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SUMMARY 
 
New multidimensional scaling techniques can be applied to the analysis of dissimilarity judgments on 
musical timbres in both group and individual data. These techniques make use of objective 
knowledge we have acquired on the potential physical correlates of the perceptual dimensions that 
define timbre in a so-called "timbre space". The CONSCAL technique developped by Winsberg & De 
Soete (1997) constrains the resulting spatial model such that the dimensions correspond to these 
previously established objective attributes, and such that the order of items along a given perceptual 
dimension preserves their order along these established physical dimensions. The order-preserving 
transformation is represented by a monotone spline function and yields what we subsequently 
interpret as the auditory transform that converts the physical dimension into a perceptual one. A 
reanalyis of timbre data from the literature demonstrates that this kind of model reveals large 
differences in the nature of the underlying dimensions as well as in the form of the auditory 
transforms for different listeners. An analysis of individual data also helps us understand why the 
higher dimensions in group timbre spaces published in the literature are sometimes difficult to 
interpret psychophysically. 
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INTRODUCTION 
 
Timbre is a word used to refer to a collection of auditory attributes that have been 

approached with many different experimental methods. Some involve deciding a priori 
what a given attribute is and then proceeding to explore it with unidimensional 
psychophysical scaling techniques. For example, one might be interested in roughness  
or sharpness and proceed to evaluate the relative roughness or sharpness of various 
sounds and then try to link the subjective judgments to physical quantities derived from 
the sound signals. However this approach presumes on the one hand that listeners 
know what is meant by the word presented to them, can focus on that attribute and 
ignore others possessed by the sound, and that they all make the same link between the 
word and a specific aspect of their perception. This approach also presumes that 
psychoacousticians are clever enough to imagine what all the attributes might be ahead 
of time in order to specifically and directly test them in such a way. Both of these 
assumptions do not always hold true. It is sometimes difficult to get listeners to 
understand what aspect of perception corresponds to a given word. And there may be 
perceptual attributes that  are part of complex sounds that scientists have not yet 
thought of investigating systematically. 

Multidimensional scaling (MDS) of dissimilarity judgments provides an exploratory 
data analysis tool for discovering what aspects of sound listeners use to compare 
sounds without having any a prioris concerning what these aspects might be (Plomp, 
1970; Grey, 1977; Krumhansl, 1989; Iverson & Krumhansl, 1993; McAdams, Winsberg, 
Donnadieu, De Soete & Krimphoff, 1995). And when combined with acoustic analysis 
and psychoacoustic modeling, this approach can even give rise to psychophysical 
quantification of the perception dimensions that have been discovered (Grey & Gordon, 
1978; Iverson & Krumhansl, 1993; Krimphoff, McAdams & Winsberg, 1994). We will 
briefly present the MDS approach as applied to data for groups of listeners using the 
CLASCAL technique (Winsberg & De Soete, 1993) that presumes nothing about the 
physical structure of the sounds being judged. From the acoustic analyses of the 
dimensions thus revealed we will then present a new approach, CONSCAL (Winsberg & 
De Soete, 1997), in which the MDS analysis is constrained by physical parameters that 
are known to be used by listeners for a given set of sounds. We will show that this 
approach is particularly useful in describing individual psychophysical functions on 
multiple perceptual attributes. 

 
 

MULTIDIMENSIONAL SCALING WITH CLASCAL 
 
In our experiments on the perception of musical timbre (McAdams et al., 1995), the 

aim has been to determine the structure of the multidimensional perceptual 
representation of timbre, or what has come to be called "timbre space", for individual 
notes played by musical instruments  and then to attempt to define the acoustic and 
psychoacoustic factors that underly this representation. The combination of a 
quantitative model of perceptual relations among timbres and the psychophysical 
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explanation of the parameters of the model is an important step in gaining predictive 
control of timbre in several domains such as sound analysis and synthesis and 
intelligent search in sound databases. Of course, such representations are only useful to 
the extent that they are: 1) generalizable beyond the set of sounds actually studied, 
2) robust with respect to changes in musical context, and 3) generalizable to other kinds 
of listening tasks than those used to construct the model. To the degree that a 
representation has these properties, it may be considered as a genuine model of 
musical timbre, the main feature of a good model being predictive power.  

The development of techniques for multidimensional scaling (MDS) of proximity 
data in the 1950s and 1960s have provided a tool for exploring complex sensory 
representations (see McAdams et al. 1995, for a review). These techniques have 
several advantages as well as a few limitations. The primary advantage is that from a 
relatively simple task—judging the degree of similarity or dissimilarity between all pairs 
of stimuli from a fixed set—an ordered structure is obtained that can often lend itself to 
psychophysical quantification. Applied for the first time to musical timbre by Plomp 
(1970) and subsequently by Wessel (1973) and Miller and Carterette (1975), this kind of 
analysis searches for structure in the perceptual data without obliging the experimenter 
to make any a priori assumptions about the nature of that structure. Often, we are 
interested in discovering the perceptual structure of a set of complex sound events, the 
nature of which we do not know in advance. These techniques are quite useful for this 
kind of exploratory data analysis, although they can also be used for more confirmatory 
analyses, once one has a more clear idea of the relations among acoustic and 
perceptual parameters. 

The basic principle of MDS is the following. A set of stimuli (for example sounds 
equalized in pitch, loudness, duration, and spatial position) is presented to a group of 
listeners in all possible pairs. The listeners are asked to rate the degree of dissimilarity 
between each pair of timbres on a numerical scale or with a continuous slider. This 
scale gives high similarity at one end and high dissimilarity at the other. The basic 
assumption is that there exists a mental representation of each timbre that has certain 
prominent components and the number or slider position reflects a comparison based 
on these components. Furthermore, this representation is assumed to be relatively 
similar across listeners (perhaps with some variations that will be discussed below). So 
the structure in the data should somehow reflect the perceptual structure. The data set 
for each listener can be arranged in the form of a matrix, each cell corresponding to a 
pair of timbres. The matrix or set of matrices from different subjects or conditions are 
analyzed in an MDS program, the main task of which is to fit a distance model to the 
dissimilarity data so that a monotonic or linear relation exists between the two, i.e. the 
greater the dissimilarity, the greater the distance.  

Goodness-of-fit statistics are used to determine the number of dimensions to 
retain, and also, in the case of a weighted model in which different subjects or classes of 
subjects weight the dimensions differently, the psychologically meaningful dimensions to 
interpret. The various techniques differ in terms of 1) the spatial models that are 
evaluated, 2) the loss function used to measure the goodness-of-fit of the model to the 
data, 3) the numerical algorithm used to find the parameters of the model. We prefer 
maximum likelihood methods allowing model selection using log likelihood-based 
information criteria (BIC) and Monte Carlo tests.  
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We often use the CLASCAL program for MDS analysis (Winsberg & De Soete, 
1993). This program uses a maximum likelihood procedure for fitting an extended 
Euclidian distance model to dissimilarity judgments made by a set of listeners on all 
pairs of sounds from a predetermined set. The principle behind the analysis is that 
listeners use a small number of perceptual dimensions or features associated with the 
sounds to judge how similar or dissimilar they are. It also presumes that this set of 
perceptual dimensions and features is the same for all listeners, with the possibility that 
different classes of listeners will weight the various dimensions and set of features on 
individual sounds in different ways. Part of the output of the algorithm is a set of 
coordinates in a Euclidean space. The model thus presumes that the timbres share all 
the perceptual dimensions. However, in some cases the stimuli, sounds in our case, 
may have characteristics that no other sounds in the set have (like the rapid damping of 
a harpsichord sound or the weak even-numbered harmonics in a clarinet sound). These 
sounds have "specificities" that make them dissimilar to all the other timbres, but such 
features cannot be accounted for by the shared dimensions along which vary all the 
timbres of the tested set in a continuous fashion. There are two possible sources for 
such specificities. Either a given specificity represents an additional dimension along 
which only one timbre varies, or it represents one or more features not present in the 
rest of the sounds. So the Euclidean distance model is extended to include specificities 
on individual timbres in addition to their common dimensions. 

Finally, we consider that different subjects may weight the different dimensions and 
specificities according to their perceptual salience and that subjects form "latent classes" 
that can be determined on the basis of their data. The classes are "latent" in the sense 
that they are not predetermined but are derived from the data. This latent-class 
approach was implemented in the CLASCAL program by Winsberg and De Soete 
(1993). The appropriate number of latent classes is determined and statistical tests are 
also performed to estimate the probability that each subject belongs to each class. In 
general subjects are assigned to a single class, although class belongingness can be 
ambiguous for some subjects. The combination of the extended Euclidean model and 
the latent-class approach has resulted in an extension of the CLASCAL model. This 
distance model has both specificities and class weights; the weights are applied to each 
dimension and to the set of specificities taken collectively. In this model, the distance 
between stimuli i and j, dij, is given by: 
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where xik is the coordinate of timbre i on dimension k, si is its specificity, wkc is the 
weight on dimension k for class c and vc is its weight on the set of specificities.  

This model was used by McAdams et al. (1995) to study a set of 18 musical 
instruments synthesized with frequency modulation algorithms developed by Wessel, 
Bristow and Settel (1987) on a Yamaha synthesizer. These instruments were intended 
either to imitate conventional orchestral instruments or to constitute chimeric hybrids 
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between them (e.g., the vibrone is a hybrid between vibraphone and trombone). All pairs 
of sounds were presented to 84 listeners who judged their relative dissimilarity on a 
numerical scale from 1 (very similar) to 9 (very dissimilar). In reanalyzing the data from 
the 24 professional musicians among those subjects, the CLASCAL analysis revealed a 
three-dimensional space without specificities and two latent subject classes. Figure 1 
presents this timbre space. Note that while the timbres are distributed in a relatively 
homogeneous manner along Dimensions 2 and 3, they form two large clusters along 
Dimension 1.  
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FIGURE 1. A three-dimensional timbre space found from a CLASCAL analysis on dissimilarity data from 
24 professional musicians that formed two latent classes. Underlined instrument names represent hybrids 
(oboleste = oboe+celeste, obochord = oboe+harpsichord, vibrone = vibraphone+trombone, striano = 
bowed string+piano guitarnet = guitar+clarinet, trumpar = trumpet+guitar). The corresponding acoustical 
correlates of each perceptual dimension are indicated in parentheses. 
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Individual CLASCAL analyses on each listener's data were also performed. We 

examined the best two models selected by the BIC statistic. For the best model, 13 of 
the 24 subjects had one-dimensional solutions (11 with specificities), seven had two-
dimensional models without specificities and four had three-dimensional models without 
specificities. It is very interesting to note that the individual dimensionalities are generally 
much lower than the group dimensionality. 

 
 

ACOUSTICAL CORRELATES OF PERCEPTUAL DIMENSIONS 
 
Our approach to determining the acoustic correlates of timbre space focused 

initially on the spaces of Krumhansl (1989) and McAdams et al. (1995) using the FM 
timbres, but has expanded more recently to include several other spaces, using 
analyzed/resynthesized or recorded sounds, that have been published in the literature or 
are currently submitted for publication (McAdams and Winsberg, in preparation; 
McAdams, Susini, Krimphoff, Misdariis & Smith, in preparation). We tend to use an 
empirical loop consisting of listening to the sounds in front of a visual representation of 
the timbre space and to try to get an auditory sense of what changes systematically as 
one plays a timbre trajectory across a given dimension. The initial impression then leads 
to the development of signal-processing algorithms, usually based on a time-frequency 
representation derived from a short-term Fourier analysis (phase vocoder and the like). 
We have used both the Additive environment developed at IRCAM (Depalle, García & 
Rodet, 1993) and Beauchamp's (1993) Sndan environment. The goal is to find a 
parameter that varies in a linear relation with the coordinates of the timbres along a 
given dimension in the timbre space. So we try various algorithms that provide a single 
parameter per sound and then either reject them or progressively refine them until the 
correlations are as high as possible. This approach was first applied by Krimphoff et al. 
(1994) to Krumhansl's (1989) space. The main four correlates are specified in Equations 
2-5 (LAT=Log Attack Time, SC=Spectral Centroid, SS=Spectral Smoothness, and 
SF=Spectral Flux). Attack time is the time it takes to progress from a threshold energy 
level to the maximum in the rms amplitude envelope. Spectral centroid is the center of 
gravity of the long-term amplitude spectrum. Spectral smoothness is related to the 
degree of amplitude difference between adjacent partials in the spectrum computed over 
the duration of the tone. A trumpet often has a smooth spectrum and a clarinet a jagged 
one, so the former would have a low value of SS and the latter a higher one. Spectral 
flux  is a measure of the degree of variation of the spectrum over time. 

 
  LAT  =  log10(tmax  −  t threshold)  (2) 
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where tmax is the instant in time at which the rms amplitude envelope attains its 
maximum, tthreshold is the time at which the envelope exceeds a threshold value 
(0.02*tmax in our case), T is the total duration of the sound, t is the begin time of the 
sliding short-term Fourier analysis window, Ak is the amplitude of partial k, N is the total 
number of partials, rp,p-1 is the Pearson product-moment correlation coefficient between 
the amplitude spectra at times tp and tp-1. 

For this particular timbre space based on group data, we found very high 
correlations with log attack time (LAT, r=0.94, Dim1) and spectral centroid (SC, r=.90, 
Dim2) for two dimensions and a relatively high one with the maximum instantaneous 
amplitude attained by the energy envelope of the signal (maxamp, r=.73, Dim3). Lower 
correlations were found with other factors: Dim1 was well correlated with the effective 
duration measured at –3dB from the maximal level in the rms amplitude envelope 
(r=.81), Dim2 was weakly correlated with spectral smoothness (r=.46), and Dim3 was 
weakly correlated with spectral flux (r-.43). In Krumhansl's (1989) space, one dimension 
was temporal (LAT) and two were spectral in nature (SC and SS). High correlations 
were also found for LAT with Dim1 and SC with Dim2 in the McAdams et al. (1995) 
space with all 84 listeners. However, Dim3 in this latter space was spectro-temporal in 
nature and was correlated (somewhat more weakly) with SF.  

For the individual timbre spaces, LAT explained the first dimension for 23 of the 24 
listeners. SC explained the first dimension for one listener, the second dimension for 
seven of the 11 listeners with two- or three-dimensional spaces and the third for another. 
Maxamp explained the second dimension for one listener and the third dimension for 
three of the four listeners having three dimensions. As we can see, there is a 
preponderance of LAT and SC in the physical parameters that make evident the source 
of these dimensions in the group space. The lower correlation with maxamp for the third 
dimension of the group space is explained by its importance for a small number of 
listeners. However, the fact that it shows up in the group space is perhaps due to the 
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fact that it predominates the third dimension among listeners having this many 
dimensions. 

 
 

CONSTRAINED MULTIDIMENSIONAL SCALING WITH CONSCAL 
 

It is at times difficult to determine the appropriate dimensionality based on 
goodness-of-fit statistics. The unweighted distance model is rotationally invariant, so if 
the unweighted model has been used, it is often difficult to find a rotation such that all 
dimensions are interpretable. Even when the weighted model is used, removing 
rotational invariance, it is sometimes difficult to interpret all of the recovered 
"psychological" dimensions. Moreover, this problem may occur in situations where a 
small number of physical parameters can be used to describe the objects. In such a 
case it may be more fruitful to use the information at hand and constrain the dimensions 
of the distance model to be monotone transformations of these physical dimensions. 
This is what the CONSCAL program (Winsberg & De Soete, 1997) does. 

CONSCAL constrains the resulting spatial model such that the order of items along 
a given perceptual dimension preserves their order along a previously established 
physical dimension. The fit between perceptual and physical dimensions is achieved 
with monotone spline functions and yields what may be interpreted as the auditory 
transform of the physical dimension needed to obtain the perceptual one. The distance 
model in CONSCAL has the following form for the case of an identity metric in which the 
dimensions are orthogonal: 
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There are K dimensions and the physical predictor variable k is denoted by superscript 
(k). I is the K×K identity matrix. fi is the set of perceptual coordinates for timbre i, 
represented as the vector of monotone transformations for timbre i, the kth component 
being 
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(k) xi
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(k) ⋅( ) is the spline monotone transformation for dimension k 

and 
    
xj

(k) is the physical coordinate of object i on dimension k. The transformation 

function for each dimension is defined to be zero at the smallest physical value. A more 
complex model exists for partially correlated dimensions in which the identity matrix is 
replaced by a symmetric matrix describing the relative degree of rotation of each axis 
with respect to each other axis. 

A spline function is a piecewise polynomial joined at a finite number of junction 
points defined over the range of values under consideration. The order of the splines is 
the maximal degree of the polynomials plus one. In addition to the maximal degree of 
the splines, the number and location of a strictly increasing number of junction points 
must be specified in advance, as well as the number of continuous derivatives including 
the the zeroth derivative (the function), which exist at each junction point. In the 
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important special case where the spline has maximal continuity equal to the order of the 
splines at each junction point, the number of parameters required for each dimension is 
the order plus the number of interior junction points. The number of degrees of freedom 
in this model is equal to the sum of the number of parameters per dimension across all 
dimensions. Note that this model is extremely parsimonious compared to classical MDS 
models since one can add a lot of stimuli and subjects without increasing the number of 
model parameters, provided that the number of dimensions remains the same and the 
transformation remains as smooth.  

We applied this approach to the group data for the 24 professional musicians 
comparing the timbre set presented in Figure 1. We tested for the parameters LAT and 
SCG for dimensions 1 and 2 and tried various physical parameters for dimension 3 (SS, 
SF, and maxamp). Using Monte Carlo tests, this model was then compared to the 
CLASCAL model with specificities and latent classes. The CONSCAL model was 
rejected in favor of the CLASCAL model in all cases. Given that the individual analyses 
showed differences in dimensionality and in the underlying physical nature of the 
dimensions across listeners, we selected a subset of nine listeners that had only two 
dimensions in their individual analyses. Further, these two dimensions always correlated 
best with LAT and SC. CLASCAL still modeled the data better than CONSCAL. This 
latter result suggests large differences in the psychophysical functions relating the 
physical variables to the perceptual dimensions for individual subjects.  

We therefore performed the CONSCAL/CLASCAL comparison on the data for 
individual listeners. For eight of the nine listeners, the CONSCAL model fit the data 
better than the CLASCAL model, and for the ninth listener the two models were 
equivalent. This result demonstrates clearly that the CONSCAL approach can be quite 
useful in modeling the perception of complex sounds for individual data. But why does 
the group analysis fail? The answer is coherent with the hypothesis that led us to 
examine the individual analyses and can be gleaned from inspection of Figure 2.  
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FIGURE 2. Individual psychophysical functions derived with the program CONSCAL for nine musician 
listeners having two-dimensional perceptual spaces. The upper panel shows the functions for log attack 
time and the lower one for spectral centroid. Each graph represents the coordinate on the perceptual 
dimension as a function of the physical value for each of the 18 synthetic timbres. The curves for three 
listeners discussed in the text are plotted with solid lines and open symbols. 
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attached to each dimension different (as would be estimated for individual subjects by 
INDSCAL or classes of subjects by CLASCAL), but that the forms of the psychophysical 
functions are different. To illustrate this point, the functions for three subjects have been 
highlighted in the figure. Listener L1 (open triangles) has the lowest values for attack 
time and the function is nearly linear. L1 has the second highest function for spectral 
centroid also with a nearly linear function. Listener L2 (open squares) has fairly high 
values for attack time with a slightly compressive function at higher values of this 
physical variable, while also having very low values for spectral centroid with a strongly 
compressive function. Finally, listener L3 (open circles) has intermediate values for LAT 
with a nearly linear function and high values for SC with strong compression at low 
physical values and a rise at higher values. Thus the forms of these psychophysical 
functions are very different across individuals, perhaps indicating differences in either 
judgment strategy or even in perceptual sensitivity to or sensory representation of these 
physical parameters. At a more global level, this analysis approach also allows us to 
demonstrate differences in the degree of variability across listeners for a given physical 
variable. Note that the variation across functions is much smaller for attack time than for 
spectral centroid. 

 
 

CONCLUSIONS 
 
The CONSCAL approach to multidimensional psychophysical scaling has 

demonstrated that previous knowledge of physical parameters can allow the 
determination of auditory transforms within a multiparameter context. However, this 
approach does not work as well as the CLASCAL model on group data. The latter 
approach may work better on group data since it includes specificities and latent class 
weights, but also because the fitting of spline transformations of physical values to 
model the perceptual ones is inherently noisy on group data due to individual differences 
in auditory transforms of physical parameters. When analyzing individual data, to the 
contrary, good fits are found and the psychophysical functions are well estimated.  
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