2) D1 (GPa) D2 (GPa) D3 (GPa) D4 (GPa) Ex (GPa) Ey (GPa) νxy νyx

Oak 225 1.623 0.519 0.461 0.369 17.727 5.031 0.563 0.16
Oak 450 1.344 0.465 0.448 0.303 14.681 4.888 0.52 0.173
Oak 900 1.421 0.543 0.576 0.432 15.521 6.288 0.471 0.191
Pin. 225 1.623 0.483 0.4 0.361 17.722 4.369 0.604 0.149
Pin. 450 1.546 0.499 0.447 0.37 16.884 4.88 0.558 0.161
Pin. 900 1.243 0.437 0.427 0.314 13.576 4.663 0.512 0.176
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For each material except steel, further calculations based on the elastic coefficients
were made averaging estimates across area levels. For steel, instead, separate estimates
of the elastic coefficients were considered for the larger, and for the two smallest plates.
In this latter case, estimates were averaged across areas.

8.2.2 Hammer properties

Seven hammers were created of the same material types used for the plates (aluminum,
ceramic, glass, oak, pine, plexiglas, steel). The steel hammer was created using the same
steel as for the two smallest plates. Their shape was approximately semi-spherical (radius
= 1 cm). Weight was measured using a high precision Ohaus galaxy 400D scale (precision:
± 1 ng). The radius was calculated assuming the shape of a spherical cap. For each
material the elastic coefficients and density of the hammers were assumed to correspond
to those measured on the plates, averaged across areas. For the steel hammer, elastic
coefficients and density were averaged across the measures for the two smallest plates.
Table 8.5 reports the properties of the hammers. Only the elastic coefficients D1,...,4 are
shown.

Table 8.5: Properties of the investigated hammers.

Material Radius Weight Density D1 D2 D3 D4

(cm) (g) (kg/m3) GPa GPa GPa GPa

Alu. 1.025 4.213 2658.736 6.056 4.144 6.056 7.969
Cer. 1.063 4.402 2124.795 1.708 0.224 1.708 3.192
Gla. 1.005 5.801 2485.538 5.898 2.743 5.898 9.053
Oak 1.056 1.844 794.71 1.463 0.509 0.495 0.368
Pin. 1.056 1.543 676.084 1.471 0.473 0.425 0.348
Ple. 1.007 1.844 1186.222 0.422 0.3 0.422 0.543
Ste. 1.041 10.697 7751.854 17.335 9.322 17.335 25.347

8.2.3 Recording session

The apparatus used to suspend the plates was similar to that used by Kunkler-Peck
and Turvey (2000) and Giordano and McAdams (submitted) (see Figure 6.1). The main
structure was made of pine wood. Plates were hung from the top shelf with nylon lines,
attached to the top holes. The lateral holes of the plates were attached to two 132 g
weights with nylon lines, passing through holes drilled in two horizontal planks attached
to both sides of the structure. Hammers were mounted on the bottom end of an aluminum
guide, using a small amount of wax. The guide was damped with a heavy piece of garment,
in order to prevent the generation of audible signals after the blow of the hammers on the
plates. The guide weighed 1.8 kg, garment included. The guide was anchored to the top
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shelf, 20 cm from the plane of the plates. Plates were struck in their centers, releasing
the guide from a fixed angle of 22.5◦. No audible multiple impacts of the hammers on
the plates were observed during the recording phase.

Sounds were generated in an acoustically isolated room. A Brüel & Kjær type 4003
condenser microphone was positioned 25cm from the center of the plate opposite the
struck surface. The signal captured by the microphone was delivered to a Symetrix
SX202 microphone preamplifier, connected to a Loughborough Sound Images PC/C32
DSP board. The signal was acquired through the DSP board with a sampling rate of
44100 Hz, and a resolution of 16 bits. One signal for each of the plate/hammer pairs was
recorded, for a total of 147 samples.

For each of the recorded signals, additional measures were collected to characterize the
hammer/plate interaction. An Endevco model 22 Picomin light accelerometer (weight:
0.14 g) was attached to the back side of the guide and located on the opposite side of
the striking surface of the hammers. The acceleration signal was amplified with a Brüel
& Kjær type 2635 charge amplifier and delivered to a Tektronix TDS-210 two-channel
digital oscilloscope (sampling rate: 1 GHz).

From the acceleration signal, two measures were extracted: the duration τ of the
contact between hammer and plate, and the maximum hammer acceleration during the
stroke accmax. The beginning of the contact between hammer and plate was clearly
marked by a sudden rise of the acceleration signal above the DC value. The end of the
contact time corresponded to the instant where acceleration went below the DC value.
Figure 8.1 shows the acceleration of the plexiglas hammer striking the 450 cm2 steel plate,
and the beginning and end of the contact between hammer and plate, defined as above.

8.2.4 Interaction properties

A methodology close to that outlined by Chaigne and Doutaut (1997) was used to mea-
sure additional parameters characterizing the interaction between hammers and plates,
the dynamic mass of the hammers, and the force stiffness coefficient K. The dynamic
mass of the hammer is defined as the ratio of the hammer acceleration to the hammer
striking force and measures the mass of the guide/hammer system while striking the plate.
The relevance of the dynamic mass of the hammer stands on its influence on the amount
of energy introduced into the plate. The force stiffness coefficient K, according to Hertz’s
law of contact, relates the striking force F to the compression δ of the mallet during
the contact (F = Kδ

3/2
h in the analysis developed by Chaigne and Doutaut, 1997). The

relevance of K, dependent on the elastic properties of both the hammer and the plate (cf.
Chaigne & Doutaut, 1997), stands on its influence on an acoustically relevant parameter
of the hammer/plate interaction, the contact time τ between the hammer and the plate
during the impact (Benade, 1979).



8.2. Physical and acoustical characterization of impacted sound sources 141

−50 0 50 100 150

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time(µs)

A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 8.1: Acceleration of the plexiglas hammer striking the 450 cm2 steel plate. The
dashed line shows the DC value of the acceleration signal. White circles mark the be-
ginning and the end of the contact between hammer and plate. Time starts with the
beginning of the contact.

8.2.4.1 Dynamic mass of the hammers

The dynamic mass of the hammers was estimated from two signals: hammer accel-
eration and striking force. An Endevco model 22 Picomin light accelerometer (weight:
0.14 g) was mounted on the back side of the aluminium guide using a small amount of
wax. The accelerometer was located exactly on the opposite side of the striking surface
of the hammers. The hammer struck a rigidly fixed Brüel & Kjær type 8001 impedance
head, which delivered a signal proportional to the striking force. The impedance head
was mounted in a position corresponding to the striking location of the plates during the
recording session. The acceleration and force signals where delivered to a Brüel & Kjær
type 2635 charge amplifier. The amplified signals were then delivered to a Tektronix
TDS-210 two-channel digital oscilloscope (sampling rate: 1 GHz) for further measure-
ment.

For each hammer, thirty measures were collected, releasing the guide from a starting
angle of 17.5◦. The same procedure was also followed with the guide without any hammer
mounted. In this case, the impedance head was struck in a slightly lower position than
when a hammer was mounted. The hammer dynamic mass was defined as the ratio of
the peak striking force to the peak hammer acceleration. Figure 8.2 shows, for each of
the hammers and for the guide without a hammer, the peak force as a function of the
peak acceleration.

Linear regression was used to study the relationship between the dynamic mass and
static mass of the hammers. Dynamic mass measures averaged across the thirty repeti-
tions were considered. The regression equationDynamic mass = 8.542 g +0.99767 Static mass
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accounted for 99.7% of the variance of the average dynamic mass estimates. The ham-
mer dynamic mass was thus found to be given by the static mass of the hammers plus
8.542 grams, i.e., the dynamic mass of the guide. This quantity overestimates the direct
estimate of the dynamic mass of the guide (5.699 g). The misalignment between these
measures is due to the fact that in this latter case the guide struck the impedance head
in a lower location than the hammers, i.e., farther from its fulcrum of rotation. Figure
8.3 shows the average dynamic mass for the different hammers and for the guide without
hammers. Average dynamic mass estimates are reported in Table 8.6 along with the
regression estimates. Further calculations were based on the regression estimates of the
dynamic mass.

Table 8.6: Hammer dynamic mass measures.

Material Average estimates Regression estimates
(g) (g)

Alu. 12.792 12.745
Cer. 12.755 12.934
Gla. 14.529 14.330
Oak 10.355 10.382
Pin. 10.291 10.082
Ple. 10.175 10.382
Ste. 19.172 19.214

Guide 5.699 8.542
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Figure 8.2: Data for the measurement of the dynamic mass of the hammers. For each of
the hammers, and for the guide without a hammer, peak force is shown as a function of
peak acceleration during the contact time period.
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Figure 8.3: Average dynamic mass as a function of the static mass of the hammers (white
circles), and of the guide (white square). Error bars = ±1 SD. The dotted line shows the
regression function calculated using average measures from all hammers.
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8.2.4.2 Force stiffness coefficient

Chaigne and Doutaut (1997) estimated the force stiffness coefficient K from measures
of the contact time τ between hammer and plate, of the mass of the plate mP , of the
dynamic mass of the hammer mh, and of the maximum impact force Fmax (Chaigne &
Doutaut, 1997). These quantities are related as in Equation (8.5).

K = 35.4
1

τ 3

√
µ3

Fmax

with µ =
mhmP

mh +mP

(8.5)

For each plate/hammer pair, thirteen τ and Fmax measures were collected, releasing
the mounting guide for the hammers from thirteen different starting angles, from 15◦ to
30◦ in 1.25◦ steps. Plates were mounted as during the recording phase and struck at
their centers. Fmax and τ were extracted from the hammer acceleration signal, measured
with an Endevco model 22 Picomin light accelerometer (weight: 0.14 g) mounted on
the back side of the guide on the opposite side of the surface struck by the hammer.
The acceleration signal was amplified with a Brüel & Kjær type 2635 charge amplifier
and delivered to a Tektronix TDS-210 two-channel digital oscilloscope (sampling rate:
1 GHz). Measures of the contact time τ were extracted from the acceleration signal as
outlined in Section 8.2.3. Fmax was computed multiplying accmax, the maximum hammer
acceleration during the impact, with the dynamic mass of the hammers. Figure 8.4 shows
the contact time τ and Fmax measures collected for the 900 cm2 steel plate struck with
the different hammers.
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Figure 8.4: τ and Fmax measures collected for the 900 cm2 steel plate struck with the
different hammers. White circle: aluminum; black square: ceramic; white triangle-down:
glass; white square: oak; white triangle-up: pine; black circle: plexiglas; black triangle-
up: steel. Decreasing Fmax values are associated with decreasing starting angles of the
guide.
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Equation (3.10) was applied to calculate the coefficient K for each pair of τ and Fmax

measures, i.e. from data for each plate/hammer/guide starting angle triplet. The final K
measures for each of the plate/hammer pairs were computed averaging estimates across
starting angles of the guide. Out of the 2184 K estimates, 75% of them deviated less than
± 23.43% from the respective average estimate. Table 8.7 gives the final K estimates for
all the plate/hammer pairs.

Table 8.7: K measures for all the plate/hammer pairs (N/m3/2 × 109). Math = hammer
material; MatP = plate material.

Math

MatP Area (cm2) Alu. Cer. Gla. Oak Pin. Ple. Ste.

Alu. 225 8.374 2.815 13.425 0.321 0.368 1.339 10.2
Alu. 450 8.417 3.015 16.232 0.466 0.267 1.226 12.571
Alu. 900 8.096 2.814 11.695 0.466 0.254 1.213 12.258
Cer. 225 2.528 1.517 1.94 0.381 0.302 0.707 2.467
Cer. 450 4.281 1.919 4.675 0.368 0.269 0.892 5.623
Cer. 900 3.835 1.683 2.911 0.499 0.377 1.041 3.372
Gla. 225 6.867 4.05 10.64 0.367 0.279 1.538 9.407
Gla. 450 8.242 4.289 8.48 0.451 0.274 1.44 9.037
Gla. 900 9.101 2.573 7.445 0.398 0.231 1.594 9.936
Oak 225 0.247 0.292 0.328 0.144 0.145 0.209 0.189
Oak 450 0.557 0.273 0.55 0.165 0.172 0.347 0.468
Oak 900 0.523 0.616 0.351 0.227 0.216 0.381 0.417
Pin. 225 0.162 0.202 0.25 0.135 0.099 0.145 0.197
Pin. 450 0.4 0.224 0.406 0.172 0.151 0.184 0.188
Pin. 900 0.368 0.209 0.54 0.163 0.137 0.272 0.279
Ple. 225 1.175 0.89 1.177 0.273 0.242 0.648 0.839
Ple. 450 1.288 0.579 0.917 0.258 0.426 0.616 1.059
Ple. 900 1.151 0.897 0.962 0.3 0.266 0.683 0.963
Ste. 225 13.609 3.732 11.223 0.282 0.339 1.352 22.76
Ste. 450 12.406 3.461 14.242 0.496 0.541 1.417 19.596
Ste. 900 13.857 6.742 14.288 0.297 0.36 1.458 20.946

As pointed out at the beginning of this Section, K can also be extracted from measures
of the elastic properties of the hammer and plate and from the radius of the hammer.
This relationship is outlined in Equation (8.6).

K =
√
Rh/D with D =

3

4

(
1− ν2

P

EP

+
1− ν2

h

Eh

)
(8.6)

where Rh is the radius of the hammer, E is Young’s modulus, ν is Poisson’s ratio, and
the subscripts h and P refer to the hammer and plate, respectively.
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The K estimates extracted from the τ -Fmax measures were compared to those pre-
dicted by Equation 8.6), in order to check for eventual biases. Only isotropic materials
were considered. Figure 8.5 shows the results of this comparison. The K estimates de-
rived from the elastic properties of hammer and plates were found to underestimate those
extracted from τ and Fmax measures. The reason for this is unknown. However, a linear
function accounts well for the relationship among the two sets of measures (R2 = 0.907 )
as tested with linear regression. Given that the perceptual relevance and the acoustical
correlates of K were tested with regression procedures (see Section 8.4), for which linearly
related variables are equivalent, whether the first or second set of measures is that closer
to the true K value is irrelevant. The K estimates derived from τ and Fmax measures
were thus considered in the following analyses.
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Figure 8.5: Comparison of the K measures derived from measurement of τ and Fmax

(Kτ−F ), with the K measures predicted on the basis of the elastic properties of hammers
and plates (KEl). The dashed line highlights the condition of perfect correspondence of
the two sets of measures. Only data from isotropic materials were considered.
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8.2.5 Selected source parameters

Only a subset of source parameters was considered in the rest of this study. First, the
source parameters with little or no variation in the database were discarded (e.g., plate
thickness, hammer radius). Further criteria for source parameter selection were based on
considerations of the statistical methods used to determine their perceptual relevance (see
Section 8.4). The association of the source parameter φ with the behavioral outcome ψ
was thus tested with regression models of the form ψ = a+ bφc. In this framework source
parameters φ1 and φ2 related by a function of the form phi1 = d + eφf are statistically
equivalent. For example, plate volume, given by the product of plate’s area and an almost
constant term, plate’s thickness, was discarded. Also plate height and width were not
considered, as they were almost equal to the square root of plate area. Finally, among
the elastic coefficients, only the rigidities D1P,...,4P were considered. The following source
parameters were thus selected: plates rigidities D1P,...,4P , plates density ρP , plate area,
hammer rigidities D1h,...4h, hammer density ρh, maximum hammer acceleration accmax,
maximum impact force Fmax, contact time τ , and stiffness coefficient K.

A preliminary investigation on the correlation among selected source parameters was
performed. Cluster analysis was used for this purpose. A measure of the association
between source properties was defined as dx,y = 1 − r(x,y), where r(x,y) is the Pearson
correlation between the log physical parameters x and y, and 0 ≤ dx,y ≤ 1. Hierarchical
cluster analysis (average linkage) was used to analyze this distance measure. Figure 8.6
shows the resulting dendrogram.

Setting dx,y = 0.25 as a threshold distance, four groups of highly correlated param-
eters are found: [1] rigidities and density of the hammer, where increasing rigidities are
associated with increasing densities; [2] rigidities and density of the plates; [3] plate area;
[4] interaction parameters, where increasing values of τ are associated with decreasing
values of K, accmax, and Fmax. The strong correlations observed among rigidities and
densities are consistent with measures on engineering materials published by Waterman
and Ashby (1997), where stiffer materials are, in general, characterized by higher densi-
ties. The strong association among interaction parameters is consistent with Equation
(3.10).

8.2.6 Acoustical descriptors

Signals were analyzed using the same procedure adopted by Giordano and McAdams
(submitted), meant to simulate the processing that takes place in the peripheral auditory
system. The first descriptor can be conceived as a global damping measure, which,
above all, takes into account the frequency resolution of the auditory system (tanφaud).
Extraction of tanφaud was performed on the first 1000 ms of the signals. Four loudness
descriptors and a duration measure Dur were extracted from the temporal function of
signal loudness, in pseudo-sones1. Dur was defined as the temporal extent of the signal for

1The unit of measure for loudness is termed pseudo-sone as it is calculated directly on the sound file,
without taking into account the actual presentation levels.
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Figure 8.6: Analysis of the correlations among source parameters. Solid lines highlight
the clusters of strongly correlated parameters.

which loudness was above a fixed threshold. The maximum loudness of the background
noise in the database was 0.148 pseudo-sones; the loudness threshold for Dur estimation
was fixed at 0.15 pseudo-sones. The loudness-related descriptors were an attack measure,
Louatt, the loudness of the first 10 ms of the signal, an average measure, Loumea, and the
slope of the initial and final portions of the temporal function of loudness, respectively
Lousl1 and Lousl2. From the peripheral auditory system model, a time-variant measure of
brightness was also extracted, the spectral center of gravity SCG, defined as the specific
loudness-weighted average of frequency, measured on the ERB − rate scale (Moore &
Glasberg, 1983). Three descriptors were extracted from this measure: an attack value,
SCGatt, the SCG of the first 10 ms of the signal, the average value SCGmea, and the slope
of the initial segment of the function, SCGslo. Both the SCG and loudness slope measures
were extracted by means of linear regression (see Giordano & McAdams, submitted, for a
detailed description of the procedure). The last descriptor considered was the frequency
of the lowest spectral component F . This measure was extracted on the basis of the
fast Fourier transform of the first 512 samples of the signal (Hanning window)2. F was
defined as the frequency of the first amplitude peak exceeding a fixed threshold. Level
threshold was defined on the basis of the analysis of the background noise, as measured

2Such a short analysis window was needed for the short length and fast damping of many signals,
particularly those generated by striking wood and plexiglas plates. If longer windows were chosen no
significant spectral peaks emerged above the level of the background noise.
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from the recording of the 250 ms silence preceding the signals. A threshold level for F
extraction was then defined on the basis of the maximum spectral level of the background
noise across the recorded samples3. A final remark should be made on the measurement
of F . With isotropic plates, 89% of the measures were equal to the frequency of the ring
mode ± 10%; 1% of the measures were equal to the frequency of the X mode ± 10% (see
Figure 8.7); none of the measures were close to the frequency of the (1,1) mode. This
is not surprising, since during the recording phase, plates were struck in their centers,
i.e., in a position that corresponded to an antinode of the ring mode and a node of the
X and (1,1) modes. With orthotropic plates, 21% of the measures corresponded to the
frequency of the (0,2) mode ± 10%; 5% of the measures corresponded to the frequency
of the (2,0) mode ± 10%; 2% of the measures corresponded to the frequency of the (1,1)
mode ± 10%. The vast majority of the remaining measures had a frequency intermediate
between that of the (1,1), and (0,2) modes.
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Figure 8.7: Comparison of the F measure with the frequency fO of the ring vibrational
mode. White circles show the F measures that differed by less than 10% from fO (89% of
all measures). The dashed line highlights the condition of perfect correspondence between
the two sets of measures.

The correlation among acoustical descriptors was studied using the same methodology
as for the source parameters. A slightly different distance measure dx,y was used: dx,y =

3Across all samples the maximum spectral level of the background noise was -48 dB from the spectral
amplitude of the unitary amplitude sinusoid. The level threshold for F extraction was fixed at -45 dB.
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1− r(|x|,|y|), where r(|x|,|y|) is the Pearson correlation between the log absolute value of the
acoustical descriptors x and y. Figure 8.8 shows the resulting dendrogram.
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Figure 8.8: Analysis of the correlation among acoustical parameters. Solid lines highlight
the clusters of strongly correlated parameters.

Setting dx,y = 0.25 as a threshold distance, only one group of highly correlated acous-
tical parameters is found: Dur, Lousl2, tanφaud, where increasing values of tanφaud

are associated with decreasing values of Dur and Lousl2. All the other parameters are,
instead, found belonging to separate clusters.

8.2.7 Acoustical correlates of source parameters

The relationship between source parameters and acoustical structure was studied.
The goal of this analysis was to highlight, for each source parameter φ, the most strongly
associated acoustical descriptor α, and thus the most likely acoustical correlates for the
perception of each of the source parameters. The following regression model was used:
α = a+bφc, where the exponent c was estimated using an iterative least squares procedure.
Table 8.8 reports the results of this analysis, showing, for each of the source parameters,
the two most strongly associated acoustical descriptors. Also, for each of the acoustical
parameters the R2 statistic is reported as a measure of their association with the source
parameters.

Several interesting points emerge from this analysis. First, as could be expected, the
area of the plates significantly affects F , F decreasing with plate area. Also, F is weakly
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Table 8.8: Analysis of the acoustical correlates of the investigated source parameters. For
each of the considered physical properties, the two most strongly associated acoustical
descriptors are shown. Also reported is the statistic R2, conceived as a measure of the
strength of the association of source and acoustical properties.

Source Acoustical R2 Acoustical R2

property descriptor descriptor

AreaP F 0.476 SCGmea 0.292
ρP tanφaud 0.789 SCGatt 0.540
D1P tanφaud 0.698 Lousl2 0.671
D2P Dur 0.579 tanφaud 0.547
D3P tanφaud 0.910 SCGatt 0.592
D4P tanφaud 0.888 SCGatt 0.622
ρh Louatt 0.359 Lousl1 0.247
D1h Louatt 0.223 Lousl1 0.166
D2h Louatt 0.218 Lousl1 0.162
D3h Louatt 0.302 Lousl1 0.224
D4h Louatt 0.334 Lousl1 0.243
K SCGatt 0.870 tanφaud 0.427
τ SCGatt 0.923 tanφaud 0.471

Accmax SCGatt 0.935 tanφaud 0.543
Fmax SCGatt 0.893 tanφaud 0.444

affected by variations in the other source parameters (average R2 for the other source pa-
rameters: 0.073; maximum R2 for the other source parameters: 0.109). The density, and
rigidities of the plates, instead, strongly affect tanφaud, this acoustical parameter decreas-
ing with increasing plate density and rigidity. Although tanφaud is weakly to moderately
affected by variations in other source properties (average R2: 0.466; maximum R2: 0.698),
the association with plate density and rigidity is the strongest. It should be noted that the
observed association of the rigidity of the plate with the acoustical measure of damping
tanφaud is consistent with measurements conducted on engineering materials (Waterman
& Ashby, 1997), where the damping parameter η, termed loss coefficient, decreases with
increasing stiffness of the materials, as measured with Young’s modulus. Concerning the
hammer parameters, the most strongly affected acoustical property was Louatt. Although
the association of hammer properties with Louatt was rather moderate, the association
of this acoustical parameter with other source properties was even lower (average R2:
0.054; maximum R2: 0.148). Finally, interaction parameters strongly affected SCGatt,
increasing values of SCGatt being found for increasing values of K, accmax, Fmax, and
for decreasing values of τ . Although other source parameters affected this acoustical
property, the strength of their association was in any case lower than that found for
interaction parameters (average R2: 0.341; maximum R2: 0.540). In conclusion, acousti-
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cal parameters selectively specifying each of the source parameters, and thus those most
likely mediating perception of these latter, were highlighted.

8.3 Methods

8.3.1 Stimuli

A stimulus set was extracted from the database of recordings. The selection criteria
were designed to extract a set of sound sources representative of the entire database,
i.e. a set of stimuli for which source properties had the same range and a similar inter-
correlation structure as that characterizing the database. Selection of the stimulus set
was made by applying the following constraints: all the plate and hammer materials had
to be included; for each physical variable the maximum and the minimum value had to be
included, as well as the value at the center of the log range. Small deviations of the area
of the plates from 225, 450, and 900 cm2 were not considered in this selection procedure.

Given these constraints a set of eighteen stimuli was selected randomly from the
database. Signals longer than 1 sec (one out of eighteen) were reduced to this dura-
tion by applying a 5-ms linear decay. Acoustical descriptors were extracted using the
same methodology outlined in Section 8.2.6. Tables 8.9 and 8.10 report the source and
acoustical parameters, respectively, for each of the selected stimuli.
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Table 8.9: Source properties for the stimuli in the experimental set. The subscripts P and h stand for plate and for hammer, respectively.

MatP AreaP ρP D1P D2P D3P D4P Math ρh D1h D2h D3h D4h K × 109 τ Accmax Fmax

cm2 kg/m3 GPa GPa GPa GPa kg/m3 GPa GPa GPa GPa N/m3/2 µs m/s2 × 103 N

Alu. 224.62 2658.74 6.06 4.14 6.06 7.97 Cer. 2124.79 1.71 0.22 1.71 3.19 2.82 94 26.6 339.28
Gla. 225 2485.54 5.9 2.74 5.9 9.05 Ple. 1186.22 0.42 0.3 0.42 0.54 1.54 111 24.4 248.28
Oak 449.44 794.71 1.46 0.51 0.49 0.37 Pin. 676.08 1.47 0.47 0.42 0.35 0.17 246 8.64 88.91
Oak 894 794.71 1.46 0.51 0.49 0.37 Alu. 2658.74 6.06 4.14 6.06 7.97 0.52 210 11.7 149.66
Pin. 223.46 676.08 1.47 0.47 0.42 0.35 Oak 794.71 1.46 0.51 0.49 0.37 0.14 292 7.36 76.21
Pin. 223.46 676.08 1.47 0.47 0.42 0.35 Pin. 676.08 1.47 0.47 0.42 0.35 0.1 260 7.52 77.39
Pin. 886.5 676.08 1.47 0.47 0.42 0.35 Oak 794.71 1.46 0.51 0.49 0.37 0.16 348 5.76 59.64
Pin. 886.5 676.08 1.47 0.47 0.42 0.35 Ste. 7751.85 17.33 9.32 17.33 25.35 0.28 392 5.24 100.46
Ple. 225 1186.22 0.42 0.3 0.42 0.54 Gla. 2485.54 5.9 2.74 5.9 9.05 1.18 160 16.6 241.17
Ple. 901.5 1186.22 0.42 0.3 0.42 0.54 Ple. 1186.22 0.42 0.3 0.42 0.54 0.68 152 14.4 146.52
Cer. 224.25 2124.79 1.71 0.22 1.71 3.19 Cer. 2124.79 1.71 0.22 1.71 3.19 1.52 131 19.6 250
Cer. 449.44 2124.79 1.71 0.22 1.71 3.19 Alu. 2658.74 6.06 4.14 6.06 7.97 4.28 92 28.4 363.28
Cer. 449.44 2124.79 1.71 0.22 1.71 3.19 Ple. 1186.22 0.42 0.3 0.42 0.54 0.89 130 23 234.03
Cer. 900 2124.79 1.71 0.22 1.71 3.19 Ple. 1186.22 0.42 0.3 0.42 0.54 1.04 143 20.8 211.65
Ste. 225 7751.85 17.33 9.32 17.33 25.35 Ste. 7751.85 17.33 9.32 17.33 25.35 22.76 50.4 88 1687.09
Ste. 445.1 7751.85 17.33 9.32 17.33 25.35 Alu. 2658.74 6.06 4.14 6.06 7.97 12.41 46.4 128 1637.34
Ste. 445.1 7751.85 17.33 9.32 17.33 25.35 Ste. 7751.85 17.33 9.32 17.33 25.35 19.6 42 126 2415.61
Ste. 900 7824.24 18.17 10.06 18.17 26.27 Oak 794.71 1.46 0.51 0.49 0.37 0.3 218 12.6 130.47
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Table 8.10: Acoustical properties of the experimental stimuli. p.s.=pseudo-sones. See text for an explanation of the meaning of each
acoustical descriptor.

Matp Matm AreaP tanφ× 10−3 Dur F Louatt Loumea Lousl1 Lousl2 SCGatt SCGmea SCGslo

cm2 (s) (Hz) (p.s.) (p.s.) (p.s./s) (p.s./s) (ERB-rate) (ERB-rate) (ERB-rate/s)

Alu. Cer. 224.62 7.39 0.20 2670.12 2.34 0.60 -52.41 -1.82 25.22 25.39 -167.46
Gla. Ple. 225.00 7.83 0.12 2583.98 2.57 0.84 -57.92 -4.39 24.58 23.25 -96.14
Oak. Pin. 449.44 24.22 0.09 689.06 3.45 1.16 -86.66 -6.78 20.74 17.66 -69.26
Oak. Alu. 894.00 15.50 0.17 516.80 4.04 0.99 -89.59 -2.46 22.06 15.95 -93.14
Pin. Oak. 223.46 18.40 0.08 1119.73 2.84 1.05 -74.25 -6.75 20.82 19.10 -47.55
Pin. Pin. 223.46 21.48 0.07 1119.73 2.90 1.17 -78.45 -9.85 21.31 19.14 -53.16
Pin. Oak. 886.50 18.63 0.15 602.93 2.42 0.76 -54.56 -2.39 19.70 16.10 -54.83
Pin. Ste. 886.50 22.57 0.12 689.06 3.43 1.10 -82.60 -4.14 19.97 16.62 -49.34
Ple. Gla. 225.00 19.61 0.07 1119.73 3.47 1.15 -108.04 -8.12 23.40 20.39 -64.28
Ple. Ple. 901.50 18.67 0.07 258.40 3.61 1.34 -97.58 -10.50 22.52 19.18 -60.03
Cer. Cer. 224.25 7.83 0.24 602.93 3.66 0.71 -85.68 -1.10 23.18 19.85 -48.62
Cer. Alu. 449.44 6.03 0.28 516.80 5.44 0.93 -128.06 -1.57 24.84 19.68 -42.97
Cer. Ple. 449.44 5.49 0.24 689.06 4.10 0.85 -93.02 -1.62 23.82 19.42 -26.50
Cer. Ple. 900.00 5.98 0.30 344.53 3.38 0.74 -68.12 -1.33 23.47 17.16 -37.05
Ste. Ste. 225.00 1.34 0.58 2583.98 3.14 0.65 -53.40 -0.98 26.96 27.80 -3.92
Ste. Alu. 445.10 1.64 0.53 1291.99 2.66 0.72 -23.88 -0.99 27.26 26.91 -127.54
Ste. Ste. 445.10 1.60 0.62 1291.99 3.10 0.86 -20.82 -1.02 27.23 26.21 -137.56
Ste. Oak. 900.00 0.67 0.98 689.06 2.06 0.81 -4.84 -0.63 23.52 19.22 -7.86
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The same methodology used in Sections 8.2.5 and 8.2.6 was used to analyze the
correlation structure among source parameters and among acoustical parameters. The
dendrograms resulting from these analyses are shown in Figure 8.9. Comparison of the
dendrograms reported in Figure 8.9 with those reported in Figures 8.6 and 8.8 shows
that the structure of the correlation among source parameters and among acoustical
descriptors in the experimental set, bears strong similarities with that in the database.
Indeed, using dx,y = 0.25 as a distance threshold to isolate separate groups of highly
correlated parameters, the same clusters as for the database are found for the source
parameters, while the only difference concerning the clusters of acoustical descriptors
stands in the fact that while in the database SCGmea and SCGatt belonged to separate
clusters, for the experimental set they belong to the same cluster. In general these
analyses show that the experimental set is a representative sample of the entire database.
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Figure 8.9: Dendrograms computed for the analysis of the correlation structure among
source parameters (top panel) and among acoustical descriptors (bottom panel) in the
experimental set.
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8.3.2 Procedure

Stimuli were stored in the hard disk of a Linux Workstation, equipped with a RME
Hammerfall 9652 sound card. Audio signals were converted with the RME Analog/Digital
Interface ADI-8 PRO, equipped with anti-aliasing filters, amplified with a Yamaha power
amplifier P2075, and presented through Sennheiser HD250 linear II headphones. Partic-
ipants sat inside an audiometric booth. Stimulus presentation and data collection were
programmed into the Mathworks Matlab environment.

Stimuli were presented pairwise. Participants were asked to rate the dissimilarity
between stimuli in the pair using any salient criteria. Responses were given by moving
a slider on a scale whose extremes were marked very-similar and very-dissimilar. Before
giving the response, participants were allowed to replay the pair as many times as needed.
Once participants were satisfied with their estimate, they could move to the next pair
by clicking with the mouse on the appropriate on-screen button. At the beginning of
the experimental procedure, participants were presented with all the stimuli in random
order for a minimum of three times and were asked to get a rough idea of the maximal
similarity and dissimilarity among the stimuli in the set. This entire procedure was first
practiced with a set of four stimuli not presented during the main experiment, comprising
all the area levels and two hard and two soft materials for both the hammers and the
plates (aluminum, glass, oak and plexiglas, for the plates; steel, ceramic, pine and oak
for the hammers). In the experimental phase each non-identical pair was presented only
once for a total of 153 trials. The order of the pairs and the order of the stimuli within
the pairs were chosen randomly for each participant.

8.3.3 Participants

Twenty-five listeners took part in the experiment (age: 21 - 50 years; 14 females, 11
males). All of them reported having normal hearing. They were paid for their participa-
tion.

8.4 Results

Data were analyzed with multidimensional scaling. An extended version of the CLAS-
CAL model (Winsberg & De Soete, 1993; McAdams et al., 1995) was used, which maps
observed dissimilarities to the distance of stimuli in a spatial model, comprising a Eu-
clidean space common to all the stimuli, whose dimensions are weighted differently by
different classes of participants, and a set of dimensions specific to each of the stimuli,
referred to as “specificities”. A latent class approach is used to model differences among
groups of individuals. It is assumed that each of the k = {1, ..., N} participants belongs

to one of T � N classes, with a probability λk, where
T∑

t=1
λkt = 1. Model distances are

given by Equation (8.7).
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dijt =

[
R∑

r=1

wtr (xir − xjr)
2 + vt (si + sj)

]1/2

(8.7)

where dijt is the model distance between stimulus i and j for participants in the latent
class t; xir is the coordinate of stimulus i along dimension r; si is the coordinate of stimulus
i along its specific dimension; wtr and vt are the weights of the Euclidean dimension r
and of the specificities for latent class t.

Parameters of the CLASCAL model are estimated using maximum likelihood proce-
dures. Therefore model selection can be based on information criteria. In particular,
given the number of latent classes T , Bayes’ Information Criterion BIC (Schwarz, 1978)
is used to make a decision concerning the number of dimensions R and whether the model
should include specificities or not. Models with lower BIC values are preferred. T is cho-
sen on the basis of a Monte Carlo procedure proposed by Hope (1968), which, conditional
on a given spatial model, tests for a significantly better fit of the model with T +1 latent
classes, over the model with T classes. The same procedure is also applied to test for
significant differences between competing spatial models. Model selection is based on the
following steps (Winsberg & De Soete, 1993; McAdams et al., 2004; Caclin, 2004):

1. Select T applying Hope’s procedure to the null model, i.e. the matrix of average
dissimilarities among all stimuli, where 1 ≤ T ≤ 6.

2. Compute the spatial models with one to eight dimensions, both with and without
specificities. Retain the three models with the lowest BIC.

3. Apply Hope’s procedure to choose among the three competing models.

4. Use Hope’s procedure to test for T on the spatial model selected at step three.

5. If T at step four equals T used at step two the model selection procedure is termi-
nated. Otherwise repeat steps two to four until T converges.

The initial Monte Carlo test on the null model highlighted two possibilities for T :
one and three latent classes. Application of the above outlined model selection procedure
with these T values led to two different models, referred to as model A, and model B.
Neither model not included specificities.

8.4.1 Analysis of model A

Model A had one latent class and two dimensions. It explained 62% of the variance in
the individuals’ ratings, and 97% of the variance in the average ratings. The dimensions
were not weighted. Therefore the model was rotationally invariant. It was rotated to the
T = N classes solution, orienting the axes along psychologically meaningful dimensions.
The rotated model explained 65% of the variance in the individuals’ ratings, and 97% of
the variance in the average ratings. A low correlation among the coordinates of stimuli
along the two dimension was found (Pearson r = 0.182, p=0.470, df=16).
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The relative perceptual salience of the two dimensions of the model was compared
through their range of variation, where the higher the range, the higher the perceptual
salience. The range of dimension 1 in the common space (i.e., in the unweighted space)
was 1.46 times that of dimension 2, indicating a higher salience of the first of the two
dimensions. This was confirmed inspecting the individual ranges (i.e., the ranges multi-
plied by the individual weights), were the range of dimension 1 was the larger for the vast
majority of participants, while for the minority the two dimensions were approximately
equally salient (see Figure 8.10).
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Figure 8.10: Range of variation of the weighted dimensions 1 and 2 in model A for the
different individuals. The dashed line highlights the condition of equal range of variation
for the both dimensions.

The spatial model was then interpreted with reference to the properties of the inves-
tigated stimuli. Regression models were used, where source descriptors φ, and acoustical
descriptors α were tested separately in their power to explain the location of stimuli
along the dimensions of the MDS space. The following procedure was used for each of
the dimensions:

1. For each of the α/φ descriptors, estimate the monotone transform relating α/φ with
the coordinate ψ of the stimuli along the dimension, estimating the parameters of
the non-linear regression model ψ = a+ b |α|c / ψ = a+ bφc.

2. Test the significance of the association of each transformed descriptor with the
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behavioral outcome, and discard from further modeling those not significantly as-
sociated (Hosmer & Lemeshow, 1989).

3. Compute all the possible univariate and multivariate regression models in a linear
regression framework, raising each of the predictors to the exponent c computed at
step one.

4. Select as final models those with the fewest number of predictors whose adjusted
R2 value is equal to or higher than a threshold value of 0.75, i.e., select the most
economical models that fit well the observed data. If none of the models exceeds
the threshold adjusted R2, choose the one with the highest value of this statistic.

Tables 8.11 and 8.12 report the main statistics of the final regression models based
on source and acoustical parameters, respectively. Figure 8.11 plots the best source and
acoustical-based models for each of the dimensions.

Table 8.11: Source criteria for dissimilarity ratings emerging from the analysis of model
A. For each dimension, the exponent and the standardized parameter estimate for each
of the predictors in the regression model are reported. Also reported is the adjusted R2

goodness-of-fit measure.

Pred.exp. Stand. estim. Adj.R2

Dimension 1 D0.24
4P -0.990 0.979

D0.05
3P -0.986 0.976

ρ0.12
P -0.978 0.953

D0.38
1P -0.928 0.853

D0.82
2P -0.903 0.803

Dimension 2 Area3.37×103

P -0.639 0.371

Finally, the best regression model for each dimension were combined to check their
power in explaining the observed dissimilarity ratings. The best source-based model
explained 82% of the variance in the average ratings, while the best acoustical model
explained 72% of the variance in the average ratings.
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Table 8.12: Acoustical criteria for dissimilarity ratings emerging from the analysis of
model A. For each dimension, the exponent and the standardized parameter estimate
for each of the predictors in the regression model are reported. Also reported is the
adjusted R2 goodness-of-fit measure.

Pred.exp. Stand. estim. Pred.exp. Stand. estim. Adj.R2

Dimension 1 tanφ0.93
aud 0.949 — — 0.894

SCG−2.33
att -0.875 — — 0.751

Dimension 2 |Lousl2|0.45 0.750 F 0.49 0.595 0.788

F 0.49 0.811 Lou5.44
mea 0.791 0.764
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Figure 8.11: Analysis of model A: best regression models based on source properties (top
panels) and acoustical properties (bottom panels) of the investigated stimuli. Continuous
lines show the regression models.
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8.4.2 Analysis of model B

Model B had two latent classes and four dimensions. It explained 66% of the variance
in individuals’ ratings, and 97% of the variance in the ratings averaged across participants
belonging to the same latent class. Belongingness of participants to the latent classes
was very clear (λ > 0.8) except for one participant, for whom the posterior probability of
belonging to the first cluster equalled 0.58. Quite strong correlations were found among
the coordinates of stimuli along the different dimensions. In particular, dimension 1 is
significantly correlated with dimensions 3 and 4 (r ≥ 0.663, p ≤ 0.003, df=16), and
dimensions 3 and 4 are significantly correlated each other (r = 0.605, p = 0.008, df=16).

The relative salience of the four dimensions differed across classes. In particular,
for the first latent class the most salient dimensions were the first (range = 0.974) and
second (range = 0.551), the range of the third and fourth dimensions being 0.238 and
0.146, respectively. For the second latent class, instead, the most relevant dimensions
were the third and the fourth (range = 0.714, 0.682), the range of the first and second
dimensions being 0.660 and 0.551, respectively.

The same methodology outlined in Section 8.4.1 was adopted to investigate the source
and acoustical parameters underlying dissimilarity judgment. Tables 8.13 and 8.14 show
the relevant parameters for the regression models selected for each dimension. Figures
8.12 and 8.13 plot part of the selected regression models. In both Figures 8.12 and 8.13,
the regression models shown for dimensions 1 and 3 are based on the same parameters,
thus facilitating the comparison of the transform of the properties of the stimuli to the
MDS coordinates.

When combined the best source-based regression models explained 77% of the vari-
ance in the average observed dissimilarities. The best acoustical-based regression models
explained 82% of the variance in the average observed dissimilarities.

8.4.3 Discussion

Two similar MDS models were accounted equally well for the observed data. Strong
commonalities were found among these two models, with respect to both the source-based
explanation and to the acoustical-based explanation of the criteria for dissimilarity rating.
However, in the following only model B will be discussed, for three reasons. Firstly, the
second dimension of model A was much more poorly accounted for by source properties
than the second dimension of model B. Secondly, the comparison of source-based and
acoustical-based regression models is completely unambiguous for model B, ambiguous
with model A. In particular, for model B the acoustical explanations for the same dimen-
sion are based on descriptors that specify the same group of source parameters. For model
A, instead, the first dimension is equally well explained by parameters specifying differ-
ent groups of source properties (rigidities/density of the plate and interaction parameter),
and the best regression model for the second dimension is based on two acoustical pa-
rameters specifying each two separate groups of source parameters (the area of the plate
and the rigidity of the plate). Thirdly, model B is more economical than model A, as
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Table 8.13: Source criteria for dissimilarity ratings emerging from the analysis of model
B. For each dimension the exponent and the standardized parameter estimate for each
of the predictors in the regression model are reported. Also reported is the adjusted R2

goodness-of-fit measure.

Pred.exp. Stand. estim. Adj.R2

Dimension 1 D0.52
4P -0.985 0.969

D0.39
3P -0.985 0.968

D0.50
2P -0.979 0.956

D0.59
1P -0.959 0.916

ρ0.98
P -0.950 0.896

Dimension 2 Area0.73
P -0.776 0.578

Dimension 3 D−2.11
3P 0.926 0.850

Dimension 4 D−1.26
4P 0.904 0.805

τ 1.18 0.888 0.775

ρ−1.10
P 0.884 0.768

acc−0.80
max 0.879 0.759

with this latter removal of the rotational invariance comes with the price of introducing
many more additional parameters (one weight per dimension for each listener).

Two latent classes of participants were found using different criteria when judging
the dissimilarity of sounds. Participants in the first class based their ratings mainly on
the rigidity or density of the plates. From an acoustical point of view, the ratings were
based on two parameters strongly associated with the rigidity and density of the plates,
the acoustical measure of damping tanφaud or signal duration. Thus the most relevant
perceptual dimension for this class reflected differences in the material of the sounding
objects, and from the acoustical point of view, in the temporal properties of the acoustical
signals. Similar explanations were found for the first dimension of participants in latent
class two, explained by one rigidity coefficient of the plates, and by three acoustical
parameters specifying the temporal properties of the signals: Dur, tanφaud and Lousl2.
Also for these participants the most relevant dimension reflected the variation in the
material of the sounding object. However the transform relating the stimulus descriptors
to the coordinates of stimuli along these dimensions was found to differ across latent
classes. For example, as shown in Figure 8.13, the transform relating the parameter
tanφaud to the most relevant dimensions of each class was much more compressive for
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Table 8.14: Acoustical criteria for dissimilarity ratings emerging from the analysis of
model B. For each dimension the exponent and the standardized parameter estimate for
each of the predictors in the regression model are reported. Also reported is the adjusted
R2 goodness-of-fit measure.

Pred.exp. Stand. estim. Pred.exp. Stand. estim. Adj.R2

Dimension 1 tanφ−0.06
aud -0.950 — — 0.897

Dur0.59 -0.906 — — 0.809

Dimension 2 F 0.25 0.643 SCG−1.29
mea -0.286 0.740

Dimension 3 Dur−1.01 0.940 — — 0.877

tanφ1.13
aud 0.928 — — 0.853

|Lousl2|0.35 0.918 — — 0.832

Dimension 4 SCG−1.99
att 0.880 — — 0.761

participants in the first latent class than for those in the second. The second dimension for
participants in latent class one, which is the third most salient dimension for participants
in latent class two, was related to the area of the plates, and to two acoustical parameters
strongly associated with it: F and SCGmea.

Thus, independently of the inderindividual differences, and consistently with results
from Roussarie (1999) and McAdams et al. (2004), and in line with results by Gaver
(1988), dissimilarity ratings of impact sounds relied strongly on two criteria, the first
of them related to the acoustical measure of damping tanφaud and, in line with the
hypothesis formulated in Section 8.1, with signal duration, while the second criterion
was based on signal frequency. However, while in the current study the damping-related
dimension was associated with the density and rigidity of the sounding objects, in the
study by Roussarie (1999) and in the first of the experiments performed by McAdams
et al. (2004) these source properties were found associated with the frequency-related
dimension. The reason for this inconsistency might be that the extent of the size variation
in the current study was such as to mask the influence of the density and elasticity
coefficients on the modal frequencies of the sounding object. Consistently, in the cited
studies by Roussarie (1999) and McAdams et al. (2004) the size of the sounding objects
was kept constant, thus favoring the emergence of a strong link between rigidities or
densities, and signal frequency. Finally, consistently with results by Gaver (1988) and
with those from the second experiment by McAdams et al. (2004), the frequency-related
dimension was strongly correlated with the size of the sounding object.

The second dimension for participants in the second latent class was equally well
explained by the rigidity coefficient D4P and by the density of the sounding object, as
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Figure 8.12: Source-based criteria for dissimilarity rating emerging from the analysis of
model B. Continuous lines show the regression models.

well as by the interaction parameters τ and accmax. This ambiguity in the source-based
explanation can be rectified considering that the only acoustical parameter that explains
well this dimension was SCGatt, influenced by D4P and ρP , but most strongly related to
the interaction parameters τ and accmax (see Table 8.8). For this reason this dimension is
better interpreted as reflecting the perceptual salience of the properties of the interaction
between hammer and sounding object, and of the related acoustical parameter SCGatt.
It should be noted that the perceptual salience of this dimension for participants in the
first latent class was almost null. Thus data from this experiment support the perceptual
salience of interaction parameters, but only for a minority of participants.

Finally, independently of interindividual differences, hammer-related parameters were
associated with none of the dimensions, thus revealing the absence of their perceptual
relevance to dissimilarity rating.
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Figure 8.13: Acoustical-based criteria for dissimilarity rating emerging from the analysis
of model B. Continuous lines show the regression models.

8.5 Conclusions

Dissimilarity ratings of impact sound sources were studied with reference to both the
source and acoustical properties. A large database of sound sources was built, using
several different materials for both the hammers and the plates, and varying the size of
the plates. All sources were characterized in their physical properties, i.e. measuring the
properties of the hammers, sounding objects, as well as those of the interaction among the
two objects. The relationship between the acoustical structure of the impact sounds and
the source parameters was studied, highlighting those acoustical properties more likely
to mediate perception of each of the considered physical parameters.

A set of stimuli representative of the database was investigated. Results highlighted,
consistently with previous dissimilarity rating studies, two main perceptual dimensions,
the first related to the damping of the sounding object and to signal duration, the sec-
ond related to the size of the sounding objects. Interaction parameters, and the related
acoustical parameter attack SCG, were perceptually relevant, but only for a minority
of participants. Independently of interindividual differences no evidence for the percep-
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tual relevance of hammer properties was found. Some ambiguities in the source-based
and acoustical-based explanations for the judgmental criteria were found. For exam-
ple sounding objects’ rigidities and densities explained equally well the main dimension
for the largest group of participants. Future studies will need to decorrelate these source
properties, which are strongly associated in real materials (cf. Waterman & Ashby, 1997).

Finally, the generalization of these results supports the notion according to which
everyday perception of impact sounds is based mainly on the properties of the sounding
object, and on two simple acoustical parameters: signal frequency and duration.



Chapter 9

Conclusions

The studies presented in Chapters 6-8 investigated perception of impact sound sources
focusing on both source and acoustical properties as determinants of perception.

9.1 Everyday perception of impact sounds

As outlined in Chapter 5, a relevant issue concerns the determinants of perception
in everyday conditions. Following this goal, several methodological choices were made in
order to improve the ecological validity of the results.

Across studies differences in the physical and acoustical determinants of experimental
judgments were observed. Five different sources may be at the origin of these variations:
the experimental task, the nature of the stimulus set, the statistical models used to test for
the relevance of stimuli properties in determining experimental judgments, interindividual
differences and cultural differences (participants in the study in Chapter 6 were Swedish,
Italian in Chapter 7, and French in Chapter 8). In Chapter 5, it was stated that the
generalization of experimental results to everyday conditions requires assuming that the
experimental task is representative of everyday perception. It was also stated that, given
the difficulties in testing this assumption, a good option for the gathering of ecologically
valid knowledge on the determinants of source perception would have been to compare
results from studies based on different experimental tasks. Indeed, those acoustical and
source properties emerging as relevant despite variations in experimental task would be
characterized by a higher likelihood of also being relevant under everyday conditions. A
similar line of reasoning can be followed when comparing results collected with different
groups of participants, different stimulus sets, and based on the use of different statistical
models. Thus, what remains constant despite variations in all these factors is highly
likely to be relevant to everyday perception.

Concerning the physical determinants, the study in Chapter 6 found material identi-
fication of the sounding object to be influenced by the size and material of the sounding
object, associated with changes in the density and, on the basis of measures published in
Waterman and Ashby (1997), with changes in the elastic properties. Also, the acoustical
measure of damping, tanφ, was found to be relevant to the explanation of experimental

169
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judgments. Furthermore, it should be noted that results collected by Giordano (2003)
highlighted material identification to be independent of variations in the material of the
hammer. Consequently, and consistently with results by Roussarie (1999), material iden-
tification of the sounding object can also be conceived as independent of variations in
the properties of the interaction between the hammer and the sounding object, such as
the force stiffness K and the duration τ of the contact between these two objects during
the impact. Overall, the study in Chapter 7 found perceived hardness of the hammer
and of the sounding object to be influenced by variations in the damping of the sounding
object, and by variations in the properties of the hammer/sounding object interaction, as
modeled by the K parameter. Also, the relevance of signal frequency F pointed toward
an influence of those properties of the impact sound source on this acoustical parameter,
namely density, elasticity, size and shape of the sounding object (see Section 3.2). Finally,
the study presented in Chapter 8 did not find dissimilarity ratings to be influenced by
the properties of the hammer, but to be influenced by the size of the sounding object,
the material-related properties of the sounding object (density, elasticity, damping), and,
for a minority of participants, by the interaction property τ . In conclusion, following the
considerations made above, it can be hypothesized that everyday perception of impact
sounds relies on variations in the size and material-related properties of the sounding
object (density, elasticity, damping as measured with the acoustical parameter tanφaud)
and, to a limited extent, on variations in the properties of the interaction among these two
objects, but not on the properties of the hammer. A final remark on the generalization
of these results should be made. With all the studies presented in this thesis, variations
in the shape of the sounding object were not directly investigated. Given the perceptual
relevance of shape already outlined in the experimental conditions (see Section 4.2.1), it
is plausible to hypothesize everyday perception of impact sounds to be also influenced
by this source property. Concerning the absence of relevance of the properties of the
hammer, it should be noted that with the study presented in Chapter 8, and also in the
study carried out by Giordano (2003), the range of variation of the density and elastic
properties of the hammer was, to some extent, limited, and not completely representative
of the values encountered in everyday conditions. Thus it cannot be excluded that exper-
imental sets that also included highly soft materials (e.g., soft rubbers; felts) would have
allowed an observation of relevant effects of hammer properties, i.e., would have allowed
us to conclude that hammer properties have relevance in everyday listening.

Results concerning the acoustical determinants of experimental judgments can be
found in Section 6.4.2 and Table 6.7 of Chapter 6, in Table 7.7 of Chapter 7 and in Table
8.14 of Chapter 8. As can be noted, in several cases the same dataset was equally well
explained by different acoustical descriptors, or by different combinations of acoustical
descriptors. Despite these ambiguities, several regularities emerged across studies. In
particular, across experiments participants’ judgment were associated with two simple
acoustical variables: signal frequency and duration. An exception to this regularity is
found only in the study presented in Chapter 7, where signal frequency and duration
were relevant, but instead of both being used by the same participant, different partic-
ipants based their judgment on only one of them. Leaving aside this difference, it can



9.1. Everyday perception of impact sounds 171

be concluded that in everyday conditions, source perception in impact sounds is based
mainly on signal frequency and duration. Two other results are nonetheless worth men-
tioning. Firstly, across all studies the perceptual relevance of the acoustical measure of
damping tanφaud (labeled tanφ in Chapter 6) was tested. This variable explained mate-
rial identification and dissimilarity ratings, but not hardness ratings. Given this result,
it might be concluded that tanφaud is not a good candidate as an acoustical parameter
for the explanation of everyday perception of impact sound sources. This conclusion is
also supported by the fact that a much simpler variable strongly associated with tanφaud

explained judgments in all experimental investigations: signal duration. Secondly, one
attack property, namely the spectral center of gravity of the first 10 ms of the signals,
was associated with behavioral outcome in the hardness- and dissimilarity-rating studies.
Thus it might be hypothesized that such a variable might play also a role in everyday
perception of impact sound sources, although the appropriateness of this generalization
is less firm than when signal duration and frequency are considered.

Finally, it should be stressed that the regularities observed across studies give some
information concerning the source/acoustical properties relevant to the perception of
impact sound sources, but do not give indications concerning which stimuli properties
define the perceptual class of impact sounds and sources.

9.1.1 Generalization of experimental results

A few remarks should be made concerning the everyday conditions to which general-
izations of the experimental results of this thesis should aim.

It is first important to consider the nature and availability of source-related infor-
mation in everyday conditions, where acoustical information does not necessarily reach
the perceiver in isolation. Indeed the acoustical signal might come along with infor-
mation from other sensory modalities (one might see a small plastic object hitting the
floor and hear the impact sound; one might touch, smell and tap on a melon to check
if it is ripe), and with nonsensory source-related information (one might be in a restau-
rant, where clinking glasses are likely to be heard, rather than inside a garage, where
impacts of metallic objects as tools are more likely to occur). All these additional types
of information are likely to determine which acoustical and source properties are rele-
vant to the perceiver. Concerning the influence of other sensory modalities, for example,
one will almost surely recognize the material glass in a large struck glass plate when
visual information is available, thus limiting the relevance of signal frequency observed
in several different studies (see Chapter 6). However, it is often the case that the sound
reaches the perceiver in the absence of additional source-related sensory information, i.e.
it may be passively imposed on us and it might come from out-of-sight locations. Thus,
experimental knowledge gathered with purely auditory stimuli might be more properly
generalized to this latter condition, which should describe a rather relevant portion of
everyday auditory experience. The influence of nonsensory source-related information on
source perception is supported both by the experiments of Ballas and Mullins (1991),
and by the partial relevance of this concept to the explanation of differences among stud-
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ies related to the sounding object/hammer perceptual independence (see Section 7.1).
It should be recognized that such nonsensory sources of information are hardly absent
in everyday conditions. Nonetheless little or no experimental evidence is available con-
cerning the relevance of this factor in determining the perceptually relevant source and
acoustical properties. For this reason such issues may be reasonably ignored for the mo-
ment, although it is strongly recommended that future experimentation take them under
consideration.

Additional factors that should be taken into account when discussing the ecological
validity of experimental results concern the perceivers, i.e. their expertise with specific
classes of acoustical signals and their goals when perception is taking place. It is highly
likely that both these factors influence the source and acoustical properties relevant to the
perceiver. Concerning expertise, it is not unrealistic to hypothesize that, when exposed
to the sound of a vase shattering on the floor, an artisan that manufactures baked-clay,
ceramic and porcelain objects will not only recognize that something broke, but will also
be able to recognize of which of these three materials the object was made. On the other
hand, a less expert listener will probably not be able to make such a discrimination,
focusing mainly on the temporal patterning of the impacts that allow recognition of a
breaking event. The results outlined in the preceding section would therefore be more
properly generalized to a population of listeners without expertise for specific subsets of
impact sounds. Concerning the goals of the perceiver, a mechanic might pay attention to
different properties of the sound of the engine of a car under diagnosis, depending on the
suspected problem. A similar ability to focus on different source and acoustical properties,
depending on the requested judgment, was outlined in Chapter 7 with naive listeners.
Such a result might then point toward the need to take into account the motivations of
the perceiver when generalization of experimental results is of concern, but, given the
paucity of studies, this problem will have to await future studies on this issue.

9.2 Theoretical issues

A relevant issue concerns the usefulness of the concept of invariant for the explana-
tion of source perception. Testing this issue requires firstly ascertaining the presence of
an acoustical structure that uniquely specifies the source properties under investigation,
secondly to point out whether participants’ judgments rely on such properties. Empirical
evidence to these purposes was found in Chapters 6-7. In Chapter 6, acoustical parame-
ters specifying the material of the sounding object independently of size variations were
found, and auditory material identification was pointed out to be based on acoustical
criteria other than those perfectly identifying the actual material. In Chapter 7, suf-
ficient acoustical information for the independent perception of hammer and sounding
object was present. In particular, acoustical parameters uniquely related to the interac-
tion parameter K and to the sounding object parameters were found. Nonetheless, the
acoustical criteria for the estimation of the hardness of the hammer and of the sounding
object did not discriminate between these groups of source properties. Finally, the pres-
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ence of acoustical parameters specifying selectively the different properties of the impact
sound source was ascertained also with real sounds in Chapter 8, although the adopted
experimental judgment did not allow for the testing of the presence of a related invariant
(i.e., dissimilarity is purely psychological and, linguistically, has no physical referent). On
the basis of the above-mentioned results it might then be concluded that the notion of
invariant is not useful in explaining the perception of impact sound sources.

A final interesting issue, already pointed out in the study on material identification
(see Section 6.4.3.1), concerns the origin of the response criteria when perception is tested
with an explicit judgment of the properties of the sound source. In Chapter 6, the
hypothesis was made that these originated from regularities in the everyday acoustical
environment. The identification criteria for glass, for example, were hypothesized to
reflect the size of freely resonating glass objects encountered in everyday life. Then, source
perception might be conceived as reflecting the statistical properties of the acoustical
environment, where judgment of source property A would rely also on property B if, in
our acoustical environment, levels of B were unevenly distributed over levels or categories
of A. In other words, glass identification would also rely on the size of the objects because
in our everyday acoustical environment glass objects are much more frequently small
than large. Despite the problems connected to ascertaining the statistical properties of
everyday acoustical environment, it is highly probable that such an approach will be fertile
with respect to the development of a theory of source perception and will be effective in
explaining future and past experimental evidence.
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