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1 Introduction

For a saxophone player, the quality of a reed is fundamental and has big consequences on the quality
of the sound produced by the instrument. The reed is a piece of cane that the player place against
the mouthpiece. And when the player blows, the reed auto-oscillates and a sound is produced. The
experience of the saxophone players shows that in a box of reeds, 30% are of good quality, 40% are
of mean quality and 30% are of bad quality.

Usually, the only indicator a musician can see on a box of reeds is the strength. The strength is
usually measured by submitting a static force on a particular location from the tip. The reeds are
then classified according to the strength measured. But the strength is not representative of the
quality of the reed. Even for the stiffness of the reed (which should be linked to the strength), there
are many differences between the reeds into a box. So the strength is not able to explain the
differences between the reeds into a box.

In [1], B. Gazengel and J.P. Dalmont proposed two methods to determined objective variables that
describe the behavior of a tenor saxophone reed. On the one hand, they performed “in vitro”
measurements using a mechanical bench, and on the other hand, they performed “in vivo”
measurements by measuring acoustic pressure of the saxophone and the pressure in player mouth.
Several studies have also been led on this topic by B. Gazengel and J.F. Petiot about the correlation
between some subjective descriptors and some objective variables[2][3]. A high correlation has been
found between the perceived strength of the reed and the objective variable called Pressure
Threshold coming from “in vivo” measurements. These studies have the disadvantage to taking
account of the assessment of only one subject for the subjective part, so the subjective assessment
can be easily questioned. The problem is that there are few subjects (only one), so the data coming
from this study are not reliable enough. Then, the correlation task has been stopped at the simple
correlation study which doesn’t allow predicting the subjective features of the reeds by the objective
ones.

This work proposes to deal with the question using a subjective/objective approach (Figure 1). The
principle is to lead on a given set of reeds, a subjective study and an objective study on the other
hand. After that we try to correlate the results of both studies, and more generally to set up a
machine learning approach to built a model explaining the subjective ratings by the objective
measurements.

Subjective study Objective study

Correlation

Figure 1: Diagram of the main steps of a subjective/objective study.

In this work, we propose to lead a thorough subjective study with several assessors in order to be
confident in the results of this subjective part. Then we propose a method to deal with the variability
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of the objective measurements. Finally, we propose to go further than the simple correlation and to
build a model that predicts the subjective features of the reeds using several objective variables.
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2 Material and methods

2.1 Description of the subjective tests

To study the correlation between the perceived quality and the objective measurements, we first
need to assess the subjective features of the reeds. We begin with the following product space: 20
reeds for tenor saxophone of the same cut, the same strength and the same brand (Classic
Vandoren, strength: 2.5). There was no preliminary selection of the reeds, they all came from 4
commercial boxes of 5 reeds each. The objective was to verify the perceived differences within given
box. 10 subjects participated in the subjective tests. They were all skilled saxophonists (students or
professionals). To guarantee consistency, all subjects used the same mouthpiece during the study (a
Vandoren V16 T7 Ebonite). However, they were asked to play on their own tenor saxophone. Three
subjective descriptors were assessed:

- The brightness of the sound produced with the reed.
- The softness of the reed, which corresponded to the ease of producing a sound.
- The global perceived quality of the reed.

This test was divided into 3 phases.

First, the training phase helped the subjects understand the meaning of the two descriptors Softness
and Brightness. For that, we used “anchor stimuli”, which were located at the extremes of the scale
under consideration. For Softness, the anchor stimuli were two reeds. One was considered to be as
soft as the softest reed of the 20 in the product space, and one was considered to be as hard as the
hardest reed. These extreme have been determined by several saxophonists who tested all the reeds
and who agreed about which reeds were extreme. For Brightness, we used recorded sounds as
anchors. To begin the training phase, the subjects tested anchor stimuli for each descriptor knowing
which extreme was being presented. Then, participants tested the anchor stimuli again without
knowing to which extreme it corresponded, and attempted to determine which one it was. Subjects
with a success rate higher than 80% continued on, to the next step. This method is inspired from the
training phase described in [4]. Finally subjects were asked to rate 3 quite different reeds on the
interface they would use for the following phase in order to train them to use the interface.

After that training phase, the subjects began the real evaluation phase. During this phase, the subject
used a Matlab interface to assess the reeds. The 20 reeds were proposed one at a time and the
subject assessed them according to the descriptors Softness and Brightness on a continuous scale as
shown in Figure 1. For global quality, a continuous scale was also proposed, but there were verbal
anchors on the scale as shown in Figure 2. The reeds were presented to the subject in an order
following a Williams Latin square. The presentation plan was perfectly balanced (see
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Appendix A: Presentation plan of the reeds for the subjective tests). There were 2 repetitions and the
subject could test again the anchor stimuli between the repetitions, if he needed to. The
experimenter set the reeds on the mouthpiece for the players. We used two mouthpieces of the
same model (a Vandoren V16 T7 Ebonite) in order to gain time (while the subject was assessing a
reed, another one was set on the mouthpiece). To assess the reeds according to softness and
brightness, the subjects were asked to play a few musical patterns as shown in Appendix B: Score of
pattern presented for the subjective tests.

Finally, the subjects answered a short questionnaire asking them which mouthpiece, reed,
saxophone and musical style they usually play and their past experience. The data of this
guestionnaire could eventually be useful to characterize some groups of subjects if they don’t agree
about some descriptors.

These subjective tests took place in a room at CIRMMT (Center for Interdisciplinary Research in
Music Media and Technology) in McGill University, Montreal.

Training phase

Softness
5.96664
Reed n°1: R | 4
Not very soft Very soft
Move the cursor to rate the hardness and click OK oK

Figure 2: Continuous scale for the assessment of softness

Training phase

Global quality
Reed n’1: | il
| Bad quality | Medium quality | Good quality |
Move the cursor to rate the global quality and click OK ok

Figure 3: Continuous scale for the assessment of the global quality

10
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At the end of these tests, for each of the 10 subjects, we have 2 arrays of values (one per repetition).
The arrays had 20 rows (one per reed) and 3 columns (one per descriptor) and contained the
evaluation of the reed by the subject. In parallel with subjective test, we performed objective
measurements on the reeds with other players.

2.2 Description of the in vivo measurements

2.2.1 Material

For the objective measurements, we chose to perform “in vivo” measurement. The principle is to
perform measurements when the musician is playing the reed. The advantage is that we have a real
playing situation, but this method has the disadvantage of introducing variability, particularly
because of the way the musician play.

We chose to measure the acoustic pressure p,(t) at the bell of the saxophone, the pressure in the
musician’s mouth p,,(t) and the pressure in the mouthpiece py,,(t). The mouth pressure was
measured using a differential pressure sensor Endevco 8507-C1 stuck in the mouthpiece. The
pressure in the mouthpiece was measured by another Endevco 8507-C1 introduced into a hole
drilled in the mouthpiece. And the acoustic pressure was measured by a B&K 4190-L-001 microphone
placed in front of the saxophone bell. The sampling frequency used was 44100 Hz. A photo of the
experimental device is presented in Figure 4 and an example of the measured signal is shown in
Figure 5.

Figure 4: Photo of the experimental device.

Three saxophonists (PK, GS, BG) made the measurements for the 20 reeds with the same material as
the subjective test concerning the mouthpiece and the reeds. The two players PK and GS performed
two sessions of measurements two months apart and BG performed only one session. The pattern
played by the saxophonists was an arpeggio of 7 notes (C4, G3, Eb3, C3, G2, Eb2, and C2)-concert
key. But the playing of the seventh note (the lowest note: C2) was often of bad quality, so we chose
to keep only the first six notes. This pattern was repeated 5 times for each reed and each
saxophonist. The saxophone used by PK and GS was a Conn New Wonder and the saxophone used by
BG was a Selmer Reference.

The measurement sessions for GS and PK took place in a lab at CIRMMT in Montreal, Canada. The
first session was performed the 10™ of May 2012 and the second one the 5™ of July 2012. The

11
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measurement session of BG took place in the LAUM (Laboratoire d’Acoustique de I'Université du
Maine) in LeMans, France the 11" of April 2012.

Mouth pressure

5

Mouthpiece pressure
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Figure 5: Example of "in vivo" measured signal.

2.2.2 Description of the “in vivo” descriptors

From this signal, we extracted several descriptors used in previous studies of B. Gazengel [3] [1].
Among them, several were acoustic descriptors computed from the harmonics of the spectral
representation of the stationary part of the signal defined by calculating the energy of the acoustic
signal p,(t):

t

E(D) = ] pe? (Dd
0

The stationary part of the signal is obtained for E(t) € [0,05;0,95]E,,qx Where E,.. is the
maximum energy obtained at the end of the note. To obtain our acoustic descriptor, we used 40
harmonics of the signal for each note. This number of 40 has been chosen to respect the Shannon
condition. We have a sampling frequency f; = 44100 Hz and the extreme frequency of the
bandwidth we want to reach corresponds to the 40™ harmonic of the higher note (C4: 523,25 Hz).
This corresponds to a frequency of 40 * 523,5 = 20930 Hz, which is lower than % The Shannon

condition is thus respected.

Let us now present the acoustic descriptors we obtained, which were computed for each note and
each reed. We consider that the notes are harmonics sounds, characterized by their spectrum in
permanent regime, the frequency of the fundamental is f;, the frequency of the harmonic k is f},
and the amplitude of the harmonic k is 4.

- The Spectral Centroid, which is a simple quantification of the distribution in the power
spectrum, defined by :

LY Ak

"~ fi TP A,

where f; is the frequency and Ay, is the amplitude of the k™ harmonic

SC

12
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- The Odd Spectral Centroid (considering only the odd harmonics):

k=19
iZk:O Azgv1fak+1

0SC = —
fi £;39A2k+1

- The Even Spectral Centroid (considering only the even harmonics):

ESC = lzl}:zio AZkuk
fi ZXZ30 Aqk

NB: All the spectral centroids are divided by the fundamental frequency in order to compare SCs of
different notes.

- The ratio between odd and even harmonics:

OER =

- The amplitude of the harmonic pressure signal:

- The “Tristimulus 4” corresponding to the ratio between the power of harmonics above
4000Hz and the total power of the harmonics.
2

5 A
TR4 = S ito00 Tk
Zk=1 Ak

After considering the stationary part of the signal, we took a descriptor from the transient part of the
acoustic signal p, (t): the Attack Time. We first compute the envelope of the note by the convolution
of a Hanning window and the absolute value of the signal. Then we define the Attack Time by:

AtT = t, — t,,

Where t;, and t, are defined as the times at which the envelope attains respectively 10% and 90% of
its maximum value [5].

13
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Afterwards, we used the signal of the pressure in the mouth to have two descriptors:

- The Mean Static Pressure is estimated as the mean of the pressure in the mouth during the
stationary part of the signal:

1 tstat
Stb= ——— f . (T)dt
t

tstatz — Ustat1 statl

Where p,, is the pressure signal in the mouth and ¢, and t44;» are the beginning and the end,
respectively, of the stationary part of the acoustic signal.

- The Pressure Threshold described in [2]. To compute it, we use a detection function D(t) on
the acoustic signal p,(t) as follow:

D(t) = JA(t)% + B(t)? with

Am=fmmwwmwr
0

t
B@=fmmmﬂMMT
0

Then, with an empirical threshold, we deduce a time ¢t of the beginning of the useful signal (Figure
6).

0251

0.2f

0.05F

time

Figure 6: Detection function of the acoustic signal

The Pressure Threshold PTh is determined by finding the value of the mouth pressure at time t;.

Finally we defined a last objective descriptor called efficiency, which is the ratio between the
amplitude of the harmonic pressure signal and the mean static pressure:

As

Eff = 55

In conclusion, each reed is defined by 13 objective descriptors that are:

14
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- The Spectral Centroid (SC)

- The Odd Spectral Centroid (OSC)

- The Even Spectral Centroid (ESC)

- The ratio between Odd and Even harmonics (OER)
- The amplitude of the harmonic signal (Lv)

- The 4 tristimuli (TR1, TR2, TR3, TR4)

- The Attack Time (AtT)

- The mean Static Pressure (StP)

- The Pressure Threshold (Pth)

- The efficiency (Eff)

All of these descriptors are computed for each note and each reed and each of the 5 repetitions of
the pattern.

2.2.3 Processing of the recordings and calculation of the descriptors.

Once the recordings made, we have to “cut” them in order to isolate the repetitions and the notes.
As a matter of fact, the recordings are made of the succession of 5 arpeggios of seven notes. The
arpeggios were separated manually and for each repetition, the notes were separated by an
automatic program. This program uses the energy E(t) (see section 2.2.2) of the acoustic
signal p,(t), to separate the notes by thresholding.

For all the acoustic descriptors, the amplitudes A, are computed by taking the modulus value of the
discrete Fourier transform of the acoustic signal p,(t). The program begins by isolate the stationary
part of the signal still using the thresholding of the energy E(t) of the signal. The thresholds used are
the one described in the definition of the stationary part at the beginning of the section 2.2.2. After
that, the program computes the discrete Fourier transform on this stationary part using the Matlab
function: fft. The module of this transform is then computed. To access the value of the amplitude of
the harmonics, we isolate an area of the spectrum where the harmonics theoretically should be and
we take the maximum of this area and the corresponding frequency.

In conclusion, after calculate these harmonics we can compute all the acoustic descriptors.

15
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3 Results of the subjective tests
To analyze the score given by the subjects during the subjective tests, we started by performing a
consonance analysis on the data to study the consensus between the subjects.

3.1 Consonance analysis

The sensory panel consisted of J=10 assessors who judged 1=20 products during K=2 sessions using
M=3 attributes. So the assessment of product i by assessor j during session k according to descriptor
m is denoted Yg}( Different tables of data can be formed. Let X" denote the (/*)) matrix describing

the assessments made during session k on descriptor m by all the assessors.

The consonance analysis is based on PCA. The purpose of the consonance analysis is to estimate the
agreement between the subjects in their evaluation of the reeds. A description of the method can be
found in [6].

To study the agreement for each descriptor (independent of the sessions), the repetitions are
merged vertically (repetitions are considered as different products). The PCA is made on the matrix
X™R21x])):

Xm
Xm = [in

A perfectly consensual panel consists of assessors that use the descriptors and rate the reeds in the
same way. So the more the panel is consensual, the more the arrows of the assessors go in the same
direction. When the arrows go in totally different directions, we have a real disagreement. In this
case, subjects should be divided into more consensual groups. The results (PCA of X™) are given in
Figure 7 for each descriptor. In this PCA, the variables are the subjects and the individuals are the

reeds.
softness (axis C1 and C2: B4.7344%) brightness (axis C1 and C2 : 45.2742%) guality (axis C1 and C2 : 45.0135%)
1 : 1 : 1 :
[ ] T S [ ; [ ] T S [ ;
: : : 52 :
(213 TETTTTTTIN Do TR (211 TETTTTI Loagl TR SN
: Gl :
0.4 ; 0.4 3 = TE
£ 02 z Loz ]
=] 1 5 & :
o 0 : ) w0 o 0 :
= : : L = : T
g DZpe T T TR LRI TR o g DZpe v [
& : 5 O & :
04 i 3 : -04 :
i) -] SERETRTRPTOOY: SRR T : i) -] SERETRTRPTOOY: e K= T RSN
DEFs ........................... : O8] ........ : D ........................... :
- ; -1 ; i - ;
-1 05 0 05 1 -1 05 0 04 1 -1 05 0 05 1
C1  54.B506% 1 28.3438% C1 291741%

Figure 7: Consonance analysis for each descriptor: plot of 2 first factors of the PCA

To evaluate more precisely the strength of the consensus for each descriptor, we can use indicators
such as the Consonance C defined in [6] by:

A
C= 1

T VK
r=2 A’T

Where K is the component number in the PCA, and A, is the rth eigenvalue of the covariance matrix
associated with the r'" component in the PCA. So this indicator emphasizes the weight of the first
principal component and considers the higher dimensions as error or noise. It can be compared to a

17
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signal/noise ratio. We can also use the percentage of the total variance explained by the first
principal component as an indicator to estimate the consonance of the panel.

The consonance ratio C and the variance accounted for by the first factor are given in Table 1.

Descriptor Consonance | % Variance first PC
Softness 1,21 54,65%
Brightness 0,42 29,34%
Global quality 0,41 29,17%

Table 1: Results of consonance analysis for the panel subjects

In conclusion, the highest agreement is obtained for the descriptor “Softness”. The opinions of the
assessors are convergent and the agreement is strong.

For Brightness, the agreement is weaker, even though no assessor is very discordant.

For Quality, the agreement is the weakest. This is normal, given that this expresses preferences of
the saxophonist, and that the tastes of the musician can be very diverse. Subjects S1, S3, S9 are
rather opposite to the rest of the panel, subject S8 is independent of the general trend according to
preference. We will probably have to analyze the quality separately from the two other descriptors
and for several groups of subjects.

To confirm these conclusions we can also use other methods like the eggshell plot.

3.2 The Eggshell plot

This technique, described in [7], is interesting to visualize the differences between the subjects in
ranking the objects. It is particularly useful to identify rankings that differ over all or just for part of
the range of objects ranked.

The principle is to compute a consensus ranking, an underlying order (generally the first component
of the PCA of the matrix of ranks), and to plot each assessor’s rank against the consensus. For each
assessor, we compute the cumulative ranks according to the consensus order and after that, we
subtract the cumulative ranks of a hypothetical assessor who would give the same note to all the
reeds. The cumulative rank difference between the underlying order and the subject can then be
plotted.

The consensus rank is given by a U-shape in the bottom of the graph. The disagreement between
each assessor and the consensus is given by the “area” under the assessor’s polygon and the
consensus U-Shape.

The eggshell plot for the 3 descriptors and the 20 reeds is given Figure 8. The results are of course in
agreement with the consonance analysis. The consensus is stronger for softness.

18
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Figure 8: Eggshell plot for the three descriptors; x-axis the 20 reeds

3.3 Individual performances of the assessors
After studiying the quality of the consensus of the sensory panel, we can focus on the individual
performances of the subjects to see if the results of some subject deserve to be discarded. We use in
this section the principles of the GRAPES method [8], which provides a graphical representation of
assessors’ performances. We will focus on the different uses of the scale, the reliability of the
subjects, their repeatability and their discrimination capacity.

3.3.1 Use of the scale
Two quantities can be computed to compare the use of scales by assessors. LOCATION;j is the average
of the scores given by assessor j.

LOCATION; =Y

N.B.: considering the evaluation Y;;; (see section 3.1), the notation Y; means the mean of
evaluations Y;; over the indices i (product) and k (session).

SPANj is the average standard deviation of a score given by assessor j within a session. It represents
the average amplitude used by the assessor to discriminate the products.

1/2
SPAN, — lz Yi(Yijk = Yjr)?
J K Ly (-1

The Figure 9 presents SPANj vs LOCATION;j for the different descriptors, and the different subjects S1
to S10.

19
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Figure 9: Plot of the SPANj vs LOCATION;j for each descriptor.

In conclusion, subject S1 uses a weak range for all the assessment (the SPAN is very weak) and
subject S7 globally dislikes all the reeds, and assesses them as not soft (LOCATION is weak for this
subject).

3.3.2 Reliability of the subjects and influence of the session
Two coefficients can be computed to assess the performance of each subject for each descriptor
concerning their reliability and the influence of the different repetitions.

The Unreliability ratio, labeled UNRELIABILITY, represents the measurement error of the subject,
relative to the average amplitude used for the ratings. It is given by:

1/2
1 2
UNRELIABILITY; = [mzik(ﬁjk ~ Yy =Y +Y;) ] /SPAN;
The DRIFT_MOOD is the between-sessions error relative to the average amplitude used for the

ratings (i.e. expressed in SPAN units). It represents the deviation of the ratings of the subject across
the sessions.

1 5 1/2
DRIFT_MOOD; = [mzk(y_jk -Y;) ] /SPAN;

Figure 10 represents, for each descriptor, the performance of the subjects according to DRIFT_MOOD
and UNRELIABILITY.

Softness Brightness 57 Quality
065 15 045
310
08 10 04 o
<]
=4 =3
055 03 & o
05 51
5 1 na 57
o
o 045 o =)
3 ] ERiE:
£ o4 b= 5
[ = =
o o Loz
Lo ks & & -
33 = 05 015
03t © o p 6 o
<)
0% o758 59 0.1 5
o % R =
iz w7 © s Shs = 0.05 )
o wsd o o 31 55
1 L 1 L 1 2 1 U L 1 1 1 1 L U L L 1 < 1
045 05 065 06 0G5 07 076 08 05 06 07 08 09 1 11 12 113 06 n7 0a RE]

UNRELIABILITY

UNRELIABILITY

UNRELIABILITY

Figure 10: plot of the DRIFT_MOODj vs UNRELIABILITY] for each descriptor
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In conclusion:

- For softness, S6 is the least reliable, S3 and S5 are the most reliable. S10 deviates the most
between the 2 sessions (high DRIFT MOOD).

- For brightness, S2 is the least reliable, S5 is the most reliable. S7 deviates the most between
the 2 sessions.

- For quality, S1is the least reliable, S5 is the most reliable

We can conclude that S5 is a particularly reliable subject. We can also see that the worst value of
unreliability for softness is lower than most of the values for brightness. This means that most
subjects (S6, S4, S8, S1, S2, S7) are less reliable for brightness than for softness.

3.4 Global performance of the panel
After the individual performances, we can focus on the global performance of the panel. We start by
using the ANOVA model for the whole panel described before (equation ( 1)).

3.4.1 ANOVA
The principle of ANOVA is to model a dependent variable (the response) with independant variables
(the factors)®.

The assessment of the product i by assessor j during session k is denoted Y;j,.

- i=1to |, number of products
- j=1toJ, number of assessors
- k=1to K, number of sessions

A model for the whole panel (equation ( 1)) can be created, taken into account the session effect,
the product effect and also interaction the interaction between the session and the reeds:

(1) Yig=n+a;+y,+ @i+ €
a; - main effect of reed i

Y- main effect of session k

ay ;- effect of the interaction session*assessor

Here we don’t take the subject effect because we don’t have enough values to estimate correctly the
contribution of the subject effect, the reed effect, the session effect and the associated interactions
in the same model, the degree of freedom of the residual would be to weak. So we consider only the
reed effect, the session effect and the associated interaction that are the more important to us. As a
matter of fact, the reed effect determines the discriminant power of the panel, and the interaction
reed*session determines the repeatability of the panel. Consequently, the variable subject becomes
a random variable in the model and gives us a bigger power of analysis. So we will have estimations
that can be trusted.

A least square procedure is used to estimate the coefficients of the model. An ANOVA model is fitted
for each descriptor.

! For all the factors of ANOVA (product, subjects), a fixed effect model is used. It signifies that the results
cannot be generalized to the global population of subjects and products
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The results of the ANOVA model for the whole panel (equation ( 1)) are given in Table 2.

Softness
Source Sum of Square df Mean Square p-value
Reed 1273,181 19 67,010 16,827 <0,001
Session 83,747 1 83,747 21,030 <0,001
Reed*Session 95,237 19 5,012 1,259 0,208
Error 1433,582 360 3,982|[] [
Total 2885,747 399|[] [ [
Brightness
Source Sum of Square df Mean Square p-value
Reed 523,015 19 27,527 5,456 <0,001
Session 39,746 1 39,746 7,877 0,005
Reed*Session 60,347 19 3,176 0,629 0,884
Error 1816,451 360 5,046([] [
Total 2439,560 399|(] (] [
Quality
Source Sum of Square df Mean Square p-value
Reed 184,711 19 9,722 1,741 0,028
Session 5,005 1 5,005 0,896 0,344
Reed*Session 53,178 19 2,799 0,501 0,962
Error 2010,021 360 5,583|[] [
Total 2252,914 399|(] (] [

Table 2: Table of ANOVA for the three descriptors softness, brightness and quality

We see here that the reed effect is significant for all the descriptor which is good. It means that the
whole panel well discriminated the reeds. We also see that the interaction reed*session is not
significant for all the descriptor. It means that the assessments of the panel are in agreement form a
session to another which is a good thing too.

So we can use now the assessments made by the panel to consensual values of the descriptors for
the reeds by performing a multivariate analysis of the assessments.

3.5 Multivariate analysis of the assessments

The agreement among the assessors of the panel is an important problem in sensory analysis. The
direct mean value of the assessments of all the subjects may lead to a poor description of the
differences among products if the subjects are not in agreement and have not a normal distribution
(the mean value would not be representative in such a case). The sensory analyst is confronted with
the dilemma of discarding dissonant assessors, and losing in this case information, or leaving the data
as such, and getting a noisy assessment.
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Several methods are proposed to transform the individual evaluations in an average multivariate
description of the products.

N.B: the descriptor “Quality” is excluded from this analysis because it is too subjective by nature
and no agreement is required with preference in sensory analysis.

The first method is to compute the average values of the reeds according to the 2 descriptors
Softness and Brightness, for the 10 subjects, denoted Y; . The representation is given Figure 11.
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Figure 11: Position of the reeds according to the softness and the brightness (average configuration)

- R10, R7, R19 are the most soft and bright reeds
- R14,R18, R13 are the least soft and bright reeds

We also can point out a correlation between the two descriptors Brightness and Softness: a bright
reed is also generally soft.

To get a group average configuration, we used several other methods of multivariate analysis like the
GAMMA method (see Appendix D: The GAMMA method) or the Generalized Procrustes Analysis (see
Appendix E: Generalized Procrustes Analysis) to obtain mean values. These methods did not provide
more information and gave finally similar results than the simple average configuration. So we
decided to use the scores of the average configuration to characterize the reeds for the rest of this
report.

3.6 Analysis of global quality
For the attribute “Quality”, consider the matrix X{%5 of dimension (2IxJ), which considers repetitions
as additional variables (variable = subject*session).

Xﬁs = (X)

A cluster analysis with Hierarchical Ascendant Classification can be made on the matrix X{%;. We
performed the cluster analysis on the row data because of the anchored scale (Figure 3). This verbal
anchoring of the scale gives a meaning to the scores and the mean. So if we centered and reduced
the data, we would lose this meaning. The distance used for the HAC is the Euclidian distance, the
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linkage rule is the Ward criterion (variance criterion). The dendrogram of the classification is
presented in Figure 12.

HAC for the Global quality
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o
o

7 2 5 g 4 10
Subjects

Figure 12: Dendogram of the HAC according to the global quality ratings for the mean of the 2 sessions

3 clusters can be formed:

- Groupl:S1S3S8S9.
- Group2:S2 56 S5 54 S10.
- Group3:S7.

The scores of the reeds for the two groups 1 and 2 are given in Figure 13.
Group 1 and 2 have mainly conflicting opinions on reeds R13 and R18.
The typical features of the classes are:

- Group 1 (typical subject S3) appreciates R13 and rejects R18.
- Group 2 (typical subject S10) appreciates R18 and rejects R13.
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Assessment of quality by both groups
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Figure 13: preference scores for the 2 different groups

We tried to characterize both groups with information concerning the subjects obtained from the
guestionnaires, but no feature of the musicians seems to characterize the groups. And the small
number of subjects doesn’t help. However it seems that most of the musicians in group 1 play hard
reeds and most of the musicians in group 2 play soft reeds. But we can’t generalize this because of
the small number of musicians we had. This seems logical, because the biggest differences we can
see in Figure 13 between the two groups are on the softest reeds or on the hardest reeds. For
example we can see big differences for the reeds 2, 13 and 18 which are perceived as the hardest
reeds, and we also see big differences for the reeds 10 and 17 which are perceived as soft reeds.

Despite this lack of characterization, we will use this data of the global quality to try to produce a
predictive model for each group of subject.
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4 Invivo measurements of the reeds

4.1 Descriptive statistics

After analyzing the results of the subjective tests, we need to analyze the results of the objective
measurements. It would be too fastidious to represent all the values because of their high number.
As a matter of fact, there are 20 reeds*5 repetitions*6 notes*13 variables*3 musicians and *2
sessions for PK and GS. To visualize the variance of the data and the differences among musicians, we
chose to represent only a few variables for one note, the two sessions for GS and PK. We will do as if
there are 5 musicians for an ease of representation of the different sessions (PK1, PK2, GS1, GS2, BG).
In the Figure 14 is the representation of the Spectral Centroid of the 20 reeds, for each musician, the
note G3. First, we want to see if taking the mean value of the descriptors over the 5 repetitions
makes sense. To give an example, in Figure 14 are presented the boxplots of the Spectral Centroid
and the Pressure Threshold for the note G3 and the player PK1. These boxplots take the values of the
5 repetition for each descriptor. All the boxplots for all the descriptors, for all the players and for the
note G3 are presented in the annex.
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Figure 14: Boxplots of the 5 repetitions for the 20 reeds and for the descriptors SC and PTh

First we can see that the variance is irregular depending on the reed. Some reeds have a high
variance like the reed 17 for the spectral Centroid or the reed 18 for the Pressure threshold. But even
though the repetition error can be high for some reeds, we see that this repetition error is low for
most of the reeds and that the reeds are well discriminated by these two descriptors. So taking the
mean value of the descriptors over the 5 repetitions makes sense.

After taking the mean value over the 5 repetitions, we can study the influence of the note on the
descriptors. In the Figure 15 are presented the plots of the mean value of the descriptors SC and PTh
over the 5 repetition, for the player PK1. There is one curve by note.

27



These de Master ASP - Spécialité ARSI
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Figure 15: Plots for each note of the mean value of the descriptor SC and PTh over the 5 repetition for the player PK

We see in Figure 15 that the note has an influence on the values of the descriptors. But, we also see
that the curves have the same evolution. So the average curve over the 6 notes will have the same
evolution too. So taking the mean value over the 6 notes makes sense.

After studying the influence of the note, we can look at the variance of the values of these two
descriptors for all the musicians. In Figure 16 is the representation of the boxplot of the 5 musiscians
for the descriptors SC and PTh, the note G3.
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Figure 16: Boxplots of the 5 musicians for the 20 reeds and for the descriptors SC and PTh

Here we can see that for the Spectral Centroid, the variance is high for all the reeds. The reeds can’t
be distinguished according to this descriptor. So we can say there is a problem given the fact that the
reeds can be distinguished when we took the musicians separately. This is probably due to the lack of
agreement between the musicians according to the Spectral Centroid. The things are different for the
Pressure Threshold. We see that the intra-reed variance is lower than for the SC and that the reeds
can be discriminated. For this descriptor, the musicians seem to have a higher agreement. To precise
this problem of agreement, we performed a PCA on the same data to analyze the consensus
between them. In Figure 17 are presented the PCAs made on the matrix (musicians*reeds) for the
two descriptors SC and PTh. The musicians are here the variables and the reeds are the individuals.
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Figure 17: PCA of the values of the descriptors SC and PTh for the 5 musicians

We can see here what we supposed before. For the Pressure Threshold, the agreement between the
musicians is good and the first principal component gathers 71% of the total variance. For the
Spectral Centroid, we see that consensus is much lower than for the Pressure Threshold. But we can
see that the agreement is better between the two sessions of the same musician than between two
different musicians. For example, we see that the arrow of GS1 is closer of the arrow of GS2 than the
other musicians. For some descriptors like the Spectral Centroid, we see that there is variability
between the musicians. This variability among the measurements may be due to the way of playing
of the players etc...

In conclusion, if we want to use all of these data as objective measurements, we need to deal with
variability and keep only the information concerning the reed by fitting statistic models or by
extracting consensus.

4.2 Individual results of the musicians
Let’s begin by studying the individual results of the musicians.

4.2.1 One-way ANOVA model

To study the individual performances of the musicians for the objectives measurements, we choose
to fit an ANOVA model to the data for each subject and variable labeled Z in equation ( 2 ). This
model takes into account the reed effect. We don’t take into account the note effect for the same
reason as in the section 3.4, we want to have a better power of analysis. We use one model for one
session (equation ( 2 )). As the musicians GS and PK had participated two sessions of measurements,
we will proceed as if there were 5 saxophonists: GS1, PK1, GS2, PK2, and BG. For all the considered
models in the following, Z is a generic notation that represents a value of an objective descriptor
for the i reed, the ™ musician and the k™ session.

(2) Zyp=pn+a;+e€

a; : main effect of reed i
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For each musician and each descriptor, Table 3 presents the p-values of the test of the reed effect
(coefficients ;). In green are the significant effects.

P-values of the reed effect for each descriptor and player
Players
GS1 PK1 BG GS2 PK2
AtT <0,001 <0,001 0,111 <0,001 <0,001
SC <0,001 <0,001 0,892 <0,001 0,620
0SC <0,001 <0,001 0,818 <0,001 0,772
ESC <0,001 <0,001 0,966 <0,001 0,257
" OER 0,979 0,233 0,995 0,839 0,023
§ Lv 0,014 <0,001 0,147 0,835 0,052
r R L1 0,984 <0,001 0,557 0,503 <0,001
g TR2 0,976 0,003 0,754 0,985 0,102
TR3 <0,001 <0,001 0,454 0,056 0,972
TR4 <0,001 <0,001 <0,001 <0,001 0,001
PTh <0,001 <0,001 <0,001 <0,001 <0,001
StP <0,001 <0,001 <0,001 <0,001 <0,001
Eff <0,001 <0,001 <0,001 <0,001 <0,001

Table 3: p-value of the reed effect for ANOVA model for the objective measurements.

First we see that for PK1 and GS1, there is a significant product effect for most o the descriptors. So
in the first session, for PK and GS, the reeds were discriminated for most of the descriptors. In the
second session we see we have less significant effects. But there is still a majority of the descriptors
that discriminated the reeds. On the other side, we see that BG has few descriptors that have a
significant effect. The measurements of BG are globally not discriminant. This, added to the fact that
the measurements of BG were performed in a different place (different country), with a different
saxophone and with a different material, we prefer to discard the measurements of BG for the
following (there is a lot of parameters whose we can’t know the influence on the measurements).

4.2.2 Two-way ANOVA model

For the musicians PK and GS, we study an ANOVA model that took into account the effect of session
(equation ( 3)). Again, we examine the product effect to verify their discriminant power. The results
are presented in the Table 5.

(3) Zjp =n+a;+vrt+e€;

a; : main effect of reed i
¥i: main effect of session k
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P-values of the reed effect for each descriptor and player
Players
GS PK

AtT <0,001 <0,001

e <0,001 <0,001

0SsC <0,001 0,002

ESC <0,001 <0,001

" OER 0,639 0,243
8 Lv 0,130 <0,001
£ |1 0,369 <0,001
§ TR2 0,852 0,008
TR3 <0,001 0,729

TR4 <0,001 0,001

PTh <0,001 <0,001

StP <0,001 <0,001

Eff <0,001 <0,001

Table 4: p-value of the reed effect for the three-way ANOVA model for the objective measurements.

The conclusion is the same as previous: the two subjects have significant effects for most of the
objective descriptors. The two subjects are globally discriminant: they see differences between the
reeds. The only variable we can doubt is the ratio between the odd and even harmonics because he
has no significant effect for any of the musician. However, the variable had in the previous part a
significant effect for PK2, so we choose to keep this descriptor in the following.

We can now study, the correlation between the red effect coefficients a; of GS1, PK1, GS2, PK2 for all
the descriptors to see if their variability over the reeds is the same.

4.3 Inter-musicians and inter-sessions correlation

To see the inter-musician and inter-session correlation, we compute the Spearman correlation
coefficient between the reed effect coefficients «a; for each player extracted from the previous
ANOVA model (equation ( 4 )). Table 5 presents the results for each pair of players for session 1 and 2
and the correlation between session 1 and 2 for the two players in order to assess the inter-session
agreement. In green are the values of coefficients who are higher than 0.6.
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Spearman coefficient for each pair of players
Players
PK1-GS1 PK2-GS2 PK1-PK2 GS1-GS2
AtT 0,59 -0,14 0,53 -0,09
SC 0,25 0,25 0,20 0,90
0SsC 0,19 0,13 0,25 0,89
ESC 0,20 0,54 0,37 0,84
" OER -0,05 0,63 -0,34 0,37
_§ Lv 0,40 0,22 0,23 0,12
£ |m 0,47 0,01 -0,12 0,69
§ TR2 0,19 0,30 -0,19 0,48
TR3 0,40 0,17 0,30 0,84
TR4 0,13 0,20 0,10 0,76
PTh 0,82 0,83 0,75 0,84
StP 0,78 0,53 0,09 0,59
Eff 0,65 0,31 -0,15 0,41

Table 5: Inter-musician and inter-session correlation.

We see in Table 5 that the correlation between players (PK1-GS1, PK2-GS2) is very low except for
Pressure Threshold (PTH) that has a strong correlation in all cases. This descriptor is computed from
the mouth signal. So we see that the players generally have low correlations on the descriptors
relative to the acoustic signal, their variability over the reeds is not the same. We also see that PK
seems to be not repeatable because the correlation between both sessions is low (weak general
correlation PK1-PK2). But GS (GS1-GS2) gets strong correlations for several descriptors. So GS seems
to be the most consistent and the most repeatable musician.

As for the subjective data, we are facing the dilemma to discard musicians who are not enough
reliable (and to lose perhaps a useful information), or to keep all the data (and to get possibly
inconsistent data). In conclusion, we see that there is a lot of variability in the objective
measurement. If we want to keep all the data, we have to find a way to extract from these data,
consensual values that come from the contribution of all the players.

4.4 Definition of consensual measurements

4.4.1 Fitting of an ANOVA model

We saw that there is variability in the objective measurements. This variability can possibly be due to
the added contributions of the player, the reed, the note and the session. In our case, we want to
keep only the contribution of the reed. So we have to find a way to separate these contributions and
have consensual measurements about its contribution. To obtain consensual measurements using
the data of PK and GS, we used an ANOVA model to keep the essential common information about
the reeds and remove useless variability caused by the change of player, the different sessions, the
interaction between the musician and the reed, etc... The reed effects obtained will be the final
objective measurements. The objective of the model is to filter the data and remove the possible
unnecessary error (grasp the useful part of the information in the ANOVA coefficient). We have to
keep a significant reed effect for all the descriptors to have values which make sense.
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We build an ANOVA model taking account of the reed effect, the session effect and the musician
effect. To take account of the effect of the interaction between the musician and the reed and the
interaction between the musician and the session, we use a model with interaction as following
(equation ( 4 )). We consider the interaction between the musician and the reed because obviously,
the musicians don’t agree between them and this interaction is supposed to model this
disagreement. We also considered the interaction between the musician and the session because for
the same musician, some evaluations seem to change from a session to another and as previous, this
interaction is supposed to model this change. We didn’t take account of the interactions
reed*session and reed*session*musician because after studying a complete model, it appeared they
were not significant for most of the descriptors.

(4) Zijjg=pu+a;+Bj+vr+ (@B)y+ BY)jk + €ijk

a; : main effect of reed i
pB;: main effect of musician j
y;: main effect of session k
ap;;: interaction effect reed/musician
BYji: interaction effect session/musician

In Table 6 are presented the p-values of the product effect for all the objective descriptors.

p-value of reed effect

AtT <0,001

SC <0,001

0SC <0,001

ESC <0,001

" OER 0,14
S Lv <0,001
£ | <0,001
§ TR2 0,01
TR3 <0,001

TR4 <0,001

PTh <0,001

StP <0,001

Eff <0,001

Table 6: p-value of the reed effect for the global ANOVA model

We see that the reed effect is significant for all the descriptors except for the OER. The reeds are
discriminated by the global model. So using the values «a; of the reed effect makes sense for the
correlation part. But fitting a statistic ANOVA model on the data to remove the variability is not the
only option. We can also extract the consensus between the objective measurements by using the
GAMMA method described in the Appendix D: The GAMMA method.

4.4.2 GAMMA method to define the consensual configuration
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Method

Instead of fitting a statistic model like the ANOVA, we can try to extract the consensus between the
measurements using the GAMMA method. This method makes the average value of the assessments
of objective descriptors, taking into account weights for each musician and session, according to their
agreement with the whole group[9]. It is based on a fixed vocabulary, common for all the musician.
The interpretation of the common configuration is in this way easy, because it corresponds directly
to the descriptors used by the subjects. It consists in computing weights for each subject, which are
representative of the degree of agreement of the subject with the rest of the panel.

Let X; denote the (IxM) matrix, describing the assessments made by the musician i on the | reeds
according to M objective descriptors. The values of X; are the average of the descriptors over the 6
notes and the 5 repetitions considered in the “in vivo” measurements. Matrix X; is called a
configuration. The first step of the method is, for each configuration, to center (removing the effect
of the judge on the scoring) and rescale (standardize the data to the same total variance) the data.

- center the data : substract, for each data, the average of the column of the X; matrix. This

will give matrix Xc;.

- standardization: multiply all the data by the factor 6; = L This will give matrix
/trace(Xc{.Xci)

Y..

To assess the similarity between two subjects i and j, the method computes the following quantity
that is directly the correlation coefficient between Y; and Y}, considered as vectors by rearranging the

data in a single column.
t
trace(Y;.Y)

tij =
Jtrace (Yt.y). \/trace(Y}t. Y)

The similarity matrix S;; of size (JxJ) between all the assessors if given by:

1+t
Su=—%

t
The eigenvector f = [,81,,82, ...,ﬁ]] associated with the largest value, represents the degree of
agreement of the subjects with the rest of the panel. A weighted average configurations is finally
computed to characterize the products:

C=) B,

j=1
Cis next subjected to a PCA to characterize the differences between products.

To characterize the performance of the panel, two indices are computed,

_ trace(Y}.C)

- Jtrace(Ct.C)

,the correlation coefficient between Yi and C
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J
1
y = 72 a; : the average correlation coefficient for the panel (performance index)

j=1

Results
With the whole group of 4 musicians under consideration, the values of the alpha coefficient for the

average value across the sessions are given in Figure 18.

Total performance of the panel : 0.81456
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Figure 18: plot of the alpha coefficient for the whole group of 5 musicians

The performance index of the panel is 0.79, which is high. Finally the consensus between the players
seems to be high despite the variability we observed previously. Now, we will try to build predictive
models with the data extracted from the ANOVA models and from the gamma method and to

compare them.
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5 Correlation between subjective and in vivo measurements

5.1 One-to-one correlation

5.1.1 With ANOVA coefficients

For the correlation between subjective and in vivo measurements, we started by using the tool the
most used in the literature: the simple one-to-one correlation using the Pearson coefficient of
correlation. In Table 7 are presented the correlation coefficients between the coefficients of reed
effect a; of the global model with interaction (equation ( 4 )) for the 13 objective variables on the
one hand, and the average values of the reeds according to Softness, Brightness and Quality ratings
of the two groups of Quality for the subjective descriptors, on the other hand. In green are the values
greater than 0.8.

Softness Brightness |Qua|ity grpl |Qua|ity grp 2
AtT -0,57 -0,33 0,57 -0,56
SC 0,64 0,84 -0,55 0,46
0SC 0,62 0,83 -0,53 0,44
ESC 0,70 0,84 -0,57 0,50
" OER -0,19 0,04 0,02 -0,13
S Lv -0,38 -0,39 0,33 -0,22
g TR1 -0,24 -0,42 0,36 -0,31
§ TR2 -0,01 0,10 -0,13 0,12
TR3 0,59 0,80 -0,60 0,49
TR4 0,37 0,45 -0,34 0,14
PTh -0,82 -0,81 0,75 -0,59
StP -0,67 -0,80 0,65 -0,58
Eff 0,23 0,33 -0,33 0,27

Table 7: Correlation coefficients between subjective and objective descriptors with the values of anova coefficients.

First, we can see that for the global quality, the correlation coefficients for both groups of subjects
are not so high. Despite this, we can point out that all descriptors for group 1 are inversely correlated
with the values of group 2, which suggests that the two groups have different evaluations of the reed
quality. For example, for the Pressure Threshold, group one have a positive correlation (0.75), and
group 2 have a negative one (0.59). As seen in the section 3.6, group 1 seemed to prefer hard reeds
and group 2 seemed to prefer soft reed. So from a physical point of view, these correlations make
sense because a “soft” reed necessitates a low pressure and a “hard” reed a high pressure.

Then, for Softness, only the Pressure Threshold has a strong correlation (-0.82). This negative
correlation makes sense from a physical point of view: a “soft” reed necessitates a low pressure and
a “hard” reed a high pressure.

Brightness has a strong correlation (-0.81) with the Pressure Threshold, the mean Static Pressure (-
0.80), the Tristimulus 3 (0.80), the Odd Spectral Centroid (0.83), the Even Spectral Centroid (0.84)
and finally with the Spectral Centroid (0.84) which is in agreement with the literature. These
correlations make sense too from a physical point of view: a “bright” reed will produce a sound with
a high Spectral Centroid and a “dark” reed will produce a sound with a low Spectral Centroid.
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But the correlation coefficients are not high enough to build an accurate predictive model from a
regression based on only one objective variable. So we chose to explain the subjective descriptor by
more than one variable.

5.1.2 With the values from GAMMA method

Here we performed the same thing as previous but by using the values from the GAMMA method. In
Table 8 are presented the correlation coefficients between values from the GAMMA method
computed in the section 4.4.2 for the 13 objective variables on the one hand, and the average values
of the reeds according to Softness, Brightness and Quality ratings of the two groups of Quality for the
subjective descriptors, on the other hand. In green are the values greater than 0.8.

Softness |Brightness |Qua|ity grp 1|Qua|ity grp 2

AtT -0,78 -0,55 0,78 -0,62

SC 0,56 0,76 -0,40 0,47

0SsC 0,52 0,73 -0,37 0,46

ESC 0,68 0,81 -0,48 0,52

" OER -0,36 -0,17 0,20 -0,18
8 Lv -0,28 -0,28 0,24 -0,11
g TR1 -0,07 -0,23 0,21 -0,25
§ TR2 -0,13 0,04 -0,09 0,08
TR3 0,36 0,43 -0,30 0,39

TR4 0,41 0,46 -0,29 0,20

PTh -0,83 -0,82 0,78 -0,59

StP -0,68 -0,80 0,70 -0,56

Eff 0,08 0,17 -0,19 0,21

Table 8: Correlation coefficients between subjective and objective descriptors with the values of the GAMMA method.

For Global Quality, conclusions are the same as before. The correlations are not strong but we still
observe the opposition between the two groups regarding the sign of the correlation.

For Softness, it also the same as before, the Pressure Threshold has a strong correlation (-0.83).

For Brightness, there are less objective variables that have strong correlation with Brightness. But the
three objective variables that have a strong correlation with Brightness had strong one previously.
These variables are the Pressure Threshold (-0.82), the mean Static Pressure (-0.80) and the Even
Spectral Centroid (0.81). The Spectral Centroid and the Odd Spectral Centroid have strong correlation
too but lower than before (respectively 0.76 and 0.73).

The global conclusion is the same as before: the correlation coefficients are not high enough to build
an accurate predictive model from a regression based on only one objective variable. So we chose to
explain the subjective descriptor by more than one variable.

5.2 Regression model

The first thing that comes to mind is to consider several explanatory variables to build a predictive
model with multiple linear regression. But the linear model suffers from issues regarding the
multicollinearity of variables, which is here the case. All our objective descriptors are more or less
correlated. Table 9 presents the correlation matrix of the objective descriptors (coefficients a;of the
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global model with interaction), in green are the values higher than 0.8. We can see that many
descriptors are highly correlated. So if we use the multiple linear regression, the variance of the
estimates of the coefficients may be very high because of multicollinearity issues as shown in [10].

AtT SC OSC ESC  OER Lv TR1 TR2 TR3 TR4 |PTh  StP Eff
AtT 1,000 003 004 -003 013 -010 0,07 -0,06 -0,05 0,08 0,18 0,12 -0,30
SC 0,03 100 100 09 0,14 -0,53 -041 005 08 0,71 -09 -084 0,18
0SsC 0,04 100 100 09 016 -0,52 -043 0,07, 09 0,700 -0,89 -0,85 0,21
ESC -0,03} 098 0% 100 -001 -064 -0,25 -0,11 080 0,777 -0,90 -0,83| 0,03
OER 0,13} 0,14 0,16 -0,01f 1,00 0,32 -063 065 0,26 -0,06f 0,00 -012 0,54
Lv -0,100 -0,53 -0,52 -0,64 0,32 100 -037 066 -038 -0,700 0,58 0,62 0,58
TR1 0,071 -041 -043 -0,25 -0,63 -0,37 100 -091 -0,63 0,200 042 042 -0,89
TR2 -0,06f 005 007 -0,11 065 066 -091 1,00 0,26 -047 -0,06 -0,06f 0,88
TR3 -0,05f 088 09 080 026 -038 -063 026 100 0421 -087 -0,87| 0,43
TR4 008 071 070 0,77 -0,06 -0,70 0,20 -0,47 0,42 1,000 -0,56 -0,50] -0,38
PTh 0,18) -0,90 -0,89 -0 0,00 0,58 042 -006 -0,87 -056] 1,00 0,92 -0,23
StP 0,12| -0,84 -08 -08 -0,12 062 042 -0,06/ -087 -0,50f 0,92 1,00 -0,26
Eff -0,300 0,18 0,21 003 054 058 -08 08 043 -0,38 -0,23 -0,26] 1,00

Table 9: Correlation matrix between the objective descriptors

To avoid these multicollinearity issues, we chose to use the PLS regression.

5.2.1 PLS model

The PLS (Partial Least Squares) regression is based on the same principle as the multiple linear
regression. Consider a variable Y (for example Softness) and a block of variables X (in our case the
objective descriptors), the column of X being the different variables. The PLS regression explains the
variable Y by the variables X and is based on the following regression equation:

Y=Xa+c¢

First, the PLS regression method, described in [11], consists of finding orthogonal component ¢,
linear combinations of variables X, that best explains the variable Y and the variables X. Then, the
regression equation is obtained by regressing the variable Y on the components t; and projecting
this regression onto the variables X.

More precisely, Y is the subjective variable (column vector with the note for each reed) and X is the
table of objective variables (13 columns, one by descriptor, and 20 rows, one by reed). All the
variables are presumed to be centered and reduced. After choosing the number of components we
want, the PLS components t; are computed from the residual:

h—1
— t
Xp-1=X~— Z tiBi
k=1
Where the B coefficients are the regression coefficients of X on the components [ty, t, ..., th_1]
already computed. So we are looking for a normalized vector wy, such that:
th = Xp—1.Wp
And maximizing the criterion of covariance:

cov(Y,Xp_1.wp)
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The normalized wy, vector maximizing this criterion is given in [11] by the formula:

XE_,.Y

Wp =1—r——n
t Xl

After computing the h components, we look for exprime components t;, depending on X (t, =
X.wyp). The matrix Wy = [wy,...,w;] is then computed from the matrix W, = [wy, ...,w,] and
Py = [p1, .-, prl, where p, = X't} /t; ty, with the formula:

Wy = W, (PEW,) ™!
As we write the regression of y on the t; components:
Y = tick 4+ tpef + 1,

Where ¢, = Y¢t, /tit, (components are orthogonal) and y}, is the residual. Then we can obtain the
PLS regression equation depending on X:

Y = X[wict+ -+ wick]+ Y,
Y = XWy;Ct+Y, where Cy = [cq,...,cp]
(5) Y=X.B+€ where B=W;C} and € =Y,

So we obtain a linear equation from orthogonal components, which are linear combination of the
objective descriptors. So we have avoided multicollinearity issues.

N.B.: To find the first PLS component, the residual being equal to X, we have to maximize the
criterion:

cov(Y,X.wq)

Which can be written:

cov(y,X.wy) = corr(y, X.wy) * \Jvar(y) = Jvar(X.w;)

And then, for h=1, the PLS method appears as a compromise between a multiple regression of Y onto
X (by maximizing corr(y,X)) and searching for the first principal component (by maximizing
var(y,X)). And other components are then sought iteratively, which are orthogonal to the previous
ones.

5.2.2 Results of PLS model

In order to choose the optimal number of PLS components and assess the quality of the predictive
model, we use a leave-one-out cross-validation and minimize the cross-validation criterion: the
PRESS (PREdiction Sum of Squares). The principle is to remove a reed i (a row) from the matrix X and
Y and we compute the vector B® of coefficient of the linear equation for different number of
components with the remaining reeds. And we compute the prediction error on the reed i:
E® =Y, — X;8D. The total prediction error is determined by the PRESS:
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n
1 .
PRESS = ;z E®?
i=1

We choose the number of components such that the PRESS is minimum. The value of PRESS allows us
to compare different predictive models. Lower the PRESS, better the model. Once we have the
optimal number of components, we can calculate another indicator of the quality of the validation
with the data from the cross-validation. For each reed removed at each step, we compute the
coefficient of determination of the cross-validation data R, %:

L(n-7)

n n
o 1 1
“SEEpE M R0 T2 G and T

2
Rcu

The higher the value of R,%, the better the model in cross-validation. In terms of indicators for the
performance of the model with all the reeds, we have the fit R? and the Root Mean Square Error
(RMSE):

We performed a PLS model for the average values of the reeds according the softness, the brightness
and the two groups of quality for the subjective descriptors and using the coefficients of the reed
effect a; of the global model (equation ( 4 )), and of two individual models (one per musician) using
the equation ( 3 ) for the players PK and GS, and the values coming from the computation of the
GAMMA method as objective variables. The performance results of the PLS models are given in Table
10. In green are the best values for every indicator and in red the worst.

In general, the individual models (PK and GS) have irregular performances, which is not the case with
the global model (Glob ANOVA and Gamma) that have generally good performances. So the global
models seem to have smoothed the variability of the global measurements.

More precisely, for the quality models, we can see that the fit for quality models is worse than for
the descriptors Softness and Brightness. It seems difficult to create good predictive models for global
quality. This may be several reasons for this. It may be that the subjects had very different
perceptions of quality (even inside the groups) and that the descriptor is not precise enough. We
may have to consider other objective descriptors to make the predictive models. Inside the global
quality table, we see that the highest values of Rw2 (and the lowest values of PRESS) are obtained
by global ANOVA model and Gamma model. So these global models seem to have a better predictive
power in simple regression

For Softness, PK model seems to be the best, but we also see that the global models have good
performance in cross validation because they have values of Rcv2 equal to 0.67 and 0.52. The GS
model has the worst performance.
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For Brightness, for the individual model it is the contrary, PK has the worst performance et GS has as
best performance as the global models, hence the irregularity of the individual models. Gamma
model has the best performance for this descriptor.

In conclusion, the PLS methods seems to demonstrate good predictive power for the subjective
descriptors Softness and Brightness. But we have an issue as for the interpretation of the quality of
the model for the validation. As a matter of fact, the PRESS and the R,,? are useful tools to compare
models between us, but it is not easy to determine the absolute quality of our model in terms of
prediction. So we can use the same approach to build a qualitative model which will be easy to
interpret. However, the qualitative model won’t give better results than the simple PLS regression
because it is based on the same data: we transform quantitative variable into a qualitative variable
(groups of reeds).

Softness

Model Glob ANOVA |Gamma GS PK
Nb component 2
Adjustment R? 0,71
RMSE 0,97
PRESS cv 1,39
R? cv 0,67

Brightness
Model Glob ANOVA |Gamma GS PK
Nb components 1 1
Adjustment R? 0,67 0,68
RMSE 0,65 0,63
PRESS cv 0,54 0,49
RZ cv 0,68 0,71

Quality gp1
Model Glob ANOVA [Gamma GS
Nb component 1 1
Adjustment R? 0,52 0,58
RMSE 0,69 0,64
PRESS cv 0,63 0,5476
R? cv 0,47 0,56

Quality gp2
Model Glob ANOVA |Gamma GS PK
Nb component 1
Adjustment R? 0,36
RMSE 1,19
PRESS cv 1,71
RZ cv 0,30

Table 10: Performance results for the PLS predictive models
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5.3 Qualitative model

If the PLS approach was originally used in regression models, it can be also used as a classification
method [12]. So we decided to create a qualitative model by making classes of reeds according to the
descriptors “Softness” and “Brightness”. This model will be easier to assess in terms of performance
because we will obtain a percentage of well classified reeds which we can more easily interpret.

5.3.1 Partitioning of the reeds

First, we have to divide the reeds into several classes according to the descriptors Softness and
Brightness. To achieve this, we applied Hierarchical Ascendant Clustering on the subjective notes of
Softness and Brightness to the row data, using a Euclidian distance and the Ward criterion. We
obtained the following classification presented in Figure 19. We see that we can separate the reeds
into three classes. What mainly characterizes the three classes is Softness (we obtain the same
classes if we take only Softness as subjective descriptor). The class at the left is the class of soft reeds
(the majority), the class at the right is the class of hard reeds, and the class at the middle is the class
of “middle” reeds.

HAC of the reeds
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Figure 19: HAC of the reeds according to the descriptors softness and brightness.

In the Figure 20 are presented the plan of reeds according to the brightness and the softness with
the classes circled.
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Figure 20: Subjective classes of the reeds

5.3.2 Principle of PLSDA

We performed a PLSDA (Partial Least Square Discriminant Analysis) method on these 3 classes. The
purpose of this method is to find the PLS components that best explain the different classes. It can be
linked with Linear Discriminant Analysis. The approach is exactly the same as for a PLS regression,
except that the variable Y (see part 5.2.1) is not the vector with the quantitative value of a subjective
descriptor anymore but an array with as many columns as classes and as many rows as reeds (coding
of the qualitative group-disjunctive form). This array Y in each column takes the value 1 if the reed
(row number) is in the class and 0 if it is not. After that, it is exactly the same algorithm employed as
for the PLS regression. With the components we computed, we estimate ¥ and for each row (each
reed), the column of the largest component will correspond to the class of the reed. Here the
strategy employed is the most common employed with the PLSDA method: the Max Indictors
strategy [13].

But this method often overfits the data and we have to be careful about the validation. According to
[14], the most accurate method of validation is to perform a cross-validation on a training set (in
order to select the optimal number of PLS components), and after make a validation on a test set
composed of individuals who were not in the training set and ho were not used to computed the
model. But we have only 20 reeds, that is not enough to constitute a training set and a test set. So we
employed a method of simple cross-validation as before to choose the optimal number of PLS
components and to assess the quality of our classification. We used the “leave-one-out” method but
we changed of indicator of quality. For a classification task we cannot use the PRESS as previous.
Instead that, we remove one of the 20 reed, we perform the PLSDA on the remaining 19 reeds, and
we use the obtained model to classify the reed removed and we see if it is well classed. We repeat
the operation for the 20 reeds and we obtain a percentage of well-classified reeds.

To assess the quality of the model we obtain with respect to random data, we also randomized the
reeds labels. The principle is to take the array Y and to perform a random permutation of the rows.
After that the classification is performed. So we make a classification on random data and we look at
the percentage of well-classified reeds for this random classification of the reeds. The result obtained
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in the tables is the mean over 10 randomizations. We do this randomization for the entire model
with all the reeds and in the cross-validation part. If we have a low percentage of well-classified reeds
in this randomization test, we can say that our first classification makes sense because our model will
have done better with the real data than with random data.

5.3.3 Results of the models

For the objective measures, we used exactly the same data as for the regression analysis. The results
of the PLSDA classification are given in Table 11. The row “Nb component” corresponds to the
optimal number of PLS a component from the cross-validation, the row “% well-classified”
corresponds to the percentage of well-classified reeds using all the reeds for the classification (no
validation set). The “% with randomization” is the mean of well-classified reeds over the 10
randomizations (again all the reeds are used). The “% well classified cv” row is the percentage of
well-classified reeds using the leave-one-out cross-validation. And finally, the “% with randomization
cv” row is the mean of well-classified reeds over the 10 randomization in the cross-validation part.

PLS DA
Model Glob ANOVA |Gamma GS PK
Nb component 4 6 6 4
% well classified 85 90 90
% with randomization 41 41,5
% well classified cv 80 75 80
% with randomization cv 40 25 35

Table 11: Performance results for the PLSDA model.

We see that we have the best results for the global models and the individual model of PK. As a
matter of fact, in cross validation, the percentage of well-classified reeds is 80% for the Global
ANOVA model and for the PK model which represents 16 of the 20 reeds. The Gamma model has also
an important predictive power with a percentage of 75% in cross-validation. The GS model gives
worse results. We see that all our predictive models give much better results than the model with
the randomizations, which has a percentage of well-classified reeds of around 40% using all the reeds
and a lower percentage for using the randomization in the cross-validation. This are low percentages.
So our predictive models make sense and the validation process is relevant.

Let’s see now the variables that have an important contribution in the classification using the matrix
B of the PLS coefficients (equation ( 5 )). In Table 12 is presented this matrix § using the reed
coefficients a; global ANOVA model as objective variables. There is one column per class and one
objective variable per row, so we can see which objective variables best explain each class. In green
are the three highest values for each class. Recall that we had three classes: class 1 contains the
softest reeds, class 2 the intermediate reeds and class 3 the hardest reeds. So we will call these three
classes the soft class, the medium class and the hard class, respectively. It is the names employed in
the columns of Table 12.
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Soft Class Medium Class [Hard Class
AtT -0,058 0,032 0,026
SC -0,517 0,599 -0,082
0sC -0,575 0,612 -0,037
ESC -0,076 0,218 -0,142
" OER -0,222 0,262 -0,040
8 Lv -0,335 1,079 -0,744
£ |t 0,103 -0,162 0,059
é TR2 -0,059 0,123 -0,064
TR3 -0,043 0,039 0,004
TR4 -0,001 0,000 0,001
PTh -0,376 0,259 0,117
StP 0,167 -0,198 0,030
Eff -0,008 0,030 -0,023

Table 12: Matrix of the PLS coefficients of the predictive model using the values of the global ANOVA model

The objective variables that best explain the soft class are Spectral Centroid, Odd Spectral Centroid
and Pressure Threshold. These were the variables having the highest classic correlations with the
subjective descriptor (Table 7), but it is surprising to note that the coefficients for SC and OSC are
negative. For the medium class, the main objective variables are SC, OSC and the Spectral Amplitude
Lv. And finally, for the hard class, the main variables are Even Spectral Centroid (ESC), LV and
Pressure Threshold (PTh). As the PTh have a high negative correlation with the Softness, it seems
logical that this objective variable has a good contribution in the explanation of the class soft and the
class hard with the sign we have. But the signs of some coefficients as for the SC or the OSC show
that the PLSDA method don’t always give logical predictive models even though the performance of
this model is good as shown as before. We have to be careful if we want to use this model onto other
reeds to validate the model.

In conclusion we see that with our global model we can achieve a good predictive model using the
PLSDA.
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6 Conclusion

In conclusion, a subjective analysis was performed on 20 saxophone reeds. Three descriptors were
assessed: Softness, Brightness and Global Quality. Then objective measurements were performed
and 13 objective variables were extracted from these measurements. Finally, a predictive model was
built using the objective variables to predict the subjective class of the reeds. The results show that
our model has a good power of prediction.

In this study, the objective variables were chosen from the previous studies performed on the
saxophone reeds[3][1] and we saw variability in the computation of these variables. A future work
could consist in finding other objective variables that have not such variability. We also can consider
the different musicians who performed the objective measurements as different measurement
systems and consider the values of the objective variables new different variables for each musician.
We will multiply the number of objective variables by the number of subjects. The number of
variables would be important but the PLSDA is a classification method who can deal with a high
number of variables.

To conclude, this study can find new orientations to improve the actual predictive model.
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Appendix A: Presentation plan of the reeds for the subjective tests

The presentation plan of the reeds followed a Williams Latin Square, it is presented in the Figure 21.

We had 10 subject, 2 repetition of assessment and 20 reeds. So we choose to take a Latin Square of

size 20. SO we consider 2 different orders for the two repetitions. Consequently, the presentation

plan was perfectly balanced.

Presentation Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
order Rep1l| Rep2 | Rep1| Rep2 | Rep1l| Rep2 | Rep 1| Rep2 | Rep 1| Rep2
1 1 12 2 13 3 14 4 15 5 16
2 2 13 3 14 4 15 5 16 6 17
3 20 11 1 12 2 13 3 14 4 15
4 3 14 4 15 5 16 6 17 7 18
5 19 10 20 11 1 12 2 13 3 14
6 4 15 5 16 6 17 7 18 8 19
7 18 9 19 10 20 11 1 12 2 13
8 5 16 6 17 7 18 8 19 9 20
9 17 8 18 9 19 10 20 11 1 12
10 6 17 7 18 8 19 9 20 10 1
11 16 7 17 8 18 9 19 10 20 11
12 7 18 ] 19 9 20 10 1 11 2
13 15 6 16 7 17 8 18 9 19 10
14 8 19 9 20 10 1 11 2 12 3
15 14 5 15 6 16 7 17 8 18 9
16 9 20 10 1 11 2 12 3 13 4
17 13 4 14 5 15 6 16 7 17 8
18 10 1 11 2 12 3 13 4 14 5
19 12 3 13 4 14 5 15 6 16 7
20 11 2 12 3 13 4 14 5 15 6
Presentation Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
order Rep 1| Rep2 | Rep1| Rep2 | Rep1l| Rep2 | Rep 1| Rep2 | Rép 1| Rép2
1 6 17 7 18 8 19 9 20 10 11
2 7 18 8 19 9 20 10 1 11 12
3 5 16 6 17 7 18 8 19 9 10
4 8 19 9 20 10 1 11 2 12 13
5 4 15 5 16 6 17 7 18 8 9
6 9 20 10 1 11 2 12 3 13 14
7 3 14 4 15 5 16 6 17 7 8
8 10 1 11 2 12 3 13 4 14 15
9 2 13 3 14 4 15 5 16 6 7
10 11 2 12 3 13 4 14 5 15 16
11 1 12 2 13 3 14 4 15 5 6
12 12 3 13 4 14 5 15 6 16 17
13 20 11 1 12 2 13 3 14 4 5
14 13 4 14 5 15 6 16 7 17 18
15 19 10 20 11 1 12 2 13 3 4
16 14 5 15 6 16 7 17 8 18 19
17 18 9 19 10 20 11 1 12 2 3
18 15 6 16 7 17 8 18 9 19 20
19 17 8 18 9 19 10 20 11 1
20 16 7 17 8 18 9 19 10 20 1

Figure 21:Plan presentation of the reeds for the subjective tests.
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Appendix B: Score of pattern presented for the subjective tests

In the Figure 22 is presented the score of pattern presented to the subject during the subjective
tests. For the softness, the pattern was composed of notes in the low register at the dynamic piano.
As a matter of fact, it is difficult to produce a sound in the low register at this dynamic so it is easier
to see how hard a reed is.

For the brightness, the pattern was composed of en arpeggio beginning by notes in the high register
at the dynamic mezzo forte. It seems that the differences between the reeds were more seeable in
this register at this dynamic.

Brightness
A Soﬁsnesls | -
S SSEsEsie=u s ESr=cE=
| . — HH—e 1
P mf

Figure 22: Score presented for the subjective tests in Bb
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Appendix C: Score of notes played during the objective measurements

In the Figure 23 is presented the score of notes played during the objective measurements.

mf =

Figure 23: Notes played during the objective measurements (concert key).
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Appendix D: The GAMMA method

Method

Instead of making a raw average value of the assessments, the average value can take into account
weights for each subject, according to their agreement with the panel[9]. It is based on a fixed
vocabulary, common for all the assessors. The interpretation of the common configuration is in this
way easy, because it corresponds directly to the descriptors used by the subjects. It consists in
computing weights for each subject, which are representative of the degree of agreement of the
subject with the rest of the panel.

Let X; denote the (IxM) matrix, describing the assessments made by assessor i on the | products
according to M descriptors. Matrix X; is called a configuration. The first step of the method is, for
each configuration, to center (removing the effect of the judge on the scoring) and rescale
(standardize the data to the same total variance) the data.

- center the data : substract, for each data, the average of the column of the X; matrix. This

will give matrix Xc;.

- standardization: multiply all the data by the factor 8; = L This will give matrix
/trace(Xcit.Xci)

Y..

To assess the similarity between two subjects i and j, the method computes the following quantity
that is directly the correlation coefficient between Y; and Y}, considered as vectors by rearranging the
data in a single column.

trace(Y}.Y;)

Jtrace YE.Y). \/trace(Y}t. Y)

tij =

The similarity matrix S;; of size (JxJ) between all the assessors if given by:

i=Tg

t

The eigenvector § = [Bl,ﬂz, ...,B]] associated with the largest value, represents the degree of
agreement of the subjects with the rest of the panel. A weighted average configurations is finally
computed to characterize the products:

C=) B,

j=1
Cis next subjected to a PCA to characterize the differences between products.
To characterize the performance of the panel, two indices are computed,

_ trace(Y}.0)

B Jtrace(Ct.C)

,the correlation coefficient between Yi and C
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J
1
y = 72 a; : the average correlation coefficient for the panel (performance index)
j=1

Results
With the whole group of 10 subjects, the values of the alpha coefficient for the average value across

the sessions are given in Figure 24.

Total performance of the panel : 0.72179
e

alpha

51 82 B3 sS4 55 56 87 S8 88 510

Figure 24: plot of the alpha coefficient for the whole group of 10 subjects

The performance index of the panel is 0.72, which is good. We can say we have a good panel despite
the difficulties of reliability with some subject with the brightness. It is not surprising to see that S5
and S9 are the subjects with the highest alpha, they were among the most reliable subjects (see
section 3.3.4).

To characterize the products, the matrix Cgoup2 Of the weighted configurations is computed, and a

representation of the matrix Cgroup2 is given in Figure 25.
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Figure 25: Plan of the reeds according to the softness and the brightness (gamma method)
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There is clearly a positive correlation between the two dimensions, but one dimension takes 88% of

variance: two dimensions are necessary to represent in particular the atypical behavior of reed 8 (not
soft, and very bright).

- R10, R7, R19 are the most soft and bright reeds
- R14, R18, R13 are the less soft and bright reeds

These results are in accordance with the average value. Finally, the GAMMA method does not bring a
different result, because the agreement between the subjects is high.
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Appendix E: Generalized Procrustes Analysis

GPA is a multivariate technique for the analysis of free-choice profiling data (FCP?), but it has also
been applied to consensus vocabulary profiles (our case for the saxophone reeds). The aim is to
study the consensus among experts, to assess scale use, attribute interpretation, panel performance,
monitoring...

It also allows one’s to compare the proximity between the terms that are used by different experts to
describe products. The GPA method was first described by [15], interpretation of GPA can be found
in [16]. Let X;denote the (IxM) matrix, describing the assessments made by assessor i on the |
products according to M descriptors. Note that with the Free Choice Profiling (FCP), the variables
which describe the products are not necessarily the same, the number of variables can also be
different for each configuration. GPA is a method for producing a consensus configuration X from the
set of J different individual data matrices, and to represent the consensus via PCA. The principle of
GPA is to apply transformations (translation, isotropic scaling, rotation/reflection) to the
configurations X; so as to minimize a goodness of fit criterion (the distance between the transformed
configurations X; and the consensus configuration X). GPA only allows ‘rigid-body’ transformations
to the datasets and respects the relative distances between products. The individual and consensus
configurations are typically submitted to PCA and projected onto a lower dimensional space. This
space provides a vantage point to compare individual data and to visualize the consensus.

The degree of consensus is assessed by studying the variance of the datasets. The total variance Vy
can be partitioned as follows (equation ( 9)):

(6) VT=VC+VW+VR

Where V, denotes the variance of the consensus, Vy, the within-product variance in the projection
space an Vj the residual variance. By dividing by V7, and sharing the within variance V;; among the |
products, the equation becomes (equation ( 10 )):

(7)100% = R, + X[_1 Tjw + R
R corresponds to the consensus ratio: a large R, indicates a good consensus.

Tjw indicates the within variance of product j. A small r;y indicates a bad consensus for this

particular product j.

By considering the configurations of the 10 subjects, a GPA gives a consensus ratio of 55,5%. This
variance ratio is significant with the permutation test.

The plane of the first two factors of PCA (consensus plane) is given Figure 26. The results are in
accordance with the average configuration and the gamma method:

- R10, R7, R19 are the most soft and bright reeds
- R14, R18, R13 are the less soft and bright reeds

2 FCP: Under this type of sensory profiling, each assessor or judge describes a product’s characteristics using
his/her own list of sensory attributes
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Figure 26: PCA of the consensus after GPA.

Factor 1 can be interpreted as softness, and factor 2 as brightness.

Finally, GPA does not bring different conclusions than the GAMMA method or the simple average.
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