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Abstract	

Music	affects	us	physically	and	emotionally.	Determining	when	changes	 in	 these	reactions	

tend	 to	 manifest	 themselves	 can	 help	 us	 understand	 how	 and	 why.	 Activity	 Analysis	 quantifies	

alignment	 of	 response	 events	 across	 listeners	 and	 listenings	 through	 continuous	 responses	 to	

musical	 works.	 Its	 coordination	 tests	 allow	 us	 to	 determine	 if	 there	 is	 enough	 inter-response	

coherence	to	merit	linking	their	summary	time	series	to	the	musical	event	structure	and	to	identify	

moments	of	exceptional	alignment	in	response	events.	In	this	paper,	we	apply	Activity	Analysis	to	

continuous	 ratings	 from	 several	 music	 experiments,	 using	 this	 wealth	 of	 data	 to	 compare	 its	

performance	with	that	of	statistics	used	in	previous	studies.	We	compare	the	Coordination	Scores	

and	nonparametric	measures	of	local	activity	coordination	to	other	coherence	measures,	including	

those	 derived	 from	 correlations	 and	 Cronbach's	 α.	 Activity	 Analysis	 reveals	 the	 variation	 in	

coordination	 of	 participants’	 responses	 for	 different	 musical	 works,	 picks	 out	 moments	 of	

coordination	 in	 response	 to	 different	 interpretations	 of	 the	 same	 music,	 and	 demonstrates	 that	

responses	along	the	two	dimensions	in	continuous	2D	rating	tasks	can	be	independent.	

Key	 words:	 continuous	 responses	 to	 music,	 statistics,	 time	 series	 analysis,	 agreement,	

response	coordination		
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Continuous	 response	measures	 are	 a	 promising	means	 of	 investigating	 our	 experience	 of	

music.	By	sampling	aspects	of	participants'	responses	as	they	listen,	these	measures	can	capture	the	

development	 of	 behavior,	 understanding,	 and	 feeling	 through	 time.	 However,	 interpreting	 these	

traces	 of	 a	 listener's	 response	 is	 not	 a	 straightforward	 task.	 Whether	 continuous	 ratings,	 skin	

conductance,	 or	 heart	 rate	 variability,	 these	 time	 series	 contain	 a	 great	 deal	 of	 information	with	

ambiguous	 relationships	 to	 the	 stimulus	 presented.	 A	 range	 of	 techniques	 have	 been	 borrowed	

from	disciplines	adjacent	to	music	cognition,	each	capturing	different	patterns	in	responses	based	

on	 their	own	assumptions.	This	paper	presents	an	analytical	 framework	we	call	Activity	Analysis	

that	is	specifically	designed	to	explore	and	evaluate	coordination	in	continuous	responses	to	music,	

evaluating	when	responses	of	different	listeners	are	reliably	active	at	the	same	time.	

Many	studies	have	focused	on	evaluating	the	relationship	between	continuous	ratings	and	

time-varying	exogenous	variables	such	as	descriptions	of	loudness,	tempo,	tonality,	and	timbre	on	a	

second-to-second	basis	(Schubert,	2004;	Korhonen,	Clausi,	&	Jernigan,	2006;	Coutinho	&	Cangelosi,	

2009;	 Dean	 &	 Bailes,	 2010;	 Dean,	 Bailes,	 &	 Schubert,	 2011).	 Although	 the	 products	 of	 Activity	

Analysis	 could	 be	 used	 to	 similar	 ends,	 their	 primary	 function	 is	 to	 describe	 and	 evaluate	 the	

responses	 themselves,	 looking	within	a	 set	of	 listenings	 for	 signs	of	 coordinated	 response	events	

that	may	be	aligned	with	the	stimulus.	A	set	of	continuous	responses	to	the	same	stimulus,	each	of	

the	same	response	measure,	sample	rate,	and	duration,	are	here	referred	to	as	a	collection.	

The	 systematic	 study	of	music’s	 impact	on	 listeners	hinges	on	 recognizing	what	 response	

patterns	are	common	and	repeatable,	 indications	of	effects	shared	across	 listeners	and	 listenings.		

Continuous	 ratings	 are	 often	 highly	 variable	 and	 idiosyncratic	 (Dean,	 Bailes,	&	Dunsmuir,	 2014),	

and	a	collection	of	 responses	 to	any	given	piece	of	music	may	not	always	paint	a	clear	picture	of	

how	 it	 can	 influence	 listeners.	 All	 accessible	 traces	 of	 response	 are	 vulnerable	 to	 complications,	

some	 of	 interest	 to	 music	 cognition	 like	 a	 listener’s	 musical	 history,	 others	 less	 so,	 such	 as	 the	
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mechanics	of	a	rating	interface	or	of	the	specific	reporting	task.	Given	a	collection	of	responses	from	

a	group	of	participants	to	a	piece	of	music,	do	they	agree	enough	to	justify	relating	their	time	course	

to	 what	 the	 listeners	 heard?	 Activity	 Analysis	 provides	 a	 means	 for	 testing	 this	 against	 a	 well-

defined	 null	 hypothesis	 of	 uncoordinated	 responses.	 These	 tests	 of	 coordination	 are	 designed	 to	

answer	the	question	of	whether	responses	are	active	in	such	a	way	that	we	could	presume	that	the	

music	is	having	some	repeatable	coordinating	effect	on	them.	

Continuous	 ratings	 to	 music	 have	 inspired	 a	 number	 of	 methodological	 papers,	 each	

proposing	techniques	that	prioritize	different	information	in	the	collections	of	times	series.	Nielsen	

(1987)	 used	 only	 the	 average	 tension-rating	 time	 series	 to	 describe	 or	 connect	 ratings	with	 the	

presented	 music.	 Others	 have	 clarified	 or	 reduced	 average	 series	 with	 down-sampling	 (Chapin,	

Jantzen,	 Kelso,	 Steinberg	 &	 Large,	 2010)	 or	 by	 taking	 the	 first-order	difference	 (Schubert,	 2004).	

Time	series	analysis	(Bailes	&	Dean,	2012),	from	the	tradition	of	econometrics,	and	functional	data	

analysis	(Levitin,	Nuzzo,	Vines,	&	Ramsay,	2007),	out	of	mathematical	biology,	have	demonstrated	

the	 insights	 such	 tools	 support.	 And	 yet,	 across	 the	 many	 approaches	 proposed,	 inter-response	

agreement	or	coherence	has	continued	to	be	difficult	to	interpret	across	studies.	

The	degree	of	agreement	or	coherence	across	a	collection	of	responses	can	be	assessed	in	

several	ways.	Making	a	claim	about	the	reliability	of	an	average	or	other	summary	statistic	depends	

on	 having	 a	 good	 idea	 of	 what	 uncoordinated	 or	 unreliable	 responses	 would	 look	 like.	 After	

introducing	 Activity	 Analysis	 in	 the	 first	 section	 of	 this	 paper,	 we	 explore	 and	 compare	 other	

techniques	 for	 assessing	 coherence	 in	 continuous	 responses	 to	 music	 in	 the	 section	 Activity	

Analysis	in	Context.	For	this,	we	use	a	large	set	of	response	collections,	containing	over	a	thousand	

unidimensional	 continuous	 ratings	 from	 five	 studies,	 to	 compare	 Activity	 Analysis	 tests	 with	

statistics	 used	 in	 other	 papers	 to	 quantify	 coherence.	 We	 estimate	 false-positive	 thresholds	 for	

these	 statistics,	 including	 Cronbach's	 α,	 average	 inter-response	 correlations,	 and	 correlations	
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between	averages	of	different	populations'	responses	to	the	same	works.		

Another	 recurring	question	 is	how	 to	mark	moments	of	distinct	 agreement	 in	 continuous	

responses	 to	 music.	 The	 statistical	 burden	 of	 identifying	 significant	 time	 points	 is	 not	 trivial.	

Activity	 Analysis	 evaluates	 local	 activity	 by	 employing	 a	 nonparametric	 strategy	 to	 quantify	 the	

unexpectedness	of	simultaneous	activity	events.	Also	in	Activity	Analysis	in	Context,	we	show	how	

this	method	contrasts	with	the	second-order	standard	deviation	(Schubert,	2007)	and	a	clever	use	

of	Wilcoxon's	test	proposed	by	Grewe,	Nagel,	Kopiez,	and	Altenmüller	(2007).		

Coordination	 between	 response	 events	 such	 as	 changes	 in	 ratings	 is	 worth	 measuring	

because	 it	 can	 expose	 useful	 information	 about	 reliable	 elements	 of	 our	musical	 experience.	 The	

section	on	Activity	Analysis	on	the	Experimental	Data	demonstrates	that	musical	stimuli	encourage	

different	degrees	of	coherence	 in	 the	continuous	ratings	of	participants,	and	some	of	 these	 fail	 to	

inspire	statistically	significant	coherence	in	rating	changes.	Different	audiences	of	participants	can	

respond	similarly	 to	musical	 stimuli,	 both	 in	degrees	of	 coherence	within	groups	and	 in	 the	 time	

course	of	subjective	emotion	rating	changes.	However,	different	interpretations	of	the	same	piece	of	

music	 can	 yield	 noticeably	 distinct	 patterns	 of	 local	 activity	 in	 subjective	 emotional	 responses.	

Addressing	 broader	 methodological	 questions	 for	 continuous	 ratings,	 we	 evaluate	 the	 impact	 of	

two-dimensional	 rating	 interfaces	 for	 emotion	 and	 find	 no	 systematic	 interference	 between	 the	

dimensions.	We	also	find	that	emotional	arousal	ratings	are	significantly	more	coherent	than	those	

of	emotional	valence.	

Although	 broad	 in	 scope,	 this	 paper	 aims	 to	 equip	 music	 cognition	 researchers	 with	

statistical	 tools	and	a	richer	understanding	of	what	they	offer	to	the	 investigation	of	when	we	are	

affected	 by	 music	 as	 we	 listen.	 Whether	 through	 Activity	 Analysis	 or	 careful	 application	 of	

alternatives	(including	those	discussed	below),	we	encourage	fellow	researchers	to	dig	deeper	into	

ratings	and	other	continuous	responses	collected	during	music	listening.	
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Activity	Analysis	

Continuous	 measures	 of	 experience,	 from	 sensors	 tracking	 blood	 pressure	 to	 digital	

interfaces	for	reporting	felt	emotion,	are	collected	by	taking	measurements	at	a	sampling	rate	that	

is	appropriate	 for	 the	response	signal	of	 interest.	However,	regularity	of	sampling	does	not	 imply	

that	 the	 monitored	 phenomenon	 behaves	 smoothly;	 in	 many	 time	 series,	 some	 time	 points	 are	

more	 salient	or	 informative	 than	 their	neighbors.	For	Activity	Analysis,	we	 focus	on	 these	 salient	

moments,	selecting	one	kind	of	activity	at	a	time,	and	investigate	these	specific	events	rather	than	

try	to	explain	every	sample	point	of	the	original	time	series.		

Consider	continuous	ratings	to	music	and	how	they	are	generated.	The	task	of	constant	self-

assessment	 is	 onerous,	 and	 it	 seems	 implausible	 that	 participants	 succeed	 in	 simultaneously	

attending	 to	 the	music,	 their	 response	 to	 the	music,	 and	 the	 process	 of	 reporting	 these	 through	

physical	gesture,	all	without	break.	 It	 is	more	 likely	 that	 they	reach	a	compromise	between	these	

demands,	for	example,	by	considering	what	has	happened	and	what	the	music	is	likely	to	do	next,	

and	 then	 communicating	 the	 dynamics	 of	whatever	 they	 decide	 to	 report	 through	 a	 gesture	 that	

does	not	require	constant	monitoring	to	execute.	Figure	1A	shows	a	representative	response	of	one	

listener’s	rating	of	perceived	emotional	valence	to	the	Allegro	movement	of	Liszt’s	Piano	Concerto	

No.	 1.	 This	 rating	was	 collected	 via	mouse	 cursor	 on	 a	 computer	 screen	 in	 a	 2D	 arousal-valence	

rating	 task,	 sampled	 at	 1	 Hz,	 while	 the	 participant	 listened	 over	 headphones	 (Korhonen,	 2004,	

details	in	Appendix	1).	This	response	alternates	between	the	positive	and	negative	valence	ranges,	

with	moments	of	sudden	change	between	intervals	of	slow	or	no	change.	How	do	we	interpret	the	

rating	values	in	intervals	with	many	quick	changes,	for	example	from	20	s	to	70	s	in	Figure	1A?	Are	

the	smaller	dips	in	emotional	valence	at	145	s	(0.15	to	0.105)	and	195	s	(0.1	to	-0.02)	idiosyncratic	

adjustments	by	this	one	listener,	or	are	these	subtle	reactions	also	reported	by	others?		

[insert	Figure	1]		
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The	 scientific	 investigation	 of	 continuous	 responses	 to	 music	 begins	 by	 studying	 robust	

repeatable	 patterns.	 Experiments	 collecting	 continuous	 ratings	 to	 music	 have	 tended	 to	 gather	

dozens	 of	 responses	 to	 look	 for	what	might	 be	 predictable	 and	 consistent.	 And	with	 these	many	

samples	comes	the	need	for	effective	summaries	of	these	data.	

The	most	 common	 summary	 for	 continuous	 rating	 collections	 is	 the	 average	 time	 series,	

essentially	the	average	rating	value	at	each	sampled	time	point	across	all	responses	to	the	stimulus.	

But,	when	aggregating	time	series,	there	is	a	risk	that	the	variance	at	each	sample	point	may	not	be	

normally	 distributed,	 and	 this	 cross-sectional	 dispersion	 may	 change	 over	 time	

(heteroscedasticity).	 Some	 kinds	 of	 variability	 can	 be	 alleviated	 by	 treating	 the	 responses	 with	

particular	 transformations,	 e.g.	 filtering	 for	 a	 particular	 rate	 of	 change	 or	 dynamic	 time	warping	

when	 there	 exist	 sufficient	 criteria	 for	 realignment.	 The	 average	 time	 series	 very	 specifically	

discards	 the	 variability	 across	 responses,	 and	 the	 resultant	 time	 series	 is	 always	 compressed	

relative	 to	 the	 range	 employed	 by	 individual	 responses,	 as	 can	 be	 seen	 in	 Figure	 2A	 for	 valence	

ratings	 to	 the	 same	 Liszt	 excerpt.	 Although	 most	 of	 the	 responses	 cover	 more	 than	 half	 of	 the	

valence	scale,	the	mean	is	restricted	to	less	than	2/3	of	the	median	rating	range	used	(42%).	This	

aggregate	also	results	in	a	loss	of	some	interesting	information,	such	as	instances	of	disagreement,	

for	example	between	150	s	and	175	s	in	this	excerpt.	This	moment	immediately	follows	a	structural	

boundary,	 featuring	 modal	 mixture	 as	 instruments	 exchange	 melodic	 lines.	 The	 responses	 are	

numerous	 both	 in	 the	 positive	 and	 negative	 valence	 range	 and	 some	 ratings	 move	 in	 opposite	

directions	 around	 170s,	 leaving	 the	 average	 flat	 in	 the	 neutral	 middle.	 In	 considering	 only	 the	

average,	 we	 cannot	 differentiate	 moments	 of	 disagreement	 from	moments	 with	 popular	 middle	

rating	values.	For	some	types	of	analysis,	this	is	not	a	problem,	but	when	reactions	are	sparse	over	

time	 or	 we	 are	 interested	 in	 capturing	 behaviors	 exhibited	 by	 a	 minority	 of	 participants,	 the	

average	can	obscure	important	information.	
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[insert	Figure	2]		

Activity	Events		

One	limitation	of	continuous	ratings	is	the	uncertain	accuracy	of	the	responses	reported,	in	

terms	 of	 the	 use	 of	 the	 rating	 scale	 and	 the	 criteria	 used	 for	 reporting	 changes	 in	 value.	 An	

advantage	of	continuous	ratings,	on	the	other	hand,	is	the	specific	timing	of	changes	in	the	reported	

response.	 Focusing	 on	 response	 dynamics,	 timing	 can	 contribute	 to	 identifying	 influences	 of	 the	

time-varying	stimulus	itself.	We	can	consider	causal	factors	for	these	instances	of	active	reporting	

by	 virtue	 of	 the	 sequence	 of	 information	presented	 to	 participants.	 Activity	Analysis	 is	 an	 event-

based	 approach	 to	 the	 study	 of	 continuous	 response	 to	music:	we	 choose	what	 kind	 of	 response	

event	is	of	interest	(activity)	and	then	evaluate	whether	this	activity	coincides	across	the	measured	

responses	 in	 a	 collection.	 The	 process	 depends	 on	 defining	 the	 event	 we	 want	 to	 track	 and	 on	

translating	each	response	into	a	point	process,	a	time	series	of	0s	and	1s	with	1	indicating	an	event	

occurring	within	a	given	time	frame.		

For	a	given	response	measure	and	event	definition,	we	can	assess	how	much	event	activity	

occurs	within	a	response	time	series.	Some	events	are	very	frequent,	for	example	rating	changes	in	

perceived	 tension	 (Fredrickson,	 1995),	 whereas	 other	 events	 are	 more	 rare,	 such	 as	 large-scale	

peaks	in	aesthetic	experience	(Capperella-Sheldon,	1992).	A	simple	estimate	of	event	frequency	is	

the	 activity	 rate,	 calculated	 by	 the	 number	 of	 detected	 events	 divided	 by	 the	 duration	 of	 the	

stimulus.	 Participants’	 recorded	 responses	 may	 differ	 in	 rate	 for	 a	 given	 event,	 but	 beside	 this	

variation,	activity	rates	are	also	dependent	on	the	stimulus,	the	continuous	response	collected,	and	

the	event	type.	

The	 lower	 three	panels	of	Figure	1	 show	such	activity	time	series,	 each	a	different	kind	of	

response	event	in	the	individual	rating	of	perceived	emotional	valence:	moments	with	increases	in	
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valence	 (1B),	 moments	 of	 decreases	 (1C),	 and	 moments	 when	 the	 rating	 moves	 between	 the	

positive	 and	 negative	 halves	 of	 the	 valence	 scale	 (1D).	 Many	 kinds	 of	 response	 events	 can	 be	

captured	 in	 this	 fashion.	 Just	 as	 the	 researchers	 must	 decide	 what	 kind	 of	 task	 to	 give	 the	

participants,	 the	 decision	 concerning	what	 kind	 of	 event	 to	 analyze	 depends	 on	 the	 questions	 at	

hand.	 For	 the	 following	 analyses,	 the	 active	 events	 in	 question	 are	 changes	 in	 ratings,	 either	

increases	 (inc),	decreases	 (dec)	 or	 both,	 as	 they	 are	 particularly	 relevant	 to	 continuous	 ratings	 of	

emotion	 and	 tension.	 Unless	 otherwise	 specified,	 responses	 showing	 an	 increase	 or	 decrease	 in	

rating	values	of	at	least	2.5%	of	the	rating	scale	over	a	2-s	time	frame	are	considered	to	be	an	active	

event	at	that	moment.	This	definition	of	active	events	is	discussed	in	more	detail	in	the	section	on	

the	parameters	of	coordination	tests.		

Although	 the	 event-activity	 time	 series	 for	 an	 individual	 response	 invites	 speculative	

comparison	 to	 the	 stimulating	 music,	 we	 cannot	 make	 much	 of	 these	 events	 in	 isolation;	 many	

extra-musical	 factors	 may	 influence	 the	 ratings,	 preventing	 us	 from	 drawing	 conclusions	 about	

what	 is	 related	 to	 the	 stimulus	 for	 a	 single	 listener.	 If	 we	 wish	 to	 generalize	 from	 responses	

collected	to	the	impact	of	this	or	other	pieces	of	music,	it	is	important	to	distinguish	which	effects	

are	reliable,	showing	up	in	a	significant	proportion	of	responses	in	a	collection.	

Activity	Levels	and	Activity-Level	Time	Series	

Given	 a	 collection	 of	 responses	 to	 the	 same	 stimulus,	 we	 can	 apply	 the	 same	 event	

assessment	criteria	to	each	response	and	then	count	how	many	responses	show	the	same	kind	of	

event	 at	 approximately	 the	 same	 time.	 Response	 events	 are	 not	 expressed	 instantaneously,	 and	

responses	to	the	same	stimulus	event	may	be	reported	by	different	participants	at	different	delays,	

so	we	define	a	window	of	synchrony:	an	interval	of	time	over	which	response	events	are	counted	as	

occurring	 together.	The	activity	level	 is	 then	 the	proportion	of	 responses	showing	 the	same	event	

within	the	window	of	synchrony.	By	definition,	activity	levels	range	from	0	to	1,	by	which	0	means	
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no	responses	contain	the	event	in	question	within	the	time	frame	considered,	and	.5	means	that	half	

of	the	responses	in	the	collection	are	active	within	the	window	of	synchrony.		

The	 activity-level	 time	 series	 comes	 from	 assessing	 activity	 levels	 in	 a	 sequence	 of	 time	

frames	over	the	collection’s	time	series.	Depending	on	the	goal	of	the	analysis,	frames	may	need	to	

be	 nonoverlapping.	 Figure	 2	 shows	 multiple	 activity-level	 time	 series	 for	 the	 perceived	 valence	

ratings	 of	 the	 Liszt	 excerpt	 from	 the	Korhonen	 (2004)	 experiment.	 In	 this	 paper,	 plots	 reporting	

activity-level	time	series	with	bar	graphs	depict	nonoverlapping	time	frames,	as	seen	in	Figure	2D.	

The	 multiple	 smoothed	 histograms	 above	 it	 (2B	 and	 2C)	 report	 activity	 levels	 for	 different	

minimum	thresholds	of	rating	change	activity	in	overlapping	frames	with	a	hop-size	of	one	sample	

(1	 s).	With	 these	series,	we	can	compare	 the	 rating	changes	 in	 the	single	 response	of	Figure	1	 to	

those	 across	 the	 collection.	 The	 rapid	 changes	 from	20	 s	 to	 70	 s	 are	 shared	 by	many	 but	 not	 all	

participants,	visible	 in	 the	dark	spikes	 in	2B	 (increases)	and	2C	 (decreases).	The	shallow	 fall	 and	

rise	 shown	 in	 the	 single	 response	 of	 Figure	 1	 at	 145	 s	 is	 not	 common	 enough	 to	 be	 clearly	

distinguishable,	however	the	slightly	larger	fall	and	rise	from	195	s	can	be	read	in	the	lighter	shades	

of	2C	and	2B,	reporting	changes	greater	than	.025	or	.005	of	the	rating	scale.	

A	 popular	 rule	 of	 thumb	 for	 the	 spread	 of	 rating	 responses	 to	 a	 stimulus	 event	 is	 the	

assumption	 that	 most	 participants’	 reactions	 will	 be	 expressed	 within	 a	 2-s	 interval	 (Schubert,	

2010;	1-3	s	after	the	stimulus	event).	There	has	not	been	direct	investigation	into	the	dispersion	of	

latency	in	rating	changes	in	reaction	to	complex	ongoing	musical	stimuli,	but	precedence	and	tests	

of	parameters	depicted	in	Appendix	3	of	this	paper	suggest	that	2	s	is	not	an	unreasonable	window	

of	synchrony.		

The	activity-level	time	series	is	a	summary	of	the	responses	in	a	collection,	focused	on	the	

timing	of	a	particular	response	behavior.	This	representation	is	complementary	to	the	average	time	

series;	it	yields	distinct	insights	into	what	is	typical	of	the	individual	responses	in	the	collection.	By	
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plotting	the	activity	levels	of	decreases	in	ratings	below	zero,	as	in	Figures	2D	and	3B,	we	can	see	a	

pattern	of	alternation	between	moments	in	which	there	are	coincidental	rating	changes	first	in	one	

direction	and	then	in	the	other.	The	same	fall	and	rise	around	200	s	from	the	response	in	Figure	1	

was	shown	to	be	popular	across	the	collection	in	Figures	2B	and	2C,	and	this	can	also	be	read	as	a	

wave	in	Figure	2D:	the	activity-levels	for	the	decreases	reaching	a	maximum	of	0.4	before	200s	and	

the	increases	peaking	at	0.31	only	4	s	later.	The	shift	of	the	average	valence	rating	at	this	moment,	

in	Figure	2A,	is	small	considering	the	proportion	of	participants	actively	reporting	similar	changes.		

Although	the	participants	do	not	consistently	report	the	same	amount	of	change,	increases	

and	 decreases	 can	 be	 popular	 and	 coherent	 at	 some	moments.	 At	 other	 times,	 rating	 responses	

show	changes	in	opposite	directions,	and	these	become	visible	in	the	activity-level	time	series	plots	

by	 the	 superposition	of	 increases	 and	decreases	 at	 a	 given	moment.	Differences	 in	 rating-change	

activity	levels	yield	greater	contrast	between	successive	moments	than	average	rating	scale	values,	

encouraging	distinct	 conclusions.	The	 activity-level	 time	 series	 each	 show	 three	distinct	 peaks	 in	

the	 first	 50	 s,	 whereas	 the	 average	 reports	 only	 one.	 While	 the	 average	 valence	 rating	 creeps	

upward	from	235	s	to	245	s	 in	Figure	2A,	2D	shows	that	a	substantial	subset,	at	 least	9	of	 the	35	

participants,	were	also	reporting	decreases	 in	perceived	emotional	valence.	From	here	we	do	not	

know	if	they	were	reacting	to	harmonic	modal	mixture,	a	decrease	in	loudness,	or	other	factors,	but	

at	240	s	these	participants	reported	an	experience	contrary	to	the	dominant	narrative.		

Figure	 3	 shows	 activity	 levels	 of	 increases	 and	decreases	 in	 a	 collection	 of	 felt	 emotional	

intensity	ratings	to	Mozart’s	Overture	to	The	Marriage	of	Figaro,	K492.	While	alternation	between	

the	 two	 forms	 of	 rating-change	 activity	 is	 visible	 to	 our	 pattern-hungry	 eyes,	 the	 proportion	 of	

responses	showing	concurrent	 increases	 is	hardly	ever	as	much	as	half	of	 those	 in	 the	collection.	

Decreases	are	even	more	thinly	spread,	with	at	most	a	third	of	the	participants	reporting	decreases	

in	felt	emotional	intensity	in	any	given	2-s	time	frame.	Although	activity-level	time	series	for	rating	
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changes	 are	 not	 always	 so	 sparse,	 this	 representation	 calls	 into	 question	 the	 robustness	 of	 the	

music’s	influence	on	these	responses.		

[insert	Figure	3]	

The	moment	with	 the	 highest	 concurrent	 activity	 for	 the	 collection	 in	 Figure	 3B	 is	 in	 the	

first	20	s	of	the	music.	As	discussed	by	Schubert	(2013),	rating	responses	often	have	their	 largest	

changes	 shortly	 after	 the	beginning	of	 the	 stimulus,	 and	 such	 changes	 can	have	disproportionate	

weight	on	subsequent	analyses	as	they	integrate	the	mechanics	of	orienting	to	a	new	stimulus	with	

the	task	of	reporting.	We	are	reluctant	to	discard	these	early	instances	of	response	activity	in	this	

analysis.	 The	 relative	 magnitude	 of	 change	 has	 no	 effect	 on	 the	 event	 types	 used	 here,	 and	 the	

timing	 of	 changes	 may	 still	 show	 stimulus-related	 synchrony.	 For	 example,	 the	 initial	 peak	 in	

activity	shown	in	Figure	3B	aligns	with	the	first	fortissimo/tutti	moment	in	the	music.	

Testing	Coordination	in	Activity	

A	 test	 is	 needed	 to	 evaluate	 whether	 these	 response	 changes	 are	 likely	 to	 be	 an	

accumulation	of	noise,	rather	than	driven	by	the	music.	For	this,	the	coordination	tests	of	Activity	

Analysis	use	 the	distribution	of	activity	 levels	 in	 the	activity-level	 time	series,	a	model	of	random	

activity,	and	a	probability	estimate.	By	themselves,	tests	of	coordination	are	not	tests	of	whether	a	

musical	stimulus	is	effective,	nor	can	they	measure	whether	participants	were	performing	the	task.	

However,	 if,	 over	 time,	 a	 stimulus	 changes	 along	 a	dimension	 relevant	 to	 the	 rating	 task	 and	 the	

participants	 communicate	 their	 experiences	 with	 sufficient	 accuracy,	 the	 rating-change	 activity	

should	show	significant	coordination.	This	coordination	would	be	expressed	in	the	distribution	of	

activity	levels	across	the	activity-level	time	series–many	moments	of	relatively	high	activity	levels	

as	well	 as	 a	 great	 number	 of	 remarkably	 low	 activity	 levels.	 In	 contrast,	 if	 responses	 seem	 to	 be	

changing	independently	of	each	other	(and	the	stimulus),	the	distribution	of	activity	levels	should	
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be	less	varied.	With	a	plausible	model	of	this	"less	varied"	distribution	of	activity	levels	for	random	

uncoordinated	activity,	we	can	test	whether	our	experimental	data	are	all	that	different.		

For	 rating	 changes,	 we	 use	 a	 simple	 parametric	 model	 of	 random	 activity,	 as	 if	 the	

responses	changed	independently	of	each	other.	The	average	activity	rate	across	the	responses	in	

the	collection	is	fed	into	a	binomial	model	to	generate	a	distribution	fit	to	the	size	and	character	of	

the	experimental	data	(Appendix	2).	Demonstrating	this	on	the	Emotional	 intensity	ratings	 to	 the	

Figaro	Overture,	Figure	3	(C	and	D)	shows	the	actual	activity-level	distributions	for	rating	increases	

and	 decreases	 and	 the	 random	 activity	 model	 for	 each	 type	 of	 activity.	 The	 random	 activity,	 in	

black,	 is	 slightly	more	concentrated	around	 their	averages,	and	 the	experiment	collection	reports	

twice	 as	many	2-s	 time	 frames	with	 zero	 rating	 increases	 than	 the	 random	activity	model	would	

suggest	(C).	

To	 evaluate	 the	 significance	 of	 these	 differences	 between	 this	 collection's	 rating	 changes	

and	 the	 model's,	 we	 apply	 Pearson’s	 Chi-squared	 Goodness-of-Fit	 Test,	 a	 standard	 statistic	 for	

comparing	 experimental	 data	 to	 random	 distributions.	 The	 goodness-of-fit	 test	 evaluates	 the	

likelihood	 that	 sampling	 from	 the	 random	 model	 would	 yield	 distributions	 similar	 to,	 or	 more	

extreme	 than,	 that	 of	 the	 experimental	 data,	 defining	 a	 p-value	 to	 be	 compared	 with	 some	

acceptable	Type	I	error	rate,	for	example,	α	=	.05.		

There	 is	an	 important	condition	 for	applying	Pearson’s	goodness-of-fit	 test:	each	category	

or	bin	of	the	expected	distribution	(the	random	model)	must	have	at	least	five	samples.	However,	

the	activity	levels	measured	in	a	continuous	response	collection	like	that	of	Figure	3	(B,	C,	and	D),	

do	not	cover	all	possible	values,	nor	are	they	expected	to	in	our	random	models.	In	fact,	the	highest	

activity	levels,	such	as	100%	of	the	ratings	changing	in	the	same	2	s	window,	never	occur	in	most	

experimental	 data	 collections,	 and	 so	 the	 categories	 of	 possible	 activity	 levels	 cannot	 be	 used	

directly	 in	 this	 goodness-of-fit	 test.	 To	 get	 around	 this,	 we	 make	 larger	 bins	 of	 activity	 levels,	
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counting	 together	 time	 points	 of	 similar	 degrees	 of	 activity	 levels	 (low,	 middling,	 high),	 using	 a	

simple	algorithm	to	divide	the	random	model	into	a	reasonable	number	of	bins	of	near	equal	size	

(see	 Appendix	 2).	 These	 criteria	 ensure	 consistency	 in	 the	 application	 of	 this	 test	 and	 limit	 the	

distorting	 effect	 of	 outlier	 data	 points	 by	 giving	 each	 time	 frame	more	 equal	 impact	 on	 the	 final	

value.	 Figure	 3	 (E	 and	 F)	 presents	 the	 bins	 of	 a	 goodness-of-fit	 test	 comparing	 the	 activity-level	

distributions	for	increases	and	decreases	against	the	random	alternatives	along	with	the	resulting	

chi-squared	 values.	 The	 activity	 levels	 for	 each	 direction	 of	 rating	 changes	 are	 found	 to	 be	

significantly	different	from	the	random	activity	model.		

Collections	of	responses	that	show	a	lot	of	concurrent	activity	will	have	greater	differences	

with	the	random	model,	whereas	the	contrast	will	be	smaller	for	those	with	a	higher	proportion	of	

noise.	 We	 can	 treat	 extremeness	 of	 these	 differences	 as	 a	 measure	 of	 coordination.	 Like	 any	

statistic,	 the	value	would	be	only	an	estimate	of	how	strongly	 the	responses	change	together,	but	

even	so,	it	might	be	useful	for	distinguishing	the	coordinating	effects	of	stimuli	or	the	sensitivities	of	

different	audiences,	among	other	possibilities.		

From	 the	 activity-level	 distributions,	we	 propose	 the	 Coordination	 Score.	 This	 number	 is	

calculated	using	the	p-values	from	the	parametric	goodness-of-fit	test	via	a	simple	formula	similar	

to	 that	 used	 in	 Yeshurun,	 Carrasco,	 &	 Maloney	 (2008).	 The	 explicit	 construction	 of	 the	 score	 is	

outlined	 in	 Appendix	 2.	 The	 implementation	 of	 this	 calculation	 in	 the	 Activity	 Analysis	 Toolbox	

(Upham,	2017)	yields	values	from	0	to	16,	with	scores	above	2	effectively	equivalent	to	p	<	.01.	An	

important	 advantage	 of	 basing	 this	 measure	 on	 the	 goodness-of-fit	 test	 is	 that	 the	 results	 are	

comparable	across	collections	of	various	durations,	and	numbers	of	participants.	(See	Appendix	4	

for	more	details	on	how	parameters	of	response	collections	affect	Coordination	Scores.)	
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Coordination	Between	Collections	

The	question	of	coordination	need	not	be	restricted	to	response	events	in	a	single	collection.	

If	 the	 stimulus	 is	 really	 driving	 these	 events	 in	 listeners’	 responses,	we	 expect	 another	 group	 of	

similar	 listeners	would	show	comparable	activity	 levels	at	 the	same	moments	 in	 the	music.	Using	

contingency	tables,	we	can	test	the	 independence	of	activity	 levels	per	moment	of	music	between	

two	collections	of	responses.	If	the	null	hypothesis	of	independence	is	rejected,	we	have	reason	to	

interpret	the	shared	stimulus	as	influencing	the	two	collections	in	ways	that	are	related.		

	The	 Boston	 Symphony	 Orchestra	 Project	 invites	 this	 comparison,	 with	 two	 audiences	

experiencing	 related	 stimuli:	 one	 group	 reporting	 felt	 emotional	 intensity	 while	 attending	 a	 live	

performance	by	the	BSO	and	the	other	performing	the	same	task	while	hearing	and	seeing	a	video	

recording	of	 this	performance	projected	 in	a	recital	hall	 (details	 in	Appendix	1).	Figure	4A	shows	

activity-level	time	series	for	increases	from	both	collections	of	responses	to	this	performance	of	the	

Overture	 of	 The	 Marriage	 of	 Figaro,	 K492.	 The	 partial	 symmetry	 of	 these	 two	 series	 suggests	

agreement	between	these	audiences.	While	the	music	does	not	prompt	reports	of	change	in	all	or	

even	most	participants,	a	similar	proportion	are	active	in	each	group	at	many	moments	of	relatively	

“high”	 activity	 levels,	 such	 as	 at	 10	s,	 24	s,	 and	 122	s,	 each	 directly	 following	 the	 dramatic	 mid-

phrase	tutti	of	the	Overture’s	first	theme.	

[insert	Figure	4]		

Were	the	activity	levels	of	these	two	collections	independent,	we	would	expect	one	group	to	

show	 mostly	 middling	 or	 low	 activity	 levels	 when	 the	 other	 is	 high,	 and	 vice	 versa.	 Figure	 4C	

presents	 a	 heat	map	 of	 how	many	 time	 frames	 occurred	 at	 all	 possible	 combinations	 of	 activity	

levels	 from	 these	 two	audiences	as	 they	 listened	 to	 the	Overture.	 In	 contrast,	 Fig.	4D	 reports	 the	

expected	 distribution	 of	 joint	 activity	 levels,	 if	 the	 increases	 in	 ratings	 in	 one	 collection	 were	
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independent	of	 the	same	activity	events	 in	the	other.	To	test	this	difference,	we	divide	these	 joint	

distributions	 according	 to	 those	 of	 either	 collection	 (Fig.	 4B	 and	 4E),	 each	 cut	 into	 three	 bins	

containing	 approximately	 the	 same	 number	 of	 time	 frames.	 The	 totals	 are	 reported	 in	 the	

contingency	table	(Fig.	4F),	which	has	relatively	little	variation	in	darkness/values.	The	actual	joint	

activity-level	distribution	is	reported	in	Fig.	4G,	and	their	differences	are	tested	with	a	chi-squared	

test,	 once	 again	 using	 a	 parametric	 estimate	 of	 the	 difference	 against	 a	 null	 hypothesis	 of	

independent	 collections.	The	 test	 tells	us	 that	 there	 is	 a	 significant	difference	between	 the	 round	

shape	 in	the	corner	of	Figure	4D	(expected	 independent	 joint-activity)	and	the	 form	of	 the	center	

plot	(3C)	that	stretches	a	bit	more	along	the	diagonal.	This	latter	shape	tells	us	that	the	relationship	

between	the	two	activity-level	time	series	is	roughly	parallel.	

Like	 the	 first	 test	 of	 coordination	 in	 a	 single	 type	 of	 activity	 on	 a	 single	 collection,	 the	

calculations	of	this	test	can	be	transformed	into	a	Coordination	Score,	or	rather	a	Bi-Coordination	

Score	 (Bi-C	 score).	 Together,	 these	 two	 collections	 of	 felt	 emotional	 intensity	 ratings	 to	 this	

performance	of	the	Figaro	Overture,	in	Figure	4,	shared	a	Bi-C	score	of	5.5	for	rating	increases.	This	

result	 suggests	 that	 there	 were	 shared	 influences	 on	 the	 response	 activity	 of	 the	 two	 groups,	

moment	to	moment,	despite	different	response	conditions	and	participants.	

Nonparametric	Coordination	Test	

Not	 all	 types	 of	 activity	 or	 aspects	 of	 response	 events	 can	 be	 assessed	 with	 parametric	

statistics	 like	 the	 chi-squared	 test	with	 a	 binomial	model.	When	we	 are	 not	 sure	 if	 a	 parametric	

model	 is	 close	 enough	 to	 the	 behavior	 in	 question,	 it	 is	 safer	 to	 use	 numerical	 approximations,	

taking	the	nonparametric	approach,	despite	the	extra	computational	cost.		

For	Activity	Analysis,	the	effectiveness	of	the	parametric	tests	used	for	Coordination	Scores	

depends	 on	 the	measured	 activity	 event.	 Rating	 increases	 and	 decreases	 in	 non-overlapping	 2-s	
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time	 frames	 seem	close	 enough	 to	 a	 random	binary	process	 that	we	 can	use	 it	 to	model	 the	null	

hypothesis	of	 stimulus-independent	 activity.	But	 if	we	want	 to	 consider	 the	 timing	of	 inhalations	

across	an	audience,	for	example,	we	know	that	any	given	listener	must	breathe	every	three	or	four	

seconds,	 with	 mild	 adjustments	 in	 respiration	 period	 from	 breath	 to	 breath.	 The	 occurrence	 of	

alignments	between	inhalations	across	an	audience	can	only	be	assessed	against	a	null	hypothesis	

of	 accidental	 coincidences	 that	 respect	 these	 signals’	 temporal	 characteristics.	 Rather	 than	

attempting	 to	 construct	 a	 parametric	 model	 of	 this	 type	 of	 behavior,	 we	 can	 use	 the	 responses	

themselves	to	define	uncoordinated	activity	through	permutations	of	the	data.		

We	are	primarily	interested	in	the	coincidence	of	events	across	responses	in	relation	to	the	

timeline	of	the	common	stimulus.	If	the	activity	is	coordinated	by	the	music,	breaking	the	temporal	

alignment	 between	 responses	 should	 result	 in	 less	 extreme	 activity	 levels.	 If	 we	 shift	 each	

individual	 response	by	 a	 random	amount	of	 time	 (say	 some	 interval	 sampled	between	0	 to	30	 s,	

hereafter	referred	to	as	the	shuffling	range),	this	alternative	alignment	of	our	real	responses	would	

result	 in	 a	 physically	 plausible	 activity-level	 time	 series	 but	without	 the	 potentially	 coordinating	

effects	of	 the	stimulus	appearing	 in	 the	activity-level	distribution.	Bootstrapping	 the	alignment	of	

the	original	data,	we	generate	2000	uncoordinated	alternative	activity-level	distributions	and	then	

test	 how	 the	 stimulus-aligned	 collection's	 activity-level	 distribution	 ranks	 in	 distance	 from	 their	

average.	Appendix	2	explains	the	calculations	of	the	nonparametric	test	in	more	detail.	

Nonparametric	Coordination	Test	of	Local	Activity	

Besides	 providing	 alternative	 activity-level	 distributions	 for	 the	 nonparametric	

coordination	 test,	 these	shuffled	alternative	alignments	also	generate	a	distribution	of	alternative	

activity-levels	for	each	time	frame	of	the	series.	We	can	assess	the	expectedness	of	the	collection's	

stimulus-aligned	 activity	 levels	 against	 a	 distribution	 of	 uncoordinated	 activity	 levels	 tailored	 to	

each	 second	 of	 the	 music	 (Grün,	 2009).	 Frame-by-frame,	 their	 rank	 against	 the	 non-aligned	
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alternative	activity-levels	identify	those	moments	of	extreme	high	activity	levels,	say	above	98.5%	

of	the	alternate	distribution,	or	extreme	low	activity-levels,	below	2.5%.	Figure	5	reports	moments	

of	 extreme	 high	 and	 low	 activity	 levels	 for	 rating	 increases	 in	 a	 collection	 of	 emotional	 arousal	

ratings	 to	"Morning"	 from	Grieg’s	Peer	Gynt	Suite.	With	such	strong	alignment	between	responses	

(Fig.	 5A),	 a	 great	many	moments	 are	marked	 as	 showing	 extreme	 local	 activity	 (Fig.	 5B).	 These	

moments	 of	 salient	 activity	 levels	 are	 not	 defined	 in	 relation	 to	 a	 fixed	 threshold.	 Instead,	 the	

activity	patterns	of	all	responses	from	the	surrounding	minute	determine	the	expectedness	of	each	

time	 frame's	 measured	 activity.	 Therefore,	 the	 increase	 of	 activity	 before	 20	 s	 is	 selected	 as	 a	

moment	of	notable	alignment	when	later	points	with	higher	activity	levels	are	not.	Over	the	course	

of	a	3-min	stimulus,	we	expect	some	time	frames	to	reach	locally	extreme	activity	levels	by	accident,	

but	 there	 is	 still	 great	 exploratory	 opportunity	 for	 well-defined	 criteria	 to	 investigate	 active	

moments	in	relation	to	the	music.	When	no	other	criteria	are	available,	we	recommend	studying	the	

results	 of	 the	 local-activity	 coordination	 test	 only	 if	 the	 collection	 of	 responses	 shows	 significant	

coordination	 as	 a	 whole	 according	 to	 the	 associated	 nonparametric	 activity	 test.	 Appendix	 2	

explains	further	the	details	of	assessing	local-activity	coordination.	

[insert	Figure	5]		

Tuning	Parameters	of	Tests	for	Rating	Increases	and	Decreases	

The	application	of	Activity	Analysis	requires	a	few	parameters	to	be	fixed,	parameters	that	

depend	on	what	 is	being	measured.	First,	what	qualifies	as	a	response	event?	For	rating	changes,	

this	 amounts	 to	 the	 size	 of	 change	 that	 is	 counted	 as	 activity	within	 some	 time	 interval,	 namely	

exceeding	the	minimum	rating	change	threshold.	Second,	within	what	time	interval	might	events	be	

counted	 as	 happening	 at	 the	 same	 time,	 i.e.,	 how	 big	 is	 the	 window	 of	 synchrony?	 The	

nonparametric	 test	 and	 local-activity	 test	 also	 require	 a	 third	 parameter:	 the	 duration	 of	 the	

shuffling	range	that	best	distinguishes	coordination	from	coincidence.	These	parameters	should	be	
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set	 so	 that	 the	 tests	 perform	 as	 expected:	 detecting	 uncoordinated	 collections	with	 a	 reasonable	

false-positive	rate.		

One	 way	 of	 evaluating	 reasonable	 parameter	 values	 is	 with	 previously	 collected	

experimental	data.	Across	 the	 five	different	experiments	on	 listener	responses	made	available	 for	

this	study,	we	have	42	collections	of	one-dimensional	continuous	ratings	to	western	concert	music,	

from	 perceived	 emotional	 valence	 to	 thematic	 familiarity.	 With	 these	 1350	 individual	 one-

dimensional	 ratings,	 we	 can	 generate	 unrelated-response	 collections:	 combinations	 of	 ratings	 to	

different	 stimuli	 that	 together	 should	 only	 look	 coordinated	 by	 coincidence.	 The	 details	 of	 their	

composition	 are	 shared	 in	 Appendix	 1.	 Generating	 examples	 of	 uncoordinated	 collections	 with	

experimental	 data	 ensures	 that	 our	 random	 collections	 still	 hold	 some	 important	 qualities	

connected	 to	 the	 style	 of	 stimuli	 and	 the	 task	 of	 rating,	 including	 the	 natural	 variability	 in	

participants'	rating	strategies.		

The	activity	levels	of	rating	increases	and	decreases	in	2000	unrelated-response	collections	

were	 assessed	 for	 different	 values	 of	 each	 parameter.	 After	 exploring	many	 combinations	 of	 the	

window	 of	 synchrony	 and	 the	 minimum	 change	 threshold	 for	 the	 Coordination	 Scores,	 the	 2-s	

window	 of	 synchrony	 and	 a	 minimum	 change	 of	 .025	 of	 the	 rating	 scale	 resulted	 in	 reasonable	

false-positive	rates.	For	the	parametric	within-collection	coordination	tests	on	rating	increases	and	

decreases,	 ~1%	 of	 these	 unrelated-response	 collections	 reached	 or	 exceeded	 the	 Coordination	

Score	of	2,	our	target	given	the	construction	of	these	scores.	The	nonparametric	evaluation	of	these	

activities	 found	 2.5-4.5	 %	 of	 these	 unrelated-response	 collections	 ranked	 at	 or	 above	 the	 99th	

percentile	of	the	alternatives	for	these	same	parameter	values.		

To	 evaluate	 the	 impact	 of	 these	 parameters	 on	 between-collection	 measures	 of	

coordination,	 we	 construct	 unrelated	 pairs	 using	 the	 original	 response	 collections,	 excluding	

combinations	 that	 are	 related	 by	 stimulus.	 From	 40	 collections	 of	 adequate	 size	 (more	 than	 14	
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ratings),	we	have	753	pairs	that	should	not	be	measured	as	coordinated	except	by	coincidence.	The	

performance	 of	 the	 coordination	 test	 depends	 on	 its	 capacity	 to	 differentiate	 between	 similarity	

from	 the	 common	 shapes	 of	 ratings	 and	 the	 specific	 stimulus	 influences	 on	 the	 timing	 of	 rating	

changes.	 The	 implications	 of	 the	window	 of	 synchrony	 and	minimum	 change	 threshold	 are	 very	

different	for	this	test	but	again,	a	window	size	of	2	s	and	a	threshold	of	.025	yielded	a	false-positive	

rate	of	~1%	(.93%	for	Increases,	1.3%	for	Decreases).		

In	 the	 parameter	 spaces	 evaluated,	 larger	 time	 frames	 yield	 similarly	 acceptable	 false-

positive	rates	on	the	unrelated-response	collections.	However,	larger	windows	of	synchrony	result	

in	 fewer	 time	 frames	over	which	 to	 assess	 the	Coordination	 Scores.	 This	 increases	 the	minimum	

response	length	onto	which	these	can	be	applied	without	violating	the	limitations	of	the	goodness-

of-fit	test.	With	a	2-s	window	of	synchrony,	the	parametric	coordination	tests	can	run	on	collections	

of	continuous	ratings	of	120s	or	more.	

A	 last	 parameter	 to	 consider	 is	 the	 shuffling	 range	 for	 the	 nonparametric	 assessment	 of	

activity	 coordination	 and	 local	 activity.	 This	 was	 evaluated	 by	 comparing	 the	 proportion	 of	

remarkably	 high	 and	 low	 activity-level	 moments	 identified	 in	 experimental	 collections	 and	

uncoordinated	 response	 collections.	 The	 difference	 between	 these	 collections	 grows	 with	 the	

shuffling	range	and	stabilizes	with	substantial	advantage	for	the	experimental	response	collections	

(2.5	 times	 as	 many	 high	 activity	 moments,	 5	 times	 as	 many	 low	 activity	 moments)	 from	 30	 s	

onwards.	

Unless	 otherwise	 specified,	 the	 parameters	 for	 all	 rating	 changes	 activity	 assessments	 in	

this	 paper	 use	 these	 values:	 minimum	 rating-change	 thresholds	 of	 .025	 of	 the	 rating	 scale,	 2-s	

window	of	synchrony,	and	30-s	shuffling	ranges.	More	details	on	these	evaluations	can	be	found	in	

Appendix	3.	
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Conclusion	

Activity	 Analysis	 focuses	 on	 a	 specific	 kind	 of	 agreement	 between	 continuous	 responses,	

matching	 not	 in	 overall	 tone	 or	mood	 but	 rather	 through	 the	 simultaneity	 of	 response	 events.	 It	

loosens	the	expectation	of	agreement	between	responses	over	time	without	giving	up	the	power	to	

identify	repeatable	stimulus-related	patterns.	A	response	can	actively	agree	with	one	subset	of	the	

collection	at	some	moment	and	be	unmoved	when	most	of	 the	same	group	change	20	s	 later,	but	

that	 inconsistency	 is	 not	 a	 problem.	 Rather,	 activity-levels	 are	 agnostic	 to	 which	 responses	 are	

active,	 while	 the	 coordination	 tests	 focus	 on	 finding	 exceptional	 inter-response	 agreement	 as	

measured	in	moments.	

Certainly,	 coordination	 in	activity	 is	not	 the	only	clue	 to	a	stimulus	 influencing	responses.	

The	 existence	 of	 rating	 changes	 and	 the	 shifts	 in	 rate	 of	 change	would,	 in	most	 cases,	 suffice	 as	

evidence	 of	 response	 to	 music	 if	 the	 alternative	 is	 silence.	 However,	 coordination	 is	 a	 strong	

argument	 for	 the	 repeatability	 of	 effects	 on	 listeners'	 experience	 of	 music	 and	 timing	 cues	 can	

distinguish	responses	 to	different	pieces.	How,	 then,	does	 this	approach	 to	 issues	of	coherence	 in	

responses	compare	to	other	statistical	tools	used	for	studying	continuous	ratings	to	music?	

Activity	Analysis	in	Context	

The	question	of	whether	continuous	ratings	agree	is	not	new.	Several	statistical	tests	have	

been	 employed	 to	 assess	 how	well	 these	 traces	 of	 experience	 confirm	 or	 contradict	 each	 other.	

Studies	of	responses	to	music	have	used	well-established	calculations	such	as	Pearson	correlations	

and	Cronbach’s	α	along	with	statistics	modified	for	particular	purposes	like	capturing	moments	of	

affect.	Each	measure	of	coherence	treats	some	information	as	important	and	other	information	as	

noise	 to	be	discarded,	prioritizing	different	aspects	of	 these	responses.	We	will	be	using	the	term	

“coherence”	as	an	umbrella	over	these	different	flavors	of	inter-response	agreement.	
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In	this	section,	we	assess	three	types	of	coherence	measures	and	compare	them	to	those	of	

Activity	Analysis:	coherence	between	ratings	within	a	collection,	coherence	between	collections	of	

ratings	to	the	same	musical	stimulus,	and	the	local	coherence	within	the	time	course	of	a	collection.	

Some	of	the	first	and	second	types	of	coherence	have	been	used	as	significance	tests,	but	evaluating	

the	significance	of	these	statistics	on	continuous	response	collections	can	be	problematic.	Instead	of	

parametric	 estimates	 of	 significance	 employed	 elsewhere,	 we	 use	 the	 unrelated-response	

collections	and	pairs	of	 collections	drawn	 from	 the	effort	 to	 tune	Activity	Analysis	parameters	 to	

identify	plausible	thresholds	for	𝝰crit	 	=	 .05	and	.01	(significance)	for	each	of	these	other	statistics.	

As	 in	 the	 previous	 section,	 these	 serve	 as	 examples	 of	 collections	 that	 should	 not	 qualify	 as	

coherent,	except	by	accident.	From	these	analyses	and	example	applications	on	experimental	data,	

we	argue	that	the	coordination	tests	of	Activity	Analysis	capture	important	and	distinct	qualities	of	

collection	coherence.	

Coherence	Within	Collections	of	Continuous	Ratings	

Thirty-five	adults	listened	to	the	first	three	minutes	of	the	Adagio	movement	of	J	Rodrigo’s	

Concierto	de	Aranjuez	 and	 continuously	 rated	 emotion	 in	 a	 square	 interface	 with	 dimensions	 of	

Arousal	x	Valence	(Korhonen,	2004).	Figure	6	reports	their	ratings	along	each	dimension	along	with	

the	average	rating	responses	(6A	and	6C)	and	the	corresponding	rating-change	activity-level	time	

series	(6B	and	6D).	Do	these	continuous	ratings	suggest	some	coherence	in	their	evaluations	of	this	

music?	Were	 changes	 sufficiently	 coordinated	 that	we	might	expect	another	group	of	 listeners	 to	

show	 similarly	 timed	 effects?	What	 values	 of	 inter-response	 correlations	 or	 Coordination	 Scores	

support	the	claim	of	significant	coherence	within	such	a	collection?				

[insert	Figure	6]	

Treating	 each	dimension	 as	 its	 own	 collection,	 ratings	 along	 the	Arousal	 dimension	 show	
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cohesion	 according	 to	 most	 of	 the	 measures.	 According	 to	 the	 tests	 of	 Activity	 Analysis,	 the	

increases	 in	ratings	are	highly	coordinated	(14.0),	an	obvious	claim	according	to	activity	 levels	 in	

the	second	plot,	with	many	increases	between	35	s	and	60	s	and	near	complete	quiet	after	120	s.	

The	decreases	in	ratings	are	not	as	coordinated,	C	score	=	3.0.	The	distribution	of	activity	levels	for	

decreases	 is	 not	 that	 of	 a	 random	 distribution,	 but	 the	 number	 of	 frames	 with	 low-to-middling	

activity	 levels	 demonstrates	 that	 these	 participants	 are	 not	 consistently	 reacting	 together	 with	

decreases	 in	 their	 Emotional	 Arousal	 ratings	 at	 specific	 moments	 of	 the	 music.	 The	 ratings	 of	

emotional	 valence	 to	 this	 piece	 show	much	 lower	 values:	 increases	 (1.9)	 and	 decreases	 (.9).	 In	

Figure	6C,	 the	 responses	are	 split	 on	whether	 the	music	 is	positively	or	negatively	valenced,	 and	

many	moments	 show	 some	 ratings	 increasing	while	 others	 report	 the	 opposite.	 The	 three	 other	

types	 of	 within-collection	 cohesion	 measures	 discussed	 here,	 Cronbach’s	 α,	 inter-response	

correlations,	and	ratios	of	deviation,	may	not	draw	the	same	conclusions	as	the	coordination	scores	

of	rating	changes	for	these	two	rating	dimensions.	

Cronbach's	α.	This	measure	of	agreement	ranges	from	-1	to	1	and	was	developed	to	assess	

how	effectively	a	 test	 (the	aggregate	of	a	 set	of	 test	 items)	captures	 the	variation	of	a	population	

along	a	single	dimension	(Cronbach,	1951).	It	is	most	often	used	to	evaluate	the	length	and	quality	

of	tests	for	assessing	psychological	traits,	comparing	the	agreement	of	each	test	item,	say	a	rating	of	

agreement	to	a	statement,	and	the	final	score.	In	this	context,	values	of	.8	are	considered	to	be	good.	

Translated	to	a	continuous	rating	experiment,	Cronbach’s	α	evaluates	the	relationship	between	the	

variance	in	rating	values	across	time	samples	for	each	participant	and	the	variance	in	the	average	

time	series	across	 time	samples.	The	 test	population	 is	 constituted	by	 the	moments	of	 the	music,	

second	by	 second,	 and	 in	 that	 sense,	 Cronbach’s	 α	 can	 be	 used	 to	 assess	 the	 effectiveness	 of	 the	

average	response	of	these	participants'	ratings	at	capturing	variation	along	the	feature	of	interest,	

say	emotionality,	within	this	musical	piece	and	others	with	a	similar	range	over	time.		
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One	 study	 has	 used	 this	 statistic	 to	 compare	 continuous	 ratings	 on	 different	 scales	 and	

between	 different	 pieces	 for	 participants	 attending	 a	 live	 performance	 (Torres-Eliard,	 Labbé	 &	

Grandjean,	2012).		Fourteen	participants’	continuous	ratings	of	“Power”	to	the	live	performance	of	

the	2nd	movement	of	the	String	Quartet	n°3	in	A	major	op.	41	by	R.	Schumann	(395	s)	produced	a	

Cronbach’s	α	=	.94,	whereas	their	continuous	ratings	of	“Sadness”	during	the	3rd	movement	of	the	

String	Quartet	n°4	in	C	major	by	B.	Bartok	resulted	in	a	Cronbach’s	α	=	.71.	Do	these	values	suggest	

that	the	participants	were	reporting	similar	judgments?	

To	estimate	which	values	of	Cronbach’s	α	imply	coherence	or	the	lack	thereof	in	collections	of	

continuous	 ratings,	 we	 applied	 this	 statistic	 to	 the	 2000	 unrelated-response	 collections:	 the	

resultant	distribution	gives	us	a	 sense	of	 the	numbers	 likely	 to	occur	when	 there	 isn’t	 a	 common	

stimulus	 guiding	 or	 driving	 listeners	 reactions.	 Table	 1	 reports	 the	 most	 important	 part	 of	 the	

distribution:	 the	95th	and	99th	percentiles	 in	 these	distributions,	which	estimate	 the	5%	and	1%	

false-positive	rates.	Over	 the	range	of	collection	parameters	of	 the	unrelated-response	collections,	

Cronbach’s	 α	 values	 over	 .82	 and	 over	 .85	 effectively	 exceed	 𝝰crit	 =	 .05	 and	 .01	 significance	

thresholds,	 respectively.	 From	 this	 information	 alone,	 it	 seems	 the	 Power	 ratings	 in	 the	 Torres-

Eliard	 et	 al.	 (2012)	 study	 were	 significantly	 coherent,	 whereas	 the	 Sadness	 ratings	 were	 not.	

However,	the	number	of	responses	in	a	collection	and	the	duration	of	ratings	both	affect	Cronbach’s	

α	values.	According	to	explorations	described	in	Appendix	4,	the	value	of	 .71	for	a	collection	of	14	

responses	 may	 instead	 fall	 between	 the	 90th	 and	 95th	 percentiles	 of	 values	 on	 incoherent	

collections.	

Looking	back	to	the	example	of	the	Arousal	and	Valence	ratings	for	the	Rodrigo	excerpt	(Fig.	

6),	their	respective	Cronbach’s	α	values	were	.97	and	.48.	Cronbach’s	α	for	the	valence	ratings	falls	

below	 the	 median	 across	 all	 the	 unrelated-response	 collections	 (.59),	 whereas	 the	 Coordination	

Score	 for	 rating	 increases	 was	 on	 the	 edge	 of	 the	 99th	 percentile	 with	 1.9.	 Considering	 the	
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relationship	between	Cronbach’s	α	and	 the	average	 response	 time	series,	 this	 seems	appropriate:	

the	 participants'	 ratings	 seemed	 to	 disagree,	 and	 the	 average	 score	 per	 moment	 has	 little	

relationship	to	any	of	them.	And	yet	a	certain	degree	of	response	coordination	seems	to	have	been	

hidden	in	the	dataset,	entirely	overlooked	by	this	measure	of	coherence.	

Average	inter-response	correlations.	Many	analyses	of	continuous	ratings	have	employed	

combinations	 of	 correlations	 to	 assess	 the	 agreement	 between	 participants’	 responses.	 One	

common	version	of	this	inter-response	correlation,	here	referred	to	as	InterCorr,	reports	the	average	

pairwise	 correlation	 coefficient	 between	 all	 responses	 (e.g.,	 Krumhansl,	 1996;	 Toiviainen	 &	

Krumhansl,	2003;	Williams,	Frederickson	&	Atkinson,	2011).	Another	possible	measure	of	within-

collection	correlation	is	the	average	correlation	between	each	response	and	their	average	response	

time	series,	here	referred	to	as	MeanCorr.	If	a	collection	of	responses	shows	sufficient	agreement	in	

changes	over	time	to	produce	an	average	time	series	that	shares	their	large-scale	contour,	then	the	

MeanCorr	will	be	much	closer	 to	1	 than	a	collection	with	 little	agreement.	Like	Cronbach’s	α,	 this	

statistic	 presumes	 that	 individual	 responses	 in	 a	 collection	 are	 the	 sum	 of	 a	 singular	 underlying	

response	and	noise.			

The	 significance	 of	 either	 average	 inter-response	 correlation	 measure	 is	 not	 easily	

calculated	for	rating	time	series.	Aside	from	concerns	about	inflation	from	serial	correlation	in	time	

series	(Schubert,	2004),	many	published	p-values	for	this	statistic	are	necessarily	false	because	the	

data	 do	 not	 comply	 with	 the	 standard	 significance	 estimation	 conditions	 for	 correlations.	

Significance	testing	depends	on	knowing	how	much	independent	information	is	present	in	each	set,	

something	not	 easily	 assessed	 in	 time	 series	 (Pyper	&	Peterman	1998).	 Several	 techniques	make	

comparisons	between	time	series	more	reasonable,	but	these	methods	often	change	what	is	being	

compared.	 For	 example,	 a	 correlation	 between	 differenced	 time	 series	 does	 not	 assess	 the	 same	

kind	of	inter-response	consistency	as	a	correlation	between	filtered	and	downsampled	versions	of	
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the	same	(Upham,	2012).	 	However,	correlation	coefficients	can	be	very	informative	outside	of	the	

context	 of	 the	 common	 Pearson	 significance	 test	 (Rodgers	 &	Nicewander,	 1988).	 If	 responses	 go	

through	 periods	 of	 high	 and	 low	 values,	 they	 can	 end	 up	 comparing	 the	 large-scale	 contours	 of	

rating	time	series,	gaining	power	if	the	more	extreme	values	co-occur,	while	the	middle	distribution	

of	sample	values	have	relatively	little	impact.		With	appropriate	reference	values,	these	calculations	

should	 tell	 us	 something	 important	 about	 the	 similarity	 between	 participants'	 rating	 responses.	

However,	their	performance	on	real	continuous	ratings	to	music	is	not	very	consistent.	

In	rows	three	and	four	of	Table	1	are	the	95th	and	99th	percentile	values	of	these	statistics	

over	 the	 unrelated-response	 collections,	 our	 estimate	 of	 threshold	 𝝰crit	 values	 for	 .05	 and	 .01.	

Additionally,	 both	 statistics	 are	 also	 very	 sensitive	 to	 the	 duration	 of	 responses.	 Across	 all	 2000	

collections	of	diverse	parameters,	the	95th	percentile	for	Intercorr	was	r	=	 .35,	but	threshold	may	

change	by	as	much	as	0.1	 for	a	difference	 in	duration	of	240	 s,	whereas	MeanCorr	may	 shift	 to	a	

similar	extent.	MeanCorr	is	also	sensitive	to	the	number	of	responses	in	a	collection,	with	the	95th	

percentile	 shifting	 from	 .52	 to	 .38	 for	 collections	 of	 12	 to	 36	 ratings.	 Like	 other	 applications	 of	

correlations,	 degrees	 of	 freedom	 in	 both	 response	 duration	 and	 the	 number	 of	 responses	 per	

collection	change	the	statistical	implications	of	these	correlation	values.	See	Appendix	4	for	analysis		

details.	

With	these	numbers	in	mind,	consider	the	InterCorr	values	reported	in	Krumhansl's		(1996)	

landmark	 study	on	 continuous	 ratings	 of	 tension.	 From	her	 first	 experiment,	 the	15	participants’	

ratings	of	tension	over	314	s	of	music	had	an	average	pairwise	Pearson	inter-correlation	of	r	=	.42.	

This	is	close	to	the	99th	percentile	value	of	the	InterCorr	statistic	on	the	2000	unrelated-response	

collections,	suggesting	a	p	value	near		.01.	Add	to	this	the	relatively	long	duration	of	these	responses	

and	 the	 correlation	 argument	 for	 stimulus-related	 cohesion	 appears	 even	 stronger.	 In	 the	 fourth	

experiment	reported	in	her	paper,	InterCorr	values	on	tension	ratings	by	24	participants	to	224	s	of	
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music	were	around	r	=	.18,	indistinguishable	from	the	unrelated-response	collections.	And	yet,	the	

averages	of	these	responses	correlated	well	with	those	to	similar	stimuli.	Given	the	combination	of	

these	results,	the	Intercorr	statistic	seems	particularly	ineffective	as	a	measure	of	cohesion	between	

a	collection's	continuous	ratings.	

The	 utility	 of	 any	 coherence	measure	 hinges	 on	whether	 it	 can	 distinguish	 collections	 of	

responses	with	shared	stimulus	effects	 from	those	without.	Thus	 far,	we	have	discussed	the	 false-

negative	 rate,	 setting	 threshold	values	per	 statistic	 to	 limit	 the	 likelihood	of	mistaking	 incoherent	

response	collections	 for	coherent	ones,	but	also	of	great	 importance	 is	 the	 false-negative	rate:	 the	

likelihood	 of	 dismissing	 a	 collection	 of	 stimulus-coordinated	 responses	 as	 incoherent.	We	 cannot	

assume	 that	 all	 of	 our	 40	 experiment	 collections	 are	 actually	 coherent,	 but	 if	 their	 coherence	

measure	 statistics	 distinguish	 them	 from	 the	 unrelated-response	 collections,	 that	 is	 a	 good	

indication	 of	 stimulus-inspired	 coherence.	 The	 third	 and	 fifth	 columns	 of	 Table	 1	 report	 these	

results	 for	 all	 within-collection	 coherence	 measures	 discussed	 here.	 Of	 these,	 Intercorr	 and	

Meancorr	 detect	 the	 fewest	 as	 more	 coherent	 than	 the	 unrelated-response	 collections.	 For	

InterCorr,	only	14	experiment	collections	of	40	generate	values	greater	than	the	95th	percentile,	12	

for	 99th	 percentile.	 For	MeanCorr,	 the	 experimental	 collections	 performed	 better,	with	 26	 of	 40	

exceeding	 the	 .05	 equivalent,	 and	 17	 exceeding	 .01.	 If	 a	 correlation	 is	 the	 preferred	measure	 of	

similarity	 between	 responses,	 then	 by	 these	 results	MeanCorr	 seems	 to	 be	more	 useful	 than	 the	

more	widely	published	InterCorr	calculation.	

[insert	Table	1]		

Returning	 to	 the	 ratings	 of	 emotion	 to	 the	 Rodrigo	 excerpt	 in	 Figure	 6,	 the	 respective	

MeanCorr	 r	 values	 for	 the	 valence	 and	 arousal	 ratings	 (Fig.	 6)	 were	 .72	 and	 .33,	 significantly	

coherent	 and	 incoherent,	 respectively,	 like	 the	 results	 of	 Cronbach's	 α.	 The	 InterCorr	 coherence	

measures,	on	the	other	hand,	were	 .54	and	 .41,	counting	both	Arousal	and	Valence	ratings	among	
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the	12	exceeding	the	99th	percentile	of	values	from	the	unrelated-response	collections.	

Variance	 ratio.	 The	 Variance	 ratio,	 also	 referred	 to	 here	 as	 VarRatio,	 is	 a	 measure	 of	

coherence	that	uses	the	scale	on	which	ratings	are	 initially	collected.	The	statistic	 is	calculated	by	

dividing	 the	 variance	 of	 the	 average	 time	 series	 (over	 time)	 by	 the	mean	 of	 the	 variances	 of	 the	

individual	 responses	 (derived	 from	 the	 standard	 deviation	 ratio,	 Upham,	 2012).	 It	 is	 an	 easily	

computed	criterion	for	assessing	the	degree	to	which	disagreement	between	responses	flattens	the	

average	response	time	series.	One	advantage	of	this	statistic	over	the	Coordination	Scores	is	that	it	

is	suitable	for	evaluating	responses	to	stimuli	that	are	not	very	dynamic	alongside	those	with	more	

tumultuous	time	profiles.	However,	it	is	still	sensitive	to	the	number	of	responses	in	a	collection	and	

the	duration	of	responses,	decreasing	inversely	to	each.		

The	continuous	ratings	of	emotion	in	response	to	the	Rodrigo	excerpt	have	a	VarRatio	for	the	

arousal	dimension	of	 .53	and	a	value	 so	 low	 in	 the	valence	dimension,	 .05,	 that	 it	 falls	below	7th	

percentile	of	the	unrelated-response	collections.		

Parametric	 and	nonparametric	C	 Scores.	 The	 Activity	 Analysis	 tests	 have	 already	 been	

described	 in	 detail,	 and	 the	 95th	 and	 99th	 percentile	 values	 from	 parametric	 scores	 on	 the	

unrelated-response	collections	are	as	expected	according	to	the	tuning	of	the	window	of	synchrony	

and	the	minimum	rating-change	threshold.		The	95th	and	99th	percentile	values	for	rating	increases	

in	 the	 nonparametric	 coordination	 test	 are	 higher	 that	 its	 parametric	 cousin	 and	 should	 be	

interpreted	accordingly.		

Unlike	 the	 previous	 statistics	 discussed	 here,	 the	 coordination	 score	 thresholds	 set	 stable	

false-positive	rates	because	the	degrees	of	freedom	from	the	duration	of	responses	and	the	number	

of	 responses	 are	 both	 included	 in	 the	 calculations	 used	 to	 construct	 them.	 Above	 a	 minimum	

duration	 (120	 s),	 these	 statistics	 are	 comparable	 between	 response	 collections	 of	 long	 and	 short	
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stimuli,	 and	 similarly	 for	 large	 and	 small	 numbers	of	 responses.	The	nonparametric	 coordination	

score,	to	the	contrary,	appears	to	increase	in	value	with	larger	collections	and	longer	durations	(see	

Appendix	4.)	

Most	remarkable	is	the	sensitivity	of	these	Coordination	Scores	to	coherence	in	collections.	

The	 three	 rating-change	 Activity	 Analysis	 tests	 reported	 in	 Table	 1	 distinguish	more	 experiment	

collections	 from	 the	 unrelated-response	 collections	 than	 even	 the	 strongest	 alternative:	 the	

Coordination	Scores	on	increases	in	ratings	identified	28	collections	of	40	as	significantly	coherent	

for	𝝰crit	=	.01,	compared	to	20	of	40	marked	by	Cronbach's	α.	

Correlations	Between	Coherence	Measures	

According	 to	 the	descriptions	 above,	 the	 calculation	 of	 each	 coherence	measure	 seems	 to	

prioritize	 only	 some	 aspects	 of	 what	 we	 might	 consider	 to	 be	 agreement	 between	 continuous	

ratings	to	music.	Table	2	reports	the	consequences	of	these	differences	in	how	they	evaluate	our	40	

experiment	collections	of	responses.	Spearman’s	𝜌	 rank	correlation	was	computed	between	three	

specific	measures	of	within-collection	coherence	and	all	others	discussed	above,	as	was	the	number	

of	 experiment	 collections	 both	 measures	 would	 report	 as	 significantly	 coherent,	 by	 the	 99th	

percentile	 thresholds	 reported	 in	 Table	 1.	 Featured	 are	 Cronbach’s	 α,	 the	 average	 mean-to-

response	 correlation	 (MeanCorr),	 and	 the	 parametric	 Coordination	 score	 for	 activity	 in	 rating	

increases.	

[insert	Table	2]		

	The	 correlations	 between	 these	 measures	 over	 the	 40	 experiment	 collections	 of	

unidimensional	 ratings	 to	 music	 are	 positive	 and	 significant,	 but	 that	 does	 not	 make	 them	

interchangeable.	Although	Cronbach’s	α	correlates	with	VarRatio	at	𝜌	=	.95,	VarRatio	would	miss	a	

quarter	 of	 the	 collections	 identified	 by	 the	 first	 statistic	 as	 coherent.	 The	 Activity	 Analysis	
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coordination	measures	have	lower	correlations	than	all	but	InterCorr	because	they	focus	on	distinct	

qualities	of	continuous	responses.	It	 is	possible	for	a	set	of	ratings	to	be	very	coordinated	in	their	

increases,	 but	 less	 so	 in	 their	 decreases,	 while	 an	 average-focused	 measurement	 of	 coherence	

depends	on	the	alignment	of	both.	Despite	lower	correlations	with	the	other	measures,	C	Scores	of	

rating	 increases	 reveal	more	collections	and	report	higher	agreement	percentages	 than	 the	other	

measures	discussed.		

There	 may	 be	 instances	 when	 a	 specific	 measure	 of	 coherence	 is	 relevant	 based	 on	 the	

qualities	 of	 interest,	 and	 all	 of	 these	 measures	 may	 have	 their	 uses,	 save	 perhaps	 InterCorr.	 If,	

however,	the	purpose	of	the	statistic	is	simply	to	identify	whether	or	not	the	stimulus	has	had	some	

common	influence	on	the	ratings	gathered,	the	coordination	scores	of	Activity	Analysis	may	be	the	

clearest	and	most	broadly	sensitive	tests	available.	

Coherence	Measures	Between	Collections	of	Responses	

Another	 important	 question	 for	 continuous	 responses	 to	 music	 is	 whether	 there	 is	

agreement	between	two	collections	of	responses	to	 the	same	piece,	say	between	the	ratings	 from	

two	groups	of	participants,	or	between	the	first	and	second	listenings	to	a	piece	by	one	audience.	

Correlations	of	various	types	have	been	used	to	make	comparisons	between	average	times	series	of	

collections.	Activity	Analysis	also	proposes	a	test	 for	this	purpose.	Figure	7	presents	responses	to	

another	stimulus	from	the	Boston	Symphony	Orchestra	project	with	a	live	audience	(Fig.	7A)	and	an	

audience	watching	 a	 video	 recording	 of	 the	 same	 performance	 (Fig.	 7D).	 Looking	 at	 the	 average	

time	series	(Fig.	7B),	it	is	hard	to	know	whether	these	two	sets	of	responses	really	agree	after	the	

first	20	s	of	music.	

[insert	Figure	7]	

Before	 drawing	 conclusions	 about	 the	 relationship	 between	 these	 ratings	 of	 emotional	
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intensity	 to	a	specific	performance	of	 the	 Jupiter	Symphony's	Finale	 (K551),	we	need	a	 reference	

distribution	 for	 each	 between-collection	 coherence	 measure.	 As	 with	 the	 within-collection	

measures,	 it	 is	 essential	 to	 know	 what	 numbers	 are	 expected	 when	 there	 is	 no	 possible	 causal	

influence	on	coherence.		

The	 753	 pairs	 of	 experiment	 collections	 unrelated	 by	 stimulus,	 initially	 described	 above	

(Tuning	Parameters	of	tests	for	rating	increases	and	decreases),	can	produce	such	a	distribution	and	

estimate	 thresholds	 for	suitable	 false-positive	rates.	Table	3	reports	 the	95th	and	99th	percentile	

values	 on	 these	 unrelated	 pairings	 for	 these	 measures	 of	 coherence,	 along	 with	 the	 number	 of	

stimulus-related	 pairings	 found	 to	 exceed	 these	 thresholds.	 Like	 the	within-collection	 coherence	

measures,	 we	 can	 get	 a	 snapshot	 of	 the	 sensitivity	 of	 these	 measures	 by	 comparing	 their	

assessments	 of	 experiment	 collection	 pairs	 with	 some	 possibility	 of	 similarity.	 In	 our	 set	 of	 40	

experiment	collections,	only	four	pairings	are	of	responses	to	the	same	stimulus	on	the	same	rating	

scale.	The	23	other	stimulus-related	pairings	report	different	aspects	of	responses,	say	Emotional	

Arousal	 and	 Emotional	 Valence	 and	 are	 not	 expected	 to	 be	 strongly	 coherent.	 However,	 the	

opportunity	 for	 coincidental	 activity	 should	 be	 higher	 in	 these	 pairs	 than	 those	 unrelated	 by	

stimulus.		

[insert	Table	3]		

Correlations.	Several	variations	on	correlations	have	been	used	to	compare	collections	of	

continuous	ratings,	via	their	average	rating	time	series.	In	this	section,	we	consider	three	variants	of	

correlation	 measures	 of	 cohesion	 between	 collections:	 Pearson	 or	 Spearman	 correlations,	

correlating	the	average	rating	time	series	directly	or	taking	the	first	order	difference	(1-s	step),	and	

excluding	the	first	dozen	seconds	of	ratings	to	reduce	the	impact	of	the	orientation	time	for	rating	

tasks.	
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Schubert	 (2013)	 describes	 the	 time	 interval	 during	which	 the	 accuracy	 of	 a	 participant's	

rating	 of	 a	musical	 stimulus	 are	 confounded	 by	 the	 time	 needed	 to	 orient	 to	 the	music	 and	 the	

mechanics	of	 the	 rating	 interface,	 called	 the	 initial	orientation	 time.	Another	study	described	 this	

period	 on	 a	 similar	 interface	 as	 the	 integration	 time,	 reporting	 an	 average	 of	 8.3	 s	 before	

participants'	 ratings	 settled	 in	 a	 region	 of	 the	 rating	 range	 (Bachorik	 et	 al.,	 2009).	 Some	 of	 the	

largest	rating	changes	can	occur	in	this	interval,	and	this	is	expected	to	compromise	average	rating	

time	series.	To	remove	the	impact	of	this	period,	we	cut	the	first	12	s,	the	median	orientation	time	

reported	by	Schubert	(2013),	from	the	average	responses.	On	the	distribution	of	correlations	on	the	

unrelated	pairs,	this	shifted	the	means	from	r	=	.14	and	𝜌	=	.05	to	r	=	.01	and	𝜌	=	.005.	However,	the	

95th	percentile	values	on	these	unrelated	collection	pairs	is	still	very	high:	r	=	 .68	with	the	whole	

time	series,	r	=	 .57	without	these	first	12	s,	𝜌	=	 .55	with,	and	𝜌	=	 .54	without.	The	99th	percentile	

values	 are	 also	 reported	 in	 Table	 3.	 Either	 way,	 the	 difference	 does	 not	 compensate	 for	 the	

overestimation	of	degrees	of	 freedom	 in	many	continuous	rating	studies	 that	have	estimated	 this	

threshold	for	𝝰crit	=	.05	as	less	than	.17	for	continuous	ratings	90	s	in	duration	and	longer.		

A	common	approach	to	compensating	for	the	serial	effects	of	continuous	ratings	is	to	take	

the	first-order	difference	of	the	ratings.	Correlations	between	the	first-order	difference	series	of	two	

collections	 average	 around	 zero	 for	 both	 Spearman	 and	 Pearson	 correlations,	 and	 the	 95th	

percentile	values	over	the	unrelated	pairs	are	r	=	.25,	and	r	=	.17.	The	distribution	of	values	in	these	

first-order	 difference	 time	 series	 is	 rarely	 normal.	 Differenced	 ratings	 and	 differenced	 averaged	

ratings	 tend	 to	 be	 composed	 of	many	 small	 values	 and	 a	 few	 large	 negative	 and	 positive	 values	

within	 the	units	of	 the	rating	scale,	 resulting	 in	very	high	kurtosis:	a	median	of	20.5	 for	 the	 first-

order	 difference	 of	 our	 continuous	 ratings	 to	 music	 and	 7.5	 for	 their	 average	 time	 series	 per	

collection,	whereas	the	plain	average	ratings	have	a	median	kurtosis	value	of	3.3.	As	such,	it	may	be	

more	 practical	 to	 use	 the	 nonparametric	 Spearman’s	 𝜌	 if	 the	 goal	 is	 to	 capture	 coherence	 on	

differenced	 ratings.	 Without	 the	 added	 transformation	 of	 first-order	 differencing,	 the	 Spearman	
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correlation	does	not	seem	to	be	preferable	to	Pearson	for	analytic	reasons,	and	it	fails	to	distinguish	

those	 few	 stimulus-	 and	 task-related	 collection	 pairings	 above	 the	 99th	 percentile	 of	 unrelated	

collection	pair	values.	

As	reported	in	Table	3,	these	correlation	measures	identified	few	stimulus-related	pairs	as	

more	coherent	 than	 the	unrelated	pairs.	The	 two	collections	described	 in	Figure	7	 seem	more	or	

less	coherent	depending	on	which	type	of	correlation	is	applied.	The	complete	averages	correlate	at	

r	=	.85,	above	the	99th	percentile	of	unrelated	pairs,	less	the	first	12	seconds,	r	=	.60,	just	above	the	

95th	percentile,	whereas	difference	series	correlate	at	 r	=	 .25,	on	 the	 line	 for	 the	95th	percentile.	

Using	Spearman's	𝜌,	the	means	correlate	at	𝜌	=	.62,	or	𝜌	=	.59	when	excluding	an	initial	orientation	

period,	and	𝜌	=	.17	on	the	differenced	means.	Over	all,	these	numbers	suggest	these	two	collections	

are	more	coherent	than	might	be	expected	by	chance,	but	the	effect	is	minor.	

Bi-Coordination	Scores.	The	Activity	Analysis	test	between	collections	(Bi-C	Score	in	Table	

3)	compares	only	one	type	of	activity	event	at	a	time,	so	we	have	used	it	on	three	activity	events:	

increases,	 decreases,	 and	 all	 changes	 of	 at	 least	 2.5%	 of	 the	 range	 of	 ratings	 in	 2-s	 windows	 of	

synchrony.	These	all	show	much	higher	sensitivity	than	the	correlation	based	measures,	 finding	a	

number	 of	 significant	 time-aligned	 events	 between	 collections	 related	 by	 stimulus	 but	 not	 rating	

scale.	The	broadest	of	 the	three	tests,	counting	all	kinds	of	rating	changes	regardless	of	direction,	

picks	up	on	coherence	in	half	of	all	possible	pairs.	This	demonstrates	the	openness	of	these	Activity	

Analysis-based	 coherence	 measures,	 picking	 up	 on	 patterns	 in	 time	 without	 demanding	 that	

participants	report	the	same	experience	from	beginning	to	end.	

On	the	felt	emotional	intensity	ratings	in	Figure	7	and	the	activity	levels	reported	in	7C,	the	

increases	 in	 ratings	 have	 a	 weak	 Bi-Coordination	 Score	 of	 2.1,	 whereas	 decreases	 and	 rating	

changes	score	only	.9	and	1.1,	respectively.	By	these	measures	of	between-collection	coherence,	the	

two	sets	of	responses	show	very	little	coordinated	activity–barely	a	trace	of	shared	stimulus	effects.	
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The	 details	 and	 implications	 of	 this	 are	 discussed	 in	 conjunction	 with	 their	 within-collection	

coordination	scores,	in	the	section	on	Activity	Analysis	on	Experimental	Data.	

As	significance	tests,	all	of	these	statistics	are	meant	to	detect	the	likelihood	that	whatever	

is	shared	exceeds	what	might	happen	by	chance.	Should	that	similarity	extend	through	the	whole	

average	rating	time	series?	The	Coordination	Scores	of	Activity	Analysis	offer	a	greater	sensitivity	

to	the	influences	of	music	without	requiring	a	common	contour.	They	are	also	more	robust	to	the	

collection	parameter	differences	than	the	other	statistics	considered	here,	and	express	degrees	of	

coherence	in	a	scale	that	is	comparable	from	one	collection	of	responses	to	the	next.	But	all	of	these	

measures	evaluate	collections	of	responses	over	their	entire	duration,	whereas	the	most	promising	

opportunities	of	continuous	ratings	are	in	their	description	of	responses	from	second	to	second.	

Alternatives	to	Local	Activity	Coordination	

With	 the	 variability	 present	 in	 continuous	 response	 collections,	 the	 agreement	 between	

responses	cannot	be	assumed	to	be	constant	over	the	course	of	the	stimulating	music.	The	question	

of	 which	 moments	 are	 particularly	 interesting	 or	 coherent	 in	 continuous	 responses	 has	 been	

around	 since	 the	 beginning	 of	 digital	 continuous	 rating	 experiments	 (e.g.,	 Capperella-Sheldon,	

1992).	Here	we	compare	the	local-activity	coordination	test	with	two	other	measures	proposed	in	

recent	years:	Schubert’s	(2007)	second-order	standard	deviation	(second-order	SD)	and	a	modified	

Wilcoxon	 test	 defined	 by	 Grewe	 et	 al.	 (2007).	 These	 measures	 consider	 different	 aspects	 of	

continuous	response	collections,	whereas	 their	utility	depends	on	 their	reliability	as	 indicators	of	

interesting	response	behaviors.		

Second-order	SD.	To	assess	the	validity	of	the	average	time	series	from	one	moment	to	the	

next,	Schubert	(2007)	proposed	a	quantification	of	local	inter-response	coherence	for	a	collection	of	

continuous	ratings.	By	this	method,	ratings	are	considered	to	be	in	“good	agreement”	if	the	variance	
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of	rating	values	at	that	moment	is	lower	than	some	collection-specific	threshold.	This	threshold	is	

defined	in	terms	of	the	distribution	of	a	collection’s	standard	deviation	across	all	time	points	in	the	

responses.	 Publications	 employing	 this	 assessment	 of	 local	 reliability	 have	 used	 different	

thresholds	 to	 identify	 moments	 with	 little	 dispersion	 across	 responses:	 from	 one	 standard	

deviation	below	the	mean	of	 this	distribution	(Schubert,	2007)	 to	a	standard	deviation	above	 the	

mean	(Schubert,	2013).		

This	 calculation	 is	 not	 a	 statistical	 test	 of	 significance:	 it	 does	 not	 evaluate	 how	 the	 data	

collected	 compare	 to	 some	 defined	 random	 alternative.	 As	 a	 measure	 of	 local	 coherence,	 it	 is	

entirely	relative	to	the	collection	in	question;	the	variability	of	one	moment	in	a	particularly	noisy	

collection	 can	 be	 counted	 as	 being	 in	 good	 agreement,	 whereas	 the	 same	 degree	 of	 dispersion	

would	 be	 a	 cause	 for	 exclusion	 in	 a	more	 consistent	 collection.	 Still	 it	 is	 a	 simple	 calculation	 to	

highlight	moments	showing	higher	 inter-response	agreement	on	rating	values	and	can	be	used	to	

localize	moments	at	which	ratings	converge	to	some	extent	after	periods	of	higher	disagreement.		

Figure	5D	shows	the	moments	in	an	excerpt	of	"Morning	Mood"	from	Grieg's	Peer	Gynt	Suite	

selected	 as	 falling	 within	 good	 agreement,	 given	 a	 few	 different	 definitions	 of	 "good."	 The	 first	

moments	are	tagged	as	highly	coordinated	(black	dots),	because	the	response	interface	resets	the	

rating	marker	to	 the	midpoint	of	 the	rating	range	before	the	stimulus	begins	 to	play.	Participants	

move	 the	marker	 away	 from	 the	 origin	 once	 they	 have	 the	 opportunity	 and	 sufficient	 reason	 to	

report	 another	 value.	 As	 mentioned	 above,	 the	 impact	 of	 this	 initial	 orientation	 period	 can	 be	

misleading	for	some	calculations	(including	the	second-order	SD).	In	this	case,	however,	excluding	

the	first	12	s	of	ratings	does	not	change	the	point	at	which	all	responses	concentrate	to	fall	within	

the	mean	plus	one	standard	deviation.	A	lower	threshold	of	the	mean	minus	one	standard	deviation	

produces	three	distinct	intervals,	marked	by	asterisks:	shortly	following	the	full	orchestra	entry	on	

the	theme	at	51	s,	the	following	instance	of	the	horns	suggesting	the	return	of	the	full	orchestra	at	
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93	s,	and	a	fleeting	moment	at	146	s.		

Modified	Wilcoxon	test.	Looking	 for	moments	of	affect	change	 in	physiological	measures	

of	 response	 and	 continuous	 ratings	 of	 felt	 emotion,	 Grewe	 et	 al.	 (2007)	 suggested	 a	 test	 for	

moments	 of	 extreme	 agreement.	 The	 90th	 percentile	 of	 each	 first-order	 differenced	 time	 series	

sampled	at	1	Hz	was	determined	and	then	the	median	of	these	values	across	listeners	was	taken	as	

a	 threshold.	 Subsequently,	moments	with	median	values	above	 the	 threshold	were	 collected,	 and	

the	differenced	rating	values	at	these	moments	were	then	evaluated	using	Wilcoxon's	signed	rank	

test.	

Considering	the	variability	of	responses	in	most	of	these	collections,	this	initial	criterion	is	

strikingly	 stringent:	only	moments	 in	which	 the	majority	of	 responses	 show	changes	 in	 the	 same	

direction	give	rise	to	nonzero	values	in	the	median	of	the	first-order	differenced	ratings.	Of	those,	

selecting	 only	 the	 time	 points	 with	 values	 over	 the	 median	 of	 the	 differenced	 responses'	 90th	

percentiles,	we	are	guaranteed	that	very	few	moments	will	qualify.	

This	selection	criterion	attempted	to	reduce	the	risks	associated	with	multiple	comparisons:	

in	applying	the	Wilcoxon	test	to	every	time	point	according	to	an	uncorrected	significance	estimate,	

we	would	have	to	expect	false	positives,	and	researchers	often	choose	instead	to	be	selective	about	

the	number	of	moments	tested.	However,	choosing	to	test	only	the	outliers	of	the	distribution	of	a	

related	 dependent	 variable	 is	 effectively	 equivalent	 to	 applying	 said	 test	 to	 all	 samples.	 Even	 in	

random	distributions,	 there	 are	 extremes,	 and	 these	 extremes	 are	 those	most	 likely	 to	 give	 false	

positives	in	significance	tests.			

Following	the	methodology	outlined	in	the	initial	use	of	this	test	(Grewe	et	al.,	2007),	and	as	

demonstrated	 in	 Figure	 5C,	 very	 few	 moments	 qualify	 as	 significant	 events,	 even	 for	 highly	

coordinated	collections	according	to	other	measures	of	coherence.	Only	one	moment,	moving	into	
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the	first	tutti,	is	selected	as	an	exceptional	event,	the	same	moment	that	ushers	in	the	Second	Order	

SD's	 intervals	 of	 good	 agreement.	 A	 lower	 threshold	 at	 the	 80th	 percentile	 is	more	 informative,	

marked	 with	 grey	 circles	 in	 figure	 5C.	 Given	 the	 number	 of	 responses	 in	 the	 collection,	 the	

probabilities	 involved	 suggest	 that	 even	 one	 such	 moment	 is	 highly	 unexpected,	 p	 <	 .001.	 This	

looser	threshold	identifies	many	moments	of	increased	arousal	reported	to	this	excerpt	of	"Morning	

Mood,"	with	highlights	aligning	with	many	moments	marked	as	having	extreme	high	activity	levels	

as	well.	

Local-activity	 coordination.	 Compared	 to	 the	 percentile	 threshold	 described	 above,	 the	

local-activity	coordination	test	of	Activity	Analysis	points	to	even	more	distinct	moments	of	activity	

behavior.	Figure	5B	reports	moments	of	both	locally	extreme	high	and	low	activity	levels.	The	black	

dots	mark	time	points	at	which	fewer	responses	showed	increases	than	we	would	expect	given	the	

rating-increase	patterns	 in	 the	 surrounding	60	 s.	This	 lack	of	 increasing	may	be	 related	 to	active	

decreases,	 say	before	80	 s,	 or	 stability	 in	 ratings,	 following	60	 s.	Another	difference	between	 the	

Modified	Wilcoxon	tests	and	the	local	activity	estimate	can	be	seen	around	17	s.	Here	the	Wilcoxon	

test	would	necessarily	 fail	because	the	median	 is,	 in	 fact,	zero,	but	the	time	regional	sensitivity	of	

the	local	activity	coordination	test	picks	up	on	the	minority	of	responses	showing	coherent	rating	

increases	with	the	end	of	the	oboe's	first	reply	to	the	main	theme.	

These	different	ways	of	evaluating	moments	of	cohesion	over	the	time	course	of	a	collection	

of	ratings	each	serve	slightly	different	purposes.	However,	even	with	adjustments	made	to	enhance	

the	 amount	 of	 information	 conveyed	 through	 distinct	 intervals	 of	 rating	 qualities	 detected,	 the	

Local-Activity	 Coordination	 test	 of	 Activity	 Analysis	 appears	 to	 be	 the	 more	 sensitive	 and	

discerning	technique.	
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Activity	Analysis	on	Experimental	Data	

Activity	 Analysis	 provides	 a	 statistical	 foundation	 for	 evaluating	whether	 the	 ratings	 in	 a	

collection	show	synchronous	changes	in	values,	which	can	then	be	related	more	reliably	to	stimulus	

features	at	specific	moments	in	time.	As	demonstrated	in	the	previous	section,	Activity	Analysis	and	

its	coherence	measures	capture	useful	 information	about	coherence	in	collections	of	responses	to	

music.	These	can	be	applied	to	 investigate	a	number	of	different	questions	about	these	responses	

and	the	music	that	inspires	them.	Although	none	of	the	experimental	data	sets	were	collected	with	

the	explicit	hypotheses	of	 testing	activity	coordination,	 they	can	be	useful	 for	demonstrating	how	

Activity	Analysis	can	be	applied,	and	what	kinds	of	hypotheses	might	be	tested	in	future	work.	Here	

we	use	some	of	the	experiment	collections	to	demonstrate	possible	applications,	with	examples	of	

the	 variation	 in	 activity	 coordination	 related	 to	 the	 music,	 the	 participants,	 the	 musical	

interpretation,	and	the	rating	task.	

Variation	in	Coordination	Related	to	Stimulus	

It	 is	 easy	 to	 accept	 that	 some	 collections	 of	 continuous	 ratings	 are	 more	 coherent	 than	

others,	but	where	does	this	variation	come	from?	We	expect	individual	pieces	of	music	to	provoke	

distinct	 experiences	 in	 listeners;	 perhaps	 they	 also	 vary	 in	 the	 uniformity	 of	 these	 experiences	

reported	 by	 participants.	 This	 section	 explores	 the	 rating	 change	 coordination	 in	 a	 publicly	

accessible	data	set:	continuous	ratings	of	perceived	emotion	in	two	dimensions	(Arousal	×	Valence)	

to	 six	 popular	 classical	music	 excerpts,	 collected	 by	Mark	 Korhonen	 (2004).	 A	 discussion	 on	 the	

independence	of	rating	dimensions	can	be	found	below;	for	this	analysis,	we	will	treat	the	ratings	in	

each	dimension	separately.	These	data	have	been	used	in	multiple	papers,	including	Korhonen	et	al.	

(2006)	and	Coutinho	and	Cangelosi	(2009),	to	train	and	evaluate	models	of	the	average	emotional	

valence	and	arousal	time	series	using	continuous	stimulus	features.	The	following	analysis	suggests	

that	 efforts	 to	 model	 averaged	 emotion	 ratings	 may	 be	 compromised	 by	 stimulus-dependent	
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variability	in	inter-participant	agreement.	

Table	4	reports	the	rating	change	activity	coordination	scores	for	 increases	and	decreases	

along	 each	 dimension	 of	 the	 perceived	 emotion	 ratings	 for	 the	 stimuli	 of	 this	 data	 set.	 The	

Coordination	Scores	across	the	35	participants	vary	a	great	deal	from	piece	to	piece,	from	0.9	to	16,	

the	maximum	 value	 for	 this	 implementation	 of	 coordination	 scores,	 and	 the	 coordination	 of	 one	

dimension	does	not	seem	to	determine	the	coordination	of	the	other.	

The	most	dramatic	contrast	between	the	Arousal	and	Valence	dimensions	of	ratings	in	the	

data	 set	 is	 to	 an	 excerpt	 from	Rodrigo’s	Concierto	de	Aranjuez,	 plotted	 in	 Figure	 6.	 The	 reported	

perceived	 emotional	 arousal	 (see	 Fig.	 6A)	 gives	 rise	 to	 reasonably	 high	 coordination	 in	 arousal	

increases	(14)	with	clear	alternations	between	activity	levels	of	increases	and	decreases	(Fig.	6B).	

The	 valence	 dimension	 of	 these	 ratings	 (see	 Fig.	 6C),	 however,	 has	 very	 weak	 coordination:	 C	

Scores	 of	 only	 1.9	 for	 increases	 and	 0.9	 for	 decreases.	 Many	moments	 in	 the	 activity-level	 time	

series	 show	participants’	 responses	 simultaneously	moving	 toward	 opposite	 ends	 of	 this	 bipolar	

scale	(Fig.	6D).	These	ratings	suggest	that	participants	were	split	on	whether	they	heard	the	excerpt	

as	 positively	 or	 negatively	 valenced,	 and	different	 people	 interpreted	 certain	moments	 as	 having	

opposite	implications	for	their	respective	assessments.	

[Insert	Table	4]		

In	the	case	of	valence,	the	average	rating	does	not	give	a	representative	description	of	these	

responses.	The	 flat	 line,	 shown	 in	black	 in	Figure	6C,	 is	 a	misleading	descriptor	of	 the	 emotional	

timeline	of	this	piece,	which	is	both	dynamic	and	ambiguous.	In	other	cases,	a	flat	average	may	be	a	

genuine	representation	of	a	set	of	responses	that	are	simply	very	stable	over	time,	like	the	arousal	

ratings	 of	 the	 excerpt	 of	 Copland’s	 Fanfare	 for	 the	 Common	Man	 (not	 shown).	 Here	 the	 rating	

changes	 are	 significant	 but	 do	 not	 have	 very	 high	 C	 Scores	 (Stimulus	 3	 in	 Table	 4),	 because	 the	
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shifts	 in	 the	 music's	 emotional	 character	 were	 not	 sufficiently	 dramatic	 to	 provoke	 many	

simultaneous	rating	changes	in	most	participants.		

In	 contrast,	 the	most	 highly	 coordinated	 collection	 in	 this	 set	 is	 the	 perceived	 emotional	

arousal	ratings	to	the	Liszt	excerpt	shown	in	Fig.	2A.	Here	the	average	varies	widely	over	the	range	

of	 the	 rating	 scale	 and	 the	 activity-level	 distributions	 for	 increases	 and	 decreases	 in	 this	 rating	

collection	 yield	 maximum	 Coordination	 Scores	 of	 16.	 And	 yet,	 even	 in	 these	 activity-level	 times	

series	(Fig.	2D),	 it	 is	still	very	rare	 that	a	majority	of	responses	show	concurrent	supra-threshold	

rating	changes	in	either	direction.		

That	 activity	 levels	 fail	 to	 reach	 unanimity	 in	 moments	 of	 change	 reflects	 a	 reality	 of	

continuous	 rating	 data:	 participants	 rarely	 report	 changes	 at	 precisely	 the	 same	 time,	 nor	 in	 the	

same	way,	and	the	ambiguity	of	a	task	like	rating	perceived	emotion	continuously	via	the	position	

of	 a	mouse	 cursor	 cannot	 be	 distinguished	 from	 differences	 in	 perception.	 Consider	 the	 interval	

between	 225	 s	 to	 250	 s	 of	 the	 Liszt	 excerpt.	 The	 average	 rating	 time	 series	 is	 monotonically	

increasing	(Fig	2A)	and	activity-levels	for	rating	increases	in	2-s	time	frame	include	20%	or	more	

throughout;	however,	 a	 subset	of	participants	also	 report	 some	decreases	against	 this	 trend	 (Fig.	

2D).	Did	these	participants	notice	something	in	the	music	the	others	missed,	or	were	they	inclined	

to	 report	 smaller	 and	 faster	 changes	 than	 their	 peers?	 Even	 in	 the	most	 coordinated	 collections,	

there	is	variety	in	the	responses.		

The	 Coordination	 Scores	 for	 collections	 in	 the	 Korhonen	 data	 set	 show	 that	 we	 cannot	

assume	that	continuous	ratings	to	a	musical	stimulus	are	coherent:	one	set	of	participants	can	vary	

dramatically	 in	 the	 coordination	 of	 their	 ratings	 from	 piece	 to	 piece.	 If	 coherence	 is	 low,	 the	

relevance	of	an	average	rating	 time	series	 is	questionable.	Variability	or	consistency	 in	 the	rating	

responses	reported	may	be	a	quality	of	the	music	itself.	
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Coordination	Between	Participant	Groups	

The	question	of	rating	change	coordination	came	out	of	a	very	challenging	data	set	involving	

two	 audiences	 reporting	 felt	 emotional	 intensity	 to	 related	 stimuli.	 As	 described	 previously,	 the	

Boston	 Symphony	 Orchestra	 experiment	 collected	 continuous	 ratings	 of	 felt	 emotional	 intensity	

from	participants	attending	a	live	concert	and	others	gathered	in	a	recital	hall	to	hear	and	watch	a	

high-definition	 video	 recording	 of	 the	 performance.	 Here	 we	 have	 a	 test	 case	 for	 assessing	

consistency	 in	 responses	 to	 music	 as	 these	 two	 groups	 experienced	 very	 similar	 stimuli.	

Interpretation	 of	 these	 data	 encountered	 the	 usual	 variability	 in	 the	 responses	 collected.	 Some	

listeners	 reported	 no	 change	 in	 felt	 emotion	 for	 some	 of	 the	 stimuli,	 leaving	 30	 to	 32	 dynamic	

respondents	 in	 the	 live-concert	 audience,	 depending	 on	 the	 piece,	 and	 21	 to	 23	 in	 the	 recorded-

concert	group.	The	intention	had	been	to	compare	average	time	series	of	the	two	groups.	However,	

it	was	difficult	to	know	what	differences	might	be	significant	given	the	seeming	incoherence	in	the	

remaining	ratings.		

In	contrast	 to	data	sets	 like	Korhonen’s,	 the	coordination	of	 these	collections	ranged	from	

low	 to	medium.	Table	5	 shows	 the	Coordination	Scores	 for	 rating	 increases	and	decreases	 in	 felt	

emotional	 intensity	 reported	by	each	group	 to	 four	Mozart	excerpts.	Considering	 their	 respective	

within-collection	C	Scores,	 ratings	 to	 the	Overture	 to	The	Marriage	of	Figaro	 seem	 to	be	 the	most	

coordinated.	 The	 Jupiter	 Symphony	 Finale	 (K551)	 also	 reaches	 similar	 degrees	 of	 activity	

coordination	for	the	live	audience,	but	not	the	other	one,	and	the	middle	two	excerpts	are	near	or	

below	significance	thresholds	for	decreases	or	changes	in	both	directions.	Across	these	excerpts,	it	

seems	the	ratings	to	the	video	recording	were	less	coordinated	than	those	collected	during	the	live	

session.	Such	an	analysis	approach	could	lead	to	explorations	for	the	reasons	behind	this	difference.	

	[insert	Table	6]		
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The	 coordination	 between	 these	 collections,	 reported	 under	 Bi-C	 Scores	 in	 the	 last	 two	

columns	 of	 Table	 5,	 can	 be	 interpreted	 in	 conjunction	 with	 the	 within-collection	 rating-change	

activity.	 Ratings	 to	 the	 Figaro	 Overture	 (K492)	 were	 coordinated	 in	 rating	 changes	 within	 each	

audience's	collection	of	responses	and	across	them.	At	the	other	extreme,	there	was	no	significant	

rating-change	activity	coordination	between	the	audiences	in	either	direction	for	K16,	the	Rondo	to	

Mozart’s	First	Symphony,	as	might	be	expected	given	the	low	scores	for	this	collection.	The	low	but	

significant	 coordination	 in	 only	 rating	 increases	 within	 the	 collections	 for	 the	 Clarinet	Concerto	

excerpt	 (K622,	 Adagio)	was	 reflected	 in	 the	 between-collection	 coordination.	 However,	 although	

the	between-collection	scores	 for	 the	 Jupiter	Symphony	Finale	 looked	 like	 those	of	 the	preceding	

piece,	 the	 within-collection	 coordination	 scores	 were	 quite	 different,	 with	 the	 live	 audience	

showing	markedly	more	agreement	in	rating	change	activity	than	the	other	one.	This	combination	

of	 activity	 coordination	 scores	 suggests	 some	 substantial	 differences	 between	 the	 experiences	

reported	by	these	two	groups.	

Figure	7	shows	the	two	collections	of	responses	to	the	Jupiter	Finale	and	their	rating-change	

activity.	The	highest	activity	moments	for	both	audiences	are	in	the	first	25	s,	with	activity-levels	of	

increases	 peaking	 shortly	 after	 15	s	 (see	 Fig.	 7C).	 Besides	 this	moment,	 both	 collections’	 activity	

levels	are	quite	 low,	with	rarely	as	much	as	a	quarter	of	responses	reporting	either	type	of	rating	

change	at	once.	Although	there	are	a	few	shared	moments	of	rating	decreases	with	relatively	high	

activity	 levels,	 say	above	 .15,	 there	are	many	more	with	 similar	 activity	 levels	 in	one	but	not	 the	

other	 audience,	 such	 as	 at	 70	s	 or	 298	s.	 Altogether,	 these	 activity	 levels	 look	 relatively	

independent,	producing	a	low	Bi-Coordination	Score	of	0.9	(dec).	The	curves	of	the	average	rating	

time	series	reflect	these	small	disagreements	in	activity	between	the	two	collections.	After	the	first	

large	 increase	at	 the	beginning,	 the	shifts	 in	 these	 times	series	are	quite	 shallow,	and	 they	rarely	

align.		
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There	are	many	factors	that	could	contribute	to	these	activity	coordination	results.	As	with	

the	Korhonen	data	set,	 there	are	important	differences	between	the	stimuli:	K492	is	dynamic	and	

easy	 to	 follow,	 whereas	 the	 Rondo	 of	 the	 First	 Symphony	 is	 trite	 and	 emotionally	 flat.	 These	

collections	also	report	lower	activity	Coordination	Scores	than	other	data	sets,	perhaps	a	result	of	

setting:	 musical	 experiences	 in	 a	 concert	 hall	 may	 be	 quite	 different	 from	 those	 experiencing	 a	

recorded	video	in	a	recital	hall	without	the	excitement	of	live	musicians.	The	two	groups	were	also	

composed	of	different	populations,	and	only	for	the	 live	audience	group	were	children	present	(it	

was	a	 family-oriented	concert).	And	yet,	despite	a	number	of	 complications,	Activity	Analysis	has	

found	 coordination	 in	 the	 dynamics	 of	 participants'	 felt	 emotional	 intensity,	 both	 within	 and	

between	groups,	coordination	that	could	only	have	come	from	the	music	presented.	

Comparing	Performances	with	Local	Activity	Coordination	

The	question	of	when	a	piece	of	music	moves	 listeners	 is	 important.	We	study	continuous	

ratings	 because	 they	 can	 capture	 these	 shifts	 in	 perception	 and	 reaction	 on	 a	 second-by-second	

basis,	and	many	of	 these	shifts	of	 feeling	depend	on	musicians'	specific	 interpretations	of	a	work.	

Activity	 Analysis	 can	 be	 used	 to	 identify	 when	 the	 music	 presented	 has	 affected	 a	 significant	

proportion	of	collected	responses,	and	also	to	consider	what	distinguishes	the	impacts	of	individual	

takes	on	the	same	musical	material	(Farbood	&	Upham,	2013).	

From	 the	 CIRMMT	 Audience	 Response	 System	 (CARS)	 experiment	 (see	 Appendix	 1),	 we	

have	ratings	of	felt	emotions	from	different	participant	groups	to	two	interpretations	of	a	madrigal	

by	Arcadelt,	 one	 recorded	 and	one	 live.	 The	 arousal	 dimension	of	 these	 felt	 emotion	 ratings	was	

significantly	coordinated	for	increases	to	both	versions:	parametric	coordination	scores	of	11	to	the	

recording	and	3.0	to	the	live	performance.	The	nonparametric	activity	coordination	test,	which	uses	

the	 same	 statistical	 assumptions	 as	 the	 local-activity	 coordination	 test,	 also	 points	 to	 significant	

coordination	with	3.3	(maximum	value	for	2000	iterations)	on	rating	increases	in	both	collections.	
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With	 this	 assurance	 of	 coordinated	 activity	 for	 increases	 of	 at	 least	 .025	 of	 the	 felt	 emotional	

arousal	 rating	 scale	 over	 2-s	 time	 frames,	 counted	 in	 2-s	windows	 of	 synchrony,	we	 can	 use	 the	

significance	estimates	on	the	activity	levels	per	time	frame	to	pick	out	moments	of	exceptional	high	

and	low	activity	level.	

Comparison	 of	 interpretations	 requires	 alignment	 in	 time.	 With	 recordings	 of	 both	

interpretations,	 we	 hand	 annotated	 every	 note	 onset	 and	 linearly	 interpolated	 these	 to	 get	 the	

timing	of	16th	notes	over	the	duration	of	the	music.	The	rate	of	these	16th	notes	averaged	6	Hz	and	

never	 fell	below	2	Hz.	A	16th-note	sampling	of	 the	 ratings	and	 the	activity-level	 time	series	were	

then	taken	from	the	original	10	Hz	times	series	of	responses	using	nearest	neighbor	values.	Figures	

8A	and	8C	plot	each	collection	of	ratings	in	this	shared	metrical	time,	Rsp	(Rec)	and	Rsp	(Live),	and	

Figure	8B	shows	their	activity	 levels	 for	 increases	 in	overlapping	2-s	 time	frames	sampled	 in	 this	

shared	musical	time	line.	The	responses	to	the	King's	Singers'	interpretation	is	plotted	above	zero	

with	moments	of	significant	local	activity	levels	(Rec	X-Act),	and	responses	to	the	live	performance	

of	 the	Orpheus	Singers	are	plotted	below	(Live	X-Act).	These	moments	of	 locally	extreme	activity	

levels	rank	above	the	97.5	percentile	or	below	the	2.5	percentile	of	the	random	alternatives	for	each	

specific	 2-s	 time	 frame	 from	 the	 2000	 alternative	 activity	 levels	 generated	 by	 breaking	 stimulus	

alignment		

[insert	Figure	8]	

Looking	 at	 Figure	 8B,	 there	 are	 a	 few	moments	 of	 similar	 behavior:	 popular	 increases	 in	

arousal	in	mm6-8,	in	mm13-14,	and	a	similar	lack	of	increases	around	m	21	and	m	46.	An	obvious	

difference	is	the	rush	of	increases	in	emotional	arousal	ratings	to	the	live	performance	after	m	10.	

Here	the	choir	did	a	rapid	crescendo	and	subito	piano	at	the	beginning	of	a	line,	whereas	the	King's	

Singer's	 version	 stayed	 quiet.	 A	 similar	 contrast	 in	 intensity	 aligns	with	 the	 flourish	 of	 increases	

reported	 by	 those	 hearing	 this	 recording	 after	 m	 15.	 At	 other	 times,	 the	 differences	 are	 not	 so	
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obvious,	 say	mm22-27,	when	smaller	 subsets	of	participants	 (<27%	and	<36%)	are	 concurrently	

increasing	rating	values	in	each	collection.	The	details	of	these	performances	and	resultant	ratings	

deserve	much	more	detailed	analysis	than	is	relevant	to	the	scope	of	this	methodological	paper.	

By	 focusing	 on	 a	 specific	 active	 component	 of	 continuous	 ratings,	 it	 is	 relatively	 easy	 to	

identify	 when	 the	 performances	 are	 drawing	 distinct	 reactions	 from	 these	 participants.	 Activity	

Analysis	makes	use	of	proportions	and	popularity	 to	pick	up	moments	of	 importance,	potentially	

moments	 the	performers	 intended	 to	 cause	 specific	 reactions.	Despite	 the	distinct	 timing	of	 each	

performance	 and	 different	 groups	 of	 participants,	 we	 have	 aligned	 their	 activity	 levels	 and	 the	

results	of	the	local-activity	coordination	estimates	and	could	do	the	same	for	more	subtle	contrasts	

as	well.	

Continuous	Ratings	in	Two	Dimensions	

Concerns	 have	 been	 raised	 about	 the	 quality	 of	 ratings	 collected	 using	 two-dimensional	

interfaces:	Can	participants	assess	and	report	their	responses	on	two	scales	simultaneously?	What	

is	 the	 influence	 of	 one	 dimension	 on	 the	 other?	 Activity	 Analysis	 can	 evaluate	 the	 interactions	

between	 the	 dimensions	 to	 get	 a	 sense	 of	 whether	 participants	 can	 treat	 each	 dimension	

independently.	Of	the	data	sets	included	in	this	study,	two	employed	continuous	ratings	of	emotions	

in	two	dimensions:	Korhonen’s,	as	discussed	previously,	and	the	CARS	experiment,	run	over	three	

sessions	at	McGill	University	in	2009.		

In	the	first	McGill	session,	responses	to	three	recorded	pieces	were	collected	from	a	group	

of	 45	participants,	 of	which	one-third	 rated	 felt	 arousal,	 one-third	 felt	 valence,	 and	 the	 last	 third	

rated	both	dimensions	simultaneously	on	a	2D	interface.	Although	only	three	musical	stimuli	were	

presented,	 this	 data	 set	 is	 a	 useful	 starting	 point	 for	 exploring	 how	 the	 task	 of	 rating	 two	

dimensions	compares	to	that	of	rating	only	one.		



	 46	

First,	we	 look	at	whether	the	activities	within	these	collections	are	comparable.	Figure	9A	

reports	the	Coordination	Scores	for	rating	increases	and	decreases	of	each	dimension	per	response	

condition	(gray	bars)	and	the	coordination	between	the	ratings	collected	on	1D	and	2D	interfaces	

(Bi-C	 score,	 black	bars)	per	 stimulus.	With	only	15	 ratings	per	 collection,	 individual	participants'	

rating	techniques	can	add	a	lot	of	noise	to	the	C	Scores,	and	yet	there	is	still	substantial	similarity	in	

these	results	with	a	Pearson	correlation	of	r(10)	=	.77,	p	<.005,	across	the	12	dimension	X	stimulus	

combinations.	 Additionally,	 the	 degrees	 of	 coordination	 seem	 fairly	 similar:	 Valence	 dimension	

ratings	for	S1	and	S3	seem	uncoordinated,	with	barely	a	trace	of	agreement	in	activity,	whereas	the	

increases	 and	 decreases	 in	 the	 arousal	 dimensions	 range	 between	 3.5	 and	 6.7.	 And	 these	

dimensions	of	emotion	are	no	more	or	less	coordinated	when	collected	simultaneously,	according	

to	a	paired	t-test,	p	=	.62,	df	=	11.		

The	 activity	 within	 each	 1D	 collection	 of	 15	 ratings	 also	 seems	 to	 share	 a	 reasonable	

amount	of	activity	with	their	2D	counterparts.	Taking	the	average	C	Scores	per	stimulus,	dimension,	

and	 direction	 of	 rating	 change,	 these	 correlate	 strongly	 with	 the	 Bi-C	 score	 values	 between	

conditions	 (black	 bars	 of	 Fig	 9A),	 r(10)	 =	 .87,	 p	 <	 .001.	 Across	 three	 very	 different	 stimuli,	 a	

Renaissance	madrigal,	a	Romantic	string	quartet	movement,	and	a	semi-structured	 improvisation	

on	an	electronic	instrument,	there	is	a	notable	amount	of	consistency	in	the	coordination	reported	

by	 stimulus	 and	 dimension	 of	 felt	 emotion	 rating,	 regardless	 of	 whether	 these	 ratings	 were	

collected	using	a	one-	or	two-dimensional	interface.	

[Insert	Figure	9]	

But	 the	 task	 of	 rating	 two	 dimensions	 simultaneously	 might	 still	 result	 in	 unexpected	

interactions	between	them.	Perhaps	there	is	a	chance	of	participants	confusing	the	dimensions	or	

collapsing	 them	into	a	simple	one-dimensional	combination	such	as	along	one	of	 the	diagonals	of	

the	 2D	 interface.	 To	 check	 on	 this,	 Figure	 9B	 reports	 the	 between-collection	 coordination	 scores	
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(Bi-C	Scores)	 calculated	between	 the	dimensions	of	arousal	and	valence	 reported	by	 those	 rating	

both	 at	 once	 (black	 bars)	 and	 those	 rated	 by	 separate	 participants	 on	 1D	 scales	 (gray	 bars).	

Ignoring	 direction	 of	 rating	 change	 (far	 left	 of	 Fig.	 9B),	 ratings	 from	 2D	 raters	 show	 more	

concurrent	activity	in	two	of	the	three	stimuli	(S2	and	S3)	than	do	the	1D	groups	(grey	bars).	Thus,	

these	participants	often	reported	changes	along	some	diagonal	across	these	emotion	axes,	easy	to	

do	 on	 the	 handheld	 touch-screen	 interfaces	 used	 in	 the	 CARS	 experiments.	 The	 interface	 did	

encourage	 more	 concurrent	 changes	 in	 both	 dimensions	 than	 happened	 in	 the	 physically	

independent	ratings.		

However,	these	simultaneous	changes	did	not	produce	a	systematic	alignment	or	confusion	

between	 the	 felt	 emotion	 dimensions	 in	 the	 2D	 ratings.	 The	 oriented	 rating-change	 activity	 Bi-C	

Scores	 (the	other	 four	 conditions	 in	Fig.	9B)	mostly	 fall	below	significance.	Given	 the	overall	 low	

coordination	of	the	valence	dimension	of	ratings	in	this	data	set,	this	might	not	be	convincing	on	its	

own.	Thus	we	also	report	the	results	of	between-dimension	coordination	for	the	2D	ratings	in	the	

Korhonen	dataset	in	Figure	9C.	That	a	few	stimuli	show	oriented	alignment,	say	between	decreases	

in	 both	 arousal	 and	 valence	 in	 the	 Strauss	 excerpt	 (A/V	 dec,	 in	 black),	may	 be	 a	 quality	 of	 that	

specific	piece	of	music,	rather	than	a	systematic	problem	with	the	task	of	reporting	two	dimensions	

at	once.	These	results	support	the	view	that	participants	are	capable	of	reporting	felt	and	perceived	

emotions	on	these	two	dimensions	concurrently,	making	independent	assessments	of	each.	

Continuous	Ratings	of	Emotional	Valence	and	Arousal	

As	 discussed	 above,	 continuous	 ratings	 of	 emotion	 to	 music	 are	 often	 collected	 in	 a	 2D	

Arousal	×	Valence	emotion	space.	 In	emotion	and	music	research,	 these	 two	dimensions	are	very	

common	 representations	 of	 emotion	 (Eerola	 &	 Vuoskoski,	 2011),	 but	 they	 may	 not	 be	 equally	

important	or	consistent	 in	 listeners’	perceived	or	 felt	responses	to	music.	 It	has	been	argued	that	

emotional	 arousal	 is	 sensitive	 to	 universal	 cues	 (Becker,	 2010)	 such	 as	 loudness	 and	 pulse	 rate.	
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Many	common	musical	cues	for	emotional	valence	appear	to	be	learned,	such	as	culturally	specific	

scales	 and	 lyrics.	 Such	 a	 distinction	 between	 a	 universal	 arousal	 response	 and	 a	 culture-specific	

valence	 response	 has	 been	 reported	 in	 a	 cross-cultural	 comparison	 between	 Canadians	 and	

Congolese	Pygmies	(Egermann,	Fernando,	Chuen	&	McAdams,	2015).	

Besides	 the	 dataset	 used	 in	 the	 previous	 section,	 the	 last	 CARS	 session	 also	 collected	

continuous	 responses	 along	 these	 two	 dimensions,	 although	 some	 responses	 were	 lost	 due	 to	

technical	 complications.	 Between	 the	 Korhonen	 and	 the	 CARS	 data	 sets,	 we	 have	 continuous	

emotional	 arousal	 and	 valence	 ratings	 for	 11	 stimuli.	 A	 one-tailed	 t-test	 shows	 the	 arousal	

dimension	 ratings	 to	 have	 significantly	 higher	 within-collection	 Coordination	 Scores	 than	 the	

valence	dimension	ratings,	t(10)	=	3.18,	p	=	.005,	consistent	with	visual	comparison	of	the	left	and	

right	halves	of	Figure	9A.	Although	the	lower	coordination	of	alternating	activity	suggests	that	this	

difference	is	due	to	greater	ambiguity	in	the	valence	dimension,	as	discussed	with	the	ratings	to	the	

Rodrigo	 excerpt	 in	 Fig.	 6,	 another	 important	 factor	 may	 affect	 these	 scores.	 The	 coordination	

measured	 here	 depends	 on	 the	 quantity	 of	 change,	 and	 the	 dimension	 with	 more	 noticeable	

changes	will	show	more	stimulus	synchronous	coordination.	It	may	be	that	valence	is	less	dynamic,	

changing	 less	 frequently	 and	 less	 dramatically,	 than	 emotional	 arousal	 for	 these	 stimuli.	 Both	

ambiguity	and	rate	of	change	in	these	dimensions	of	emotion	need	to	be	explored	further	if	we	hope	

to	understand	and	anticipate	how	listeners	might	respond	to	other	pieces	of	music.	

Conclusions	

Activity	Analysis	takes	a	distinct	approach	to	continuous	responses	to	music	by	evaluating	

specifically	when	participants	show	changes	in	their	experience	of	what	they	hear.	It	focuses	on	one	

kind	of	reaction	or	action	at	a	time.	We	are	not	all	affected	by	music	in	the	same	way,	nor	are	our	

responses	necessarily	the	same	each	time	we	hear	a	recording	or	performer	present	a	piece.	This	

ambiguity	 is	 expressed	 in	 the	variation	across	 collections	of	 continuous	 responses.	With	 activity-
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level	 time	series	comes	an	opportunity	 to	consider	 the	popularity	of	 these	reactions	 to	a	piece	of	

music.	 The	 coordination	 tests	 of	 Activity	 Analysis	 work	 around	 the	 ambiguity	 in	 responses	 to	 a	

recording	or	performance	to	determine	whether	they	show	sufficient	coherence	within	the	shared	

timeline	of	the	stimulus,	whether	there	might	be	similar	patterns	of	activity	between	collections	of	

responses	 to	 the	 same	 stimulus,	 and	 when	 during	 these	 continuous	 responses	 a	 remarkable	

number	of	responses	agree	in	their	active	reactions	to	the	music	presented.	

We	find	that	coordination	varies	from	piece	to	piece.	Some	music	prompts	timely	increases	

and	decreases	in	ratings;	other	pieces	fail	to	produce	rating	changes	distinguishable	from	those	of	

responses	 that	 are	 independent	 of	 the	 shared	 stimulus.	 Activity-level	 time	 series	 expose	

contradictory	 reactions	 to	 pieces,	 challenging	 the	 common	 practice	 of	 averaging	 ratings	 before	

exploring	relationships	to	musical	features.	With	coordination	scores,	we	show	that	participants	are	

capable	 of	 simultaneously	 rating	 emotional	 arousal	 and	 emotional	 valence	 as	 independent	

dimensions	 to	 concert	 music.	 Also	 with	 the	 local-activity	 coordination	 test,	 we	 demonstrate	 the	

potential	for	exploring	different	performances	of	a	single	piece	through	the	ratings	of	listeners.	

The	concept	of	Activity	Analysis	is	simple:	isolate	some	kind	of	response	event,	count	when	

it	 co-occurs	 across	 responses	 to	 the	 same	 music,	 and,	 for	 statistical	 assessment,	 compare	 these	

counts	to	what	might	happen	by	chance.	To	help	with	implementation,	we	have	released	an	Activity	

Analysis	 Toolbox	 in	MatLab	 (Upham,	 2017)	with	 demonstration	 scripts	 using	 the	 public	 domain	

Korhonen	data	set.	Anyone	interested	in	using	these	functions	in	other	data	analysis	platforms	are	

welcome	to	get	in	touch.		

There	 is	 a	 great	 deal	 to	 explore	 in	 continuous	 responses	 to	music	with	 Activity	 Analysis.	

Looking	at	ratings,	we	can	consider	the	differences	between	different	kinds	of	events.	Are	decreases	

of	 perceived	 emotional	 arousal	 more	 or	 less	 coordinated	 than	 increases	 of	 ratings	 to	 classical	

music?	We've	treated	them	here	as	symmetric,	but	many	perceptual	processes	are	more	sensitive	in	
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one	direction	of	change.	Populations	may	differ	in	the	coordination	of	their	rating	change	activity,	

say	between	musicians	and	nonmusicians,	or	people	more	or	less	familiar	with	the	genre	or	piece.	

Analyses	 of	 populations	have	 also	 found	differences	 in	 their	 sensitivity	 to	 specific	 cues.	With	 the	

right	stimuli,	such	differences	should	be	expressed	in	the	activity	of	tonal	tension	rating	changes	at	

specific	 moments.	 Perhaps	 the	 impact	 of	 program	 notes	 and	 lyric	 translations	 (Hackworth	 &	

Fredrickson,	2010)	or	combinations	of	audio	and	video	recordings	might	be	better	explored	with	

measures	of	coordination.	The	added	information	may	increase	inter-response	coherence	without	

changing	the	contour	of	the	average	response.		

More	could	be	 learned	with	 the	 replication	of	 continuous	 rating	experiments.	 Is	 it	 a	mere	

coincidence	 that	 the	Overture	 to	The	Marriage	of	Figaro	 produced	 similar	 coordination	 scores	 in	

two	 separate	 groups	 of	 raters?	 In	 technical	 terms,	 this	 means	 that	 there	 are	 similar	 mixes	 of	

distinctly	 coordinated	 moments	 and	 potentially	 random	 coincidences	 of	 rating	 changes.	 We	 are	

interested	 in	 the	 degree	 to	 which	 the	 music	 nudges	 or	 pushes	 responses	 to	 change	 beyond	 the	

variability	of	individual	ratings	affected	by	extra-musical	factors	specific	to	each	listener.	A	couple	

of	studies	reported	here	suggest	that	Coordination	Scores	may	be	relatively	consistent,	or	at	 least	

rank-ordered	per	stimulus,	but	more	examples	would	be	welcome.	For	instance,	Korhonen’s	(2004)	

data	were	 collected	 as	 a	 replication	of	 Schubert’s	 (1999)	 study	of	 continuous	 ratings	of	 emotion,	

with	a	similar	 interface	and	identical	stimuli.	 In	this	paper,	we	report	the	Coordination	Scores	for	

rating	 increases	 and	decreases	 for	 this	 group	of	 35	participants.	 It	would	be	 interesting	 to	 know	

whether	 the	 responses	 in	 the	 original	 experiment	 resulted	 in	 the	 same	 pattern	 of	 coordinated	

activity	across	stimuli.		

The	local-activity	coordination	test	may	be	particularly	useful	for	exploring	the	influences	of	

specific	features	of	music	on	listeners,	be	they	factors	of	performance	practice,	composition,	or	even	

cross-modal	influences.	As	shown	in	the	responses	to	the	Arcadelt	madrigal,	specific	interpretations	
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can	prompt	different	moments	of	locally	extreme	high	or	low	activity	levels	but	the	causes	for	these	

reactions	warrant	more	explanation.		

Activity	 Analysis	 can	 also	 be	 applied	 to	 other	 continuous	 measures	 of	 experience.	 The	

nonparametric	 tests	 offer	 a	 practical	 view	 into	 the	 timing	 of	 events	 in	 psychophysiological	

responses	 that	 are	 also	 subject	 to	 complicated	 temporal	 characteristics,	 such	 as	 the	 cyclical	

demands	of	respiration	or	the	changing	responsiveness	of	skin	conductivity.	With	the	appropriate	

adjustments	of	analysis	parameters	(the	definition	of	events,	the	size	of	the	window	of	synchrony,	

and	 the	 shuffling	 range),	 Activity	 Analysis	 can	 point	 to	 coordination	 across	 collections	 of	

involuntary	 processes.	 Appendix	 3	 demonstrates	 the	 process	 of	 tuning	 analysis	 parameters	 to	

specific	signal	qualities	of	experimental	data.	

Activity	Analysis	does	have	limitations.	If	the	responses	are	too	short,	say	under	100	s,	some	

of	 the	 statistical	 tests	 cannot	 be	 applied.	 (The	 drop	 off	 point	 depends	 on	 the	 event	 rate	 and	 the	

number	 of	 responses	 in	 the	 collection.)	 The	 activity-level	 time	 series	 may	 be	 useful	 to	 look	 at	

patterns	 of	 concurrent	 events	 across	 responses,	 but	 we	 recommend	 reserving	 the	 tests	 of	

coordination	 for	 rating	 responses	 of	 2	minutes	 or	more.	 And	 as	 there	 is	 still	more	 to	 be	 learned	

about	 the	 behavior	 of	 Coordination	 Scores	 on	 ratings	 to	music,	 interpretation	 should	 always	 be	

pursued	with	caution.		

We	 hope	 that	 the	 analysis	 of	 other	 continuous	 rating	 coherence	measures	 is	 informative,	

both	 for	 interpreting	 other	 published	 work	 with	 the	 numerical	 estimates	 of	 false-positive	

thresholds	 and	 for	 its	 discussion	 of	 factors	 defining	 the	 advantages	 and	 disadvantages	 of	 the	

respective	 calculations.	 Depending	 on	 one's	 interests,	 evaluating	 coherence	 with	 two	 different	

measures	may	be	a	 reasonable	course	of	action.	The	construction	of	Coordination	Scores	and	 the	

nonparametric	local-activity	coordination	test	seem	to	focus	on	aspects	of	response	coherence	not	

easily	handled	by	other	coherence	measures.	It	may	be	a	good	complement	to	measures	such	as	the	
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variance	ratio	(VarRatio),	Cronbach’s	α,	or	mean	correlation	(MeanCorr).		

A	 systematic	 study	 of	 coherence	 in	 continuous	 ratings	 to	 music	 would	 not	 be	 possible	

without	access	to	the	response	collections	in	several	experiments	by	a	number	of	researchers.	Mark	

Korhonen	set	a	precedent	by	making	his	data	openly	available	and	his	example	is	an	important	one	

to	follow.	When	working	with	complex	stimuli	and	responses,	we	can	learn	a	great	deal	from	other	

data	sets.	Until	we	have	more	complete	models	to	describe	the	behaviors	of	individual	responses	to	

the	wonderful	stuff	of	music	heard,	these	measures	can	give	us	perspective	on	the	real	variability	

involved	 and	make	 it	 possible	 to	 tune	 analysis	 parameters	 to	 the	 qualities	 of	 continuous	 ratings.	

The	 exploration	 of	 other	 types	 of	 coherence	 and	 their	 sensitivity	 to	 stimulus	 duration	 and	 the	

number	 of	 responses	 could	 be	 elaborated	 with	more	 examples	 of	 ratings	 to	 music.	 As	 such,	 we	

encourage	the	sharing	of	data	sets.	

Activity	Analysis	can	answer	standing	questions	about	continuous	responses	to	music	and	

raise	others.	With	the	release	of	the	Activity	Analysis	Toolbox,	we	encourage	other	researchers	to	

consider	applying	these	descriptive	and	inferential	statistics	to	data	previously	collected	as	well	as	

to	future	experiments.	
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Appendix	1:	Data	Sets	

The	development	 of	 Activity	Analysis	 and	 this	 study	 of	 continuous	 ratings	 to	music	were	

made	 possible	with	 the	 ratings	 of	 a	 number	 of	 experiments.	 This	 appendix	 shares	 details	 on	 the	

different	sets	of	response	collections	used	 in	 this	paper,	 first	 the	experiment	data	sets	and	 finally	

the	randomly	generated	collections	of	unrelated	responses.	

The	Angel	of	Death	Project	

Eight	collections	of	continuous	responses	were	gathered	as	part	of	an	intricate	experiment	

involving	 two	 premier	 concerts	 on	 different	 continents,	 each	 presenting	 two	 versions	 of	 Roger	

Reynolds’	 The	 Angel	 of	 Death,	 a	 35-minute	 piece	 for	 piano,	 orchestra,	 and	 computer-processed	

sound	 (McAdams,	 Vines,	 Vieillard,	 Smith	 &	 Reynolds,	 2004).	 The	 first	 concert	 was	 presented	 in	

2001	at	the	Grande	Salle	of	the	Centre	Georges	Pompidou	in	Paris,	France	with	the	Ensemble	Court	

Circuit,	the	other	at	the	Mandeville	Auditorium	of	the	University	of	California,	San	Diego	in	La	Jolla,	

California	in	2002	with	the	Sonor	Ensemble.	In	both	concerts,	one	set	of	participants	continuously	

reported	 their	 felt	 emotional	 intensity	 (force	 émotionnelle	 was	 the	 term	 in	 the	 Paris	

concert/experiment)	 and	 the	 other	 group	 reported	 the	 resemblance	 (familiarité)	 of	 the	 current	

musical	material	as	compared	to	anything	heard	from	the	beginning	of	the	piece.	Participants	were	

diverse	 in	 age	 and	 musical	 expertise,	 and	 recorded	 their	 responses	 on	 handheld	 slider	

potentiometers	wired	to	their	seats	in	each	concert	hall.	These	responses	were	sampled	at	2	Hz,	and	

some	outlier	responses,	such	as	those	that	reported	no	change	for	several	minutes,	were	discarded	

prior	to	analysis.	The	details	of	the	original	collections	are	presented	in	Table	A.1.	

Compared	 to	 most	 experiments	 on	 continuous	 responses	 to	 music,	 these	 responses	 are	

exceptionally	 long.	For	the	purposes	of	 this	paper,	responses	 in	each	collection	were	truncated	to	

their	 first	500	s.	The	 script	 generating	 the	unrelated	 response	 collections	had	access	 to	 all	 of	 the	
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original	responses	listed	in	Table	A.1.	

[insert	Table	A.1]	

Boston	Symphony	Orchestra	Project	

The	Boston	Symphony	Orchestra	project	 collected	 continuous	 responses	 from	 two	sets	of	

participants	at	a	concert	in	2006	by	the	Boston	Symphony	Orchestra	under	the	direction	of	Maestro	

Keith	Lockhart.	One	set	of	participants	were	part	of	the	audience	at	a	 live	performance	in	Boston,	

Massachusetts,	and	the	other	collectively	watched	and	heard	a	video	recording	of	the	performance	

in	 the	 Tanna	 Schulich	 recital	 hall	 in	 Montreal,	 Quebec.	 All	 participants	 reported	 felt	 emotional	

intensity	 on	 the	 same	 handheld	 potentiometer	 sliders	 used	 in	 The	Angel	 of	Death	 project.	 They	

rated	their	experience	of	all	pieces	in	this	program	celebrating	the	works	of	W.	A.	Mozart	(see	also	

Marrin	Nakra	&	BuSha,	2014).	From	this	set,	eight	response	collections	were	drawn,	each	groups’	

ratings	of	the	four	orchestral	pieces	by	Mozart.	Responses	that	showed	little	to	no	change	over	each	

piece	were	discarded	from	each	collection.	The	details	of	each	collection	are	listed	in	Table	A.2.	

	[insert	Table	A.2]		

Ratings	 from	this	data	set	are	discussed	 in	more	detail	as	examples	 in	Figures	3,	4,	and	7,	

and	 their	 rating	 change	activity	 coordination	 scores,	both	within	and	between	collections,	 can	be	

found	in	Table	5.	

Korhonen's	Perceived	Emotion	Ratings	

In	 an	 experiment	 following	 the	 paradigm	 and	 material	 of	 Emery	 Schubert’s	 earlier	

experiments	(Schubert,	1999),	continuous	ratings	to	music	were	collected	using	the	EmotionSpace	

Lab,	a	2D	graphical	interface	on	a	computer	screen	for	reporting	evaluations	of	emotional	arousal	

and	 valence	 jointly	 as	 a	 position	 in	 a	 square	with	 a	mouse	 cursor	 (Korhonen,	 2004).	 Thirty-five	
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participants	listened	and	rated	edited	excerpts	of	popular	classical	music	taken	from	the	Naxos	CD	

Discover	the	Classics,	Vol.	1.	These	participants	varied	in	age,	musical	expertise,	and	familiarity	with	

the	genre	of	music,	termed	instrumental	art	music.	Korhonen	has	made	these	response	collections	

openly	available	for	subsequent	analysis.	The	characteristics	of	these	ratings	and	their	relationship	

to	 the	 stimuli	 have	 been	 discussed	 in	 previous	 publications	 (Korhonen,	 Clausi,	&	 Jernigan,	 2006;	

Coutinho	&	Cangelosi,	2009).	Table	A.3	provides	more	details.	

[insert	Table	A.3]		

Ratings	from	this	data	set	are	discussed	in	more	detail	as	examples	in	Figures	1,	3,	5,	and	7,	

and	their	rating	change	activity	coordination	scores	can	be	found	in	Table	4	and	Figure	9.	

McAdams’	CARS	Felt	Emotion	Ratings	

As	 part	 of	 an	 experiment	 on	 continuous	 responses	 to	 music	 from	 an	 audience	 of	

participants,	the	CIRMMT	Audience	Response	System	(CARS)	was	used	to	gather	continuous	ratings	

of	 felt	 emotion	 in	 two	 different	 conditions.	 	 Participants	 in	 the	March	 2009	 session	were	 drawn	

from	 the	 Schulich	 School	 of	Music.	 One	 third	 of	 them	 rated	 felt	 emotional	 arousal,	 another	 third	

rated	felt	emotional	valence,	and	the	last	third	rated	both	dimensions	simultaneously,	all	via	touch	

screen	interfaces	on	iPod	Touch	devices	while	listening	to	recordings	of	concert	music.	Participants	

in	 the	 October	 2009	 session	 were	 members	 of	 the	 public	 and	 music	 theorists	 in	 town	 for	 a	

conference.	 A	 subset	 of	 participants	 reported	 felt	 emotions	 on	 the	 two-dimensional	 interface	

(Arousal	 X	 Valence)	 during	 the	 live	 performance	 of	 the	 same	 musical	 pieces.	 Of	 the	 collections	

reported	in	Table	A.4,	one	pair	was	used	in	the	generation	of	unrelated	response	collections,	but	not	

as	part	of	the	experiment	response	collections.	A	number	of	ratings	to	the	live	performances	of	the	

Schumann	 string	 quartet	 excerpt	 were	 lost	 due	 to	 equipment	 malfunction,	 leaving	 too	 few	

responses	for	some	coherence	measures	to	yield	comparable	results	to	the	other	collections.	
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	[insert	Table	A.4]		

Ratings	 to	 the	 two	 versions	 the	 Arcadelt	 madrigal	 are	 presented	 in	 Figure	 8,	 while	 the	

coordination	scores	of	ratings	to	the	recorded	stimuli	are	reported	in	Figure	9.	

Farbood’s	Liking	Ratings	to	Scrambled	Brahms	

Continuous	ratings	of	liking	were	collected	as	part	of	a	larger	study	on	the	neural	processing	

of	 musical	 structure	 (Farbood,	 Heeger,	 Marcus,	 Hasson,	 &	 Lerner,	 2015).	 Participants	 heard	

multiple	 versions	 of	 an	 excerpt	 of	 a	 Brahms	 piano	 concerto	 that	 had	 been	 segmented	 at	 many	

hierarchical	 levels,	 sections,	 phrases,	 and	 bars,	 and	 was	 scrambled	 at	 each.	 Musician	 and	

nonmusician	participants	performed	the	experiment	individually	in	a	sound-proof	booth,	and	they	

reported	their	liking	for	the	music	using	a	horizontal	slider	presented	on	a	computer	screen	using	a	

mouse.	 Although	 the	 scrambling	 of	 smaller	 blocks	 had	 a	 marked	 effect	 on	 how	 participants	

responded,	 in	particular	how	often	 they	 reported	 changes	 in	 liking,	 the	 gentler	 reordering	of	 the	

music	at	the	segment	level	produced	ratings	of	similar	quality	to	that	of	the	unscrambled	version.	

Both	 collections	 of	 ratings	 were	 used	 to	 generate	 the	 unrelated	 response	 collections	 and	 as	

experiment	response	collections.		Table	A.5	reports	the	details	of	these	collections.	

	[insert	Table	A.5]	

Unrelated	Response	Collections		

Two	 thousand	 collections	 of	 responses	 unrelated	 by	 stimulus	 and	 rating	 scale	 were	

generated	by	 sampling	 randomly	 from	 the	42	experimental	 response	collections	described	above	

with	a	total	of	1350	continuous	ratings.	Following	the	distributions	 in	the	experimental	data	sets,	

these	 constructed	 collections	 varied	 in	 parameters	 typical	 of	 the	 collections	 available	 here.	 The	

number	 of	 ratings	 per	 collection	were	 sampled	 around	 the	median	 (31)	 and	 standard	 deviation	
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(9.4)	while	bounded	between	15	to	40.	The	duration	of	each	collections	was	centered	on	M	=	251	s	

with	SD	=	150	s,	and	bound	between	100	s	and	400	s,	and	the	sampling	rate	was	set	at	1	Hz,	2Hz,	4	

Hz,	 or	 10	 Hz	 with	 equal	 probability.	 Each	 of	 these	 collections	 was	 then	 populated	 from	

experimental	 collections	 of	 the	 same	 duration	 or	 greater	 by	 first	 selecting	 the	 collection	 (equal	

probably,	 with	 replacement),	 and	 then	 selecting	 a	 response	 (equal	 probability).	 Selected	 ratings	

longer	than	that	of	the	collection	were	truncated	by	cutting	off	the	end	of	the	response.	Responses	

were	resampled	using	linear	interpolation	to	match	the	unrelated	response	collection's	sample	rate.	

These	unrelated	response	collections	are	used	in	the	figures	of	Appendices	3	and	4.	

Appendix	2:	Activity	Coordination	Test	Procedures	

This	appendix	describes	the	statistical	tests	as	implemented	in	the	Matlab	functions	of	the	

Activity	Analysis	Toolbox	(Upham,	2017).	

Parametric	Activity-Coordination	Test:	Random	Alternatives	

Activity	Analysis	offers	a	number	of	measures	 to	assess	 the	coordination	of	events	across	

responses	within	 and	 between	 them.	All	 of	 those	 producing	 Coordination	 Scores	 are	 parametric;	

they	use	simple	parametric	models	of	random	behavior	to	assess	the	difference	between	what	has	

actually	measured	and	what	might	have	otherwise	happened	without	any	coordinating	influence.		

The	 within-collection	 Coordination	 Score	 makes	 use	 of	 two	 parametric	 assumptions:	 a	

parametric	 model	 of	 the	 alternative	 activity-level	 distribution	 and	 the	 parametric	 Pearson	 Chi-

squared	Goodness-of-Fit	test	to	compare	this	to	the	measured	distribution.	The	between-collection	

Bi-Coordination	 score	uses	only	one,	 the	Pearson	Goodness-of-Fit	 test	 to	 evaluate	 the	 alternative	

independent	joint-distribution	to	the	measured	joint-distribution	of	activity	levels.	

For	 the	 Coordination	 Score,	 the	 parametric	 model	 of	 the	 alternative	 activity-level	
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distribution	 is	 generated	 with	 the	 average	 event	 activity	 rate	 per	 time	 frame	 and	 a	 binomial	

distribution	 (or	 Poisson	 distribution	 for	 collections	 with	 a	 lot	 of	 ratings.)	 The	 activity	 rate	 of	 a	

single	 response	 is	 estimated	 from	 the	 proportion	 of	 non-overlapping	 time	 frames	 in	 the	 series	

containing	an	activity	event.	The	average	of	this	rate	across	all	responses	in	the	collection	estimates	

the	likelihood	of	any	single	response	containing	the	event	in	any	single	time	frame.	This	probability	

in	a	binomial	probability	function	(or	Poisson)	can	then	calculate	the	likelihood	of	any	activity	level	

as	 a	 proportion	 of	 all	 responses	 active	 at	 once.	 The	 Activity	 Analysis	 Toolbox	 defaults	 to	 the	

binomial	 calculation.	 The	 measured	 activity	 level	 distribution	 is	 matched	 by	 a	 closest	 random	

alternative	by	multiplying	these	probabilities	by	the	number	of	non-overlapping	time	frames	in	this	

measured	activity-level	time	series.		

This	model	 of	 randomly	 occurring	 activity	 levels	makes	 some	 assumptions	 about	 activity	

events.	It	treats	activity	in	any	given	response	as	independent	from	one	time	frame	to	the	next.	By	

using	time	frames	of	size	suitable	for	the	specific	event	and	only	evaluating	activity-levels	 in	non-

overlapping	 time	 frames,	 autocorrelation	 in	 activity	 series	 decreases.	 Still,	 not	 all	 responses	 in	 a	

collection	show	the	same	degree	of	autocorrelation,	making	this	assumption	a	stretch	of	we	looked	

at	each	alone,	just	as	their	activity	rates	vary	from	response	to	response.	

Depending	 on	 the	 response	 and	 activity	 event,	 these	 response-wise	 complications	 get	

blurred	out	when	aggregated	to	the	activity-level	distribution.	This	seems	to	be	the	case	for	rating	

change	 activity	 to	music	 over	 2	 s	 time	 frames.	 But	 for	 periodic	 events	 like	 inspiration	 onsets	 in	

respiration	measurements,	 the	parametric	assumptions	 in	 the	binomial	model	of	activity	 levels	 is	

not	 acceptable.	 For	 these	 kinds	 of	 responses	 and	 events,	 the	 non-parametric	 tests	 of	 activity	

analysis	are	necessary.	

The	random	alternative	 for	 the	between-collection	coordination	tests	and	Bi-Coordination	

Scores	does	not	introduce	any	parameters.	Instead,	the	contingency	table	is	constructed	using	the	
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actual	 activity	 level	 distributions	 of	 both	 collections	 and	 assumes	 the	 level	 in	 one	 collection	 is	

independent	from	those	in	the	other	(i.e.,	not	influenced	by	their	shared	musical	stimulus).	For	any	

combination	of	activity	levels	of	collection	1	and	2,	their	joint	activity-level	probability	is	simply	the	

product	of	either	collection’s	actual	activity-level	occurrence	rates.	This	usually	results	 in	an	even	

blob	of	common	joint	activity	levels	in	the	low	to	middle	range,	with	very	little	chance	of	the	very	

low	and	very	high	activity	levels	happening	concurrently	in	these	two	collections.	

Binning	Algorithm	for	Pearson	Chi-Squared	Tests	

There	 are	 a	 few	ways	 to	 evaluate	 the	 differences	 between	 a	measured	distribution	 and	 a	

random	model.	In	the	parametric	activity	coordination	tests,	we	use	the	Pearson's	Chi-Square	test	

because	of	its	simplicity,	flexibility,	and	popularity	in	data	analysis	code	libraries.		

The	degrees	of	freedom	in	a	Pearson	Chi-Squared	is	not	the	number	of	samples	but	rather	

the	 number	 of	 categories	 or	 bins	 of	 comparison	 between	 the	 distributions.	 The	 more	 bins,	 the	

smaller	 the	 differences	 to	 be	 exposed,	 and	 the	 more	 likely	 such	 small	 differences	 are	

inconsequential.	 The	 activity-level	 distributions	 are	 discrete	 with	 many	 values	 (the	 number	 of	

responses	 in	 the	collections	plus	one)	but	 these	are	 related	by	degree.	To	reduce	complexity	and	

ensure	sufficient	number	of	samples	for	comparison,	the	activity	level	distributions	are	divided	into	

a	few	contiguous	bins	(Dudewicz	&	Mishra,	1988).		

In	the	Activity	Analysis	Toolbox,	the	process	of	reducing	the	activity-level	distributions	to	a	

few	 bins	 is	 performed	 by	 an	 algorithm	 in	 the	 function	 equiSplit.m.	 This	 algorithm	 cuts	 the	

distributions	into	a	specified	number	of	bins,	usually	3	to	5,	according	to	two	objectives:	(a)	all	bins	

contain	a	minimum	of	5	 samples	 (time	 frames)	according	 to	 the	 random	alternative	distribution;	

(b)	 the	 number	 of	 samples	 in	 each	 bin	 is	 as	 close	 to	 equal	 as	 possible,	 again	 according	 to	 the	

alternative	distribution.		
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If	 these	 conditions	 cannot	be	 satisfied,	 the	algorithm	repeats	 the	exercise	on	N-1	bins.	To	

find	 a	 maximally	 even	 bin,	 the	 function	 starts	 with	 the	 cumulative	 distribution	 of	 the	 random	

alternative,	segmenting	it	according	to	the	number	of	samples,	and	selecting	the	best	option	from	

the	finite	list	of	bin	edge	combinations.	

The	 binning	 of	 the	 joint	 probabilities	 in	 the	 between-collection	 coordination	 test	 applies	

this	 algorithm	 to	 cut	 each	 collection's	 actual	 activity-level	 distribution	 into	 three	 bins:	 low,	

middling,	and	high	activity	 levels.	 If	 the	product	 in	any	of	 these	nine	bin	combinations	 leaves	 less	

than	five	expected	samples,	 the	test	cannot	be	performed.	For	this	reason,	 the	between-collection	

test	of	activity	coordination	cannot	report	on	responses	to	very	short	musical	excerpts.	Stimuli	of	

less	 than	110	 s	 are	 not	 likely	 to	 be	 distributed	 sufficiently	 smoothly	 to	 satisfy	 the	 statistical	 test	

criteria	 when	 using	 time	 frames	 of	 at	 least	 2	 s	 for	 rating	 changes.	 With	 these	 reductions,	 we	

calculate	the	Chi-Squared	value	of	the	difference	between	the	actual	and	alternative	distributions	of	

activity-levels,	 and	 the	 resultant	 p-value	 given	 N-1	 d.f.	 (within-collection)	 or	 4	 d.f.	 (between-

collection).	

Construction	of	the	Coordination	Score	

Beyond	 a	 test	 result	 of	 whether	 a	 collection	 shows	 more	 coordination	 than	 would	 be	

expected	 by	 chance,	 it	 would	 be	 useful	 to	 be	 able	 to	 make	 some	 claim	 as	 to	 the	 degree	 of	

coordination.	The	p-value	 is	 a	measure	of	deviance	 from	expected	 random	behavior.	As	 such,	we	

can	use	these	values	as	the	basis	of	a	Coordination	Score	for	some	activity	type	within	a	collection	of	

continuous	responses.	We	propose	then	that	the	Coordination	Score	be	calculated	from	the	p-values	

of	 goodness-of-fit	 tests	 via	 a	 simple	 formula	 similar	 to	 that	 used	 in	 Yeshurun,	 Carrasco,	 and	

Maloney	 (2008):	c	 =	 –log10(p).	Under	 this	 transformation,	 scores	 above	2	would	be	 equivalent	 to	

p	<	𝝰crit	=	.01.	The	maximum	value	for	a	Coordination	Score	is	set	to	16,	for	numerical	convenience,	

by	adding	10–16	to	all	calculated	p	values.	



	 66	

An	 advantage	 of	 the	 goodness-of-fit	 test	 is	 its	 flexibility	 for	 different	 numbers	 of	 samples	

and	sample	values:	the	results	are	comparable	between	collections	of	various	sizes,	in	duration	and	

number	of	participants.	Unfortunately,	the	calculation	is	sensitive	to	the	necessary	simplification	of	

the	distribution	through	the	binning	process.	Also	besides	the	issue	of	how	many	bins	are	used,	the	

nonoverlapping	 time	 frames	 that	 divide	 the	 continuous	 responses	 may	 separate	 different	

participants’	 activity	 in	 response	 to	 the	 same	 musical	 moment.	 However,	 this	 temporal	

segmentation	 can	 be	 turned	 to	 our	 advantage.	 The	 coordination	 test	 uses	 nonoverlapping	 time	

frames,	 and	 when	 these	 frames	 are	 larger	 than	 the	 sampling	 period,	 it	 is	 therefore	 possible	 to	

repeat	the	test	on	the	same	collection	at	different	phases	of	the	framing.	For	example,	four	different	

phases	 of	 nonoverlapping	 2-s	 time	 frames	 are	 possible	 over	 responses	 sampled	 at	 2	 Hz,	 and	 a	

Coordination	 Score	 value	 can	 be	 calculated	 for	 each.	 When	 these	 are	 averaged,	 the	 resulting	

Coordination	Score	 is	more	reliable	as	 it	blends	away	some	of	 the	consequences	of	segmentation.	

The	Coordination	 Scores	 reported	 here	 are	 the	 averages	 of	 the	 Coordination	 Scores	 across	 these	

multiple	 frame	 alignments	 over	 the	 collections,	 using	 the	 Activity	 Analysis	 Toolbox	 functions	

coordScoreSimple.m	 and	 coordScoreRelated.m.	 Given	 that	 these	 values	 are	not	 independent,	many	

methods	 of	 combining	 p-values	 are	 not	 applicable.	 That	 these	 Coordination	 Scores	 successfully	

differentiate	 stimulus-related	 and	 -unrelated	 collections	 of	 continuous	 ratings	 suggests	 the	

calculation	works	well	enough.		

We	 use	 the	 same	 logarithmic	 transformation	 to	 report	 the	 results	 of	 the	 nonparametric	

coordination	 test,	 NPC	 Scores.	 As	 this	 uses	 overlapping	 time	 frames,	 there	 is	 no	 advantage	 to	

applying	it	to	different	offsets.	Within	some	range	of	practicality,	confidence	in	these	numbers	can	

be	 increased	with	 the	number	of	 random	 iterations	used	 to	define	 the	distribution	of	 alternative	

uncoordinated	activity.	The	iteration	count	also	determines	the	range	of	the	NPC	Scores:	the	2000	

iterations	used	for	most	of	this	paper	only	yield	maximum	values	of	3.31.	
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NonParametric	Coordination	Test	

The	tests	described	thus	far	are	specifically	for	activity	events	that	are	sufficiently	rare	and	

flexible	 to	 have	 a	 simple	 sequential	 structure,	 specifically	 a	 point	 process	 for	 which	 a	 binomial	

model	is	reasonable.	There	are	many	kinds	of	activity	that	are	more	complicated	and	responses	for	

which	 the	 activity	 of	 interest	 cannot	 be	 stripped	 of	 sustained	 or	 recurrent	 patterns	 without	

interfering	with	the	measurement	of	synchrony.	If	we	want	to	consider	the	timing	of	inhalations	in	

an	audience,	we	know	that	any	given	listener	must	breathe	again	and	again,	but	only	so	often.	Such	

temporal	 limits	 or	 quasi-regularities	 require	 a	 different	 means	 of	 assessing	 the	 significance	 of	

coordination,	 with	 null	 hypotheses	 that	 respect	 these	 characteristics.	 Rather	 than	 attempting	 to	

model	qualities	only	partially	understood,	a	convenient	way	to	do	this	is	to	use	the	structure	of	the	

responses	themselves.		

We	are	primarily	interested	in	the	coincidence	of	these	events	across	responses	in	relation	

to	 the	 timeline	 of	 the	 common	 stimulus.	 If	 the	 activity	 is	 coordinated	by	 the	music,	 breaking	 the	

temporal	alignment	between	responses	should	result	in	lower	activity	levels.	Using	the	simple	idea	

of	 randomly	 shifting	 the	 entire	 series	of	 each	 response	by	 a	 value	 sampled	uniformly	 from	some	

range	of	shuffling	times	(say	0–30	s),	it	is	possible	to	generate	alternative	activity-level	time	series	

and	 activity-level	 distributions.	 Repeating	 this	 process	 many	 times	 simulates	 a	 distribution	 of	

activity-level	 distributions	 as	 well	 as	 distributions	 of	 activity	 levels	 for	 each	 time	 frame	 (Grün,	

2009).		

	 To	 evaluate	 the	 coordination	 in	 the	 experimental	 data,	 we	 can	 compare	 their	

distribution	 of	 activity	 levels	 to	 those	 of	 the	 shuffled	 alternatives.	 If	 the	 collection's	 original	

Coordination	Score	is	more	extreme	than	95%	of	the	alternatives	generated,	we	have	estimated	p	<	

.05	via	this	nonparametric	test	of	event	coordination.	In	this	case,	the	comparison	was	made	using	

the	Euclidian	distance	between	each	cumulative	distribution	of	activity	levels	(shuffled	alternative	
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and	experimental)	 to	 that	of	 the	average	cumulative	distribution	of	 the	 shuffled	alternatives.	The	

rank	 position	 of	 the	 sample	 collection	 against	 the	 alternatives	 is	 converted	 to	 the	 NPC	 score	 as	

described	above.	

	 This	 analysis	 of	 activity	 is	 of	 course	 sensitive	 to	 a	 few	 parameters	 defining	 these	

calculations:	 the	qualities	of	 the	activity	event	under	 investigation,	 the	window	of	synchrony,	and	

the	range	of	time	over	which	the	responses	are	shuffled	to	generate	the	nonparametric	alternative	

distributions.	 The	 issue	 around	 activity	 events	 are	 much	 the	 same	 as	 for	 the	 parametric	

coordination	tests:	better	a	relevant	definition	of	an	intermittent	behavior	than	something	so	rare	

that	 it	happens	no	more	than	once	per	listening,	or	so	common	that	 it	 is	a	near-constant	state	for	

most	responses.	The	shuffling	range	is	more	particular	and	should	be	chosen	with	consideration	of	

the	temporal	structure	of	the	activity	being	assessed.	If	the	events	are	periodic	to	some	degree	(say	

heart	 beats),	 the	 shuffling	 window	 should	 be	 larger	 than	 at	 least	 one	 average	 period.	 But	 if	 the	

activity	changes	character	over	time,	such	as	skin	conductance	that	loses	sensitivity	over	the	course	

of	minutes,	the	time	interval	should	not	be	so	large	that	this	trend	is	erased.	Appropriate	shuffling	

ranges	 for	 rating-change	 activity	 are	 evaluated	 systematically	 in	 the	 following	 section,	 and	 we	

recommend	15	to	45	seconds	for	the	types	of	collections	considered	here.		

	 A	 last	 issue	 to	 consider	 for	 assessment	 using	 these	 alternative	 alignments	 of	 a	

collection	of	responses	is	how	to	deal	with	the	ends	of	the	series	when	shuffling.	By	displacing	each	

series	by	some	interval	of	up	to	several	seconds,	the	beginning	and	end	of	each	collection	no	longer	

have	 a	 full	 collection	 of	 responses	 as	 some	 are	 moved	 away	 from	 these	 end	 points.	 We	 have	

considered	two	solutions	for	this,	which	should	be	applied	carefully	depending	on	the	data.	In	one	

case,	if	response	behavior	does	not	change	overly	much	over	time,	it	is	safe	to	loop	each	response	

time	series,	filling	in	the	gap	made	at	the	beginning	or	end	with	the	section	of	the	series	cut	off	at	

the	 other.	 If	 the	 characteristics	 of	 the	 series	 are	 more	 evidently	 changing,	 another	 option	 is	
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reflection,	 filling	 the	 gap	 with	 the	 series	 running	 backwards	 from	 the	 shifted	 end	 point.	 This	 is	

particularly	useful	for	periodic	events	with	changing	recurrence	rates.	If	neither	of	these	methods	

can	be	applied	without	producing	artifacts,	the	option	remains	to	exclude	the	beginning	and	end	of	

the	responses	by	the	half-length	of	the	shuffling	interval	and	accept	the	loss.	For	these	analyses	in	

this	paper,	we	have	chosen	to	loop	the	ends.	

Local	Activity	Test	

Once	a	collection	has	been	identified	as	having	a	high	level	of	coordination	in	activity	across	

the	responses,	we	can	investigate	which	moments	make	the	activity-level	distribution	distinct	from	

the	alternative	by	testing	which	have	much	higher	or	lower	activity	levels	than	would	be	expected.	

Such	a	test	requires	a	distribution	of	activity	levels	for	the	null	hypothesis	of	unrelated	events.	With	

the	 nonparametric	 coordination	 test	 described	 previously,	 we	 have	 calculated	 many	 alternative	

activity	levels	for	each	time	frame	through	the	repeated	random	shifts,	breaking	alignment	between	

responses	and	the	stimulus.	Our	shuffled	alternative	distribution	reports	the	possible	activity	levels	

of	these	responses,	were	they	not	synchronized	by	the	music,	while	retaining	all	of	characteristics	

of	these	binary	time	series	including	serial	recurrences	and	changes	in	activity	rate	over	time.		

Each	moment	is	then	judged	by	the	rank	of	the	actual	activity	level	against	the	distribution	

of	 alternative	 activity	 levels,	 a	 nonparametric	 p-value	 for	 the	 experimental	 coordination	 at	 that	

moment.	 In	 this	 assessment,	 we	 are	 testing	 many	 moments	 and	 so	 we	 must	 assume	 that	 some	

exceed	threshold	through	coincidences.	As	previously	stated,	the	existence	of	a	locally	extreme	high	

or	 low	activity	 level	 over	 the	 course	 of	 a	 three-minute	piece	 is	 not,	 by	 itself,	 a	 sign	of	 significant	

coordination.	 In	 Appendix	 3,	 the	 parameter	 search	 for	 a	 reasonable	 shuffling	 range	 reports	 how	

unrelated-response	 collections	 average	 around	 5%	 extreme	 high	 activity	 levels	 and	 2%	 extreme	

low	activity-levels.	For	that	reason,	it	is	important	to	first	evaluate	the	coordination	of	activity	over	

the	 full	 activity-level	 time	 series	 of	 the	 stimulus.	 If	 a	 collection	 of	 responses	 does	 not	 have	
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significant	coordination,	most,	if	not	all	of	these	extreme	activity	levels	are	likely	to	be	the	result	of	

spurious	coincidences.		

As	was	the	case	for	the	activity-level	distributions	over	the	full	stimulus,	depending	on	the	

rate	of	activity,	time	frames	may	display	notable	coincidences	through	high	activity	or	low	activity.	

Figure	 5B,	 discussed	 in	 the	 text,	 marks	 both	 the	moments	 when	 responses	 are	 quite	 active	 and	

those	 in	 which	 they	 are	 notably	 still	 in	 these	 ratings	 of	 perceived	 emotional	 arousal	 in	 the	

orchestral	music	 excerpt	 “Morning”	 from	Grieg’s	Peer	Gynt	 suite,	 from	 the	Korhonen	 (2004)	data	

set.	 Extreme	 high	 and	 low	 activity	 moments	 are	 also	 marked	 in	 the	 rating	 increases	 for	 two	

collections’	responses	to	different	interpretations	of	the	Arcadelt	madrigal	in	Fig	8.	

Appendix	3:	Evaluating	Activity	Analysis	Parameters	

Specific	parameters	of	Activity	Analysis	and	the	coordination	tests	must	be	defined	in	ways	

relevant	 to	 the	 experimental	 data	 and	 hypotheses	 being	 considered.	 What	 might	 count	 as	

simultaneous	 changes	 in	 ratings	 of	 emotion,	 blurred	 by	 attention	 and	 introspection,	may	 be	 too	

loose	 for	 synchronous	 taping	or	other	 reactions	 to	 the	music.	We	also	need	 to	define	 the	activity	

event	 itself,	 e.g.,	 how	 large	 a	 change	 in	 rating	 value	 gets	 counted	 as	 an	 increase	 in	 ratings?	

Depending	on	the	sensitivity	of	 the	device	collecting	responses,	 there	may	be	small	changes	 from	

vibrations	of	the	hand	or	noise	generated	by	the	sensor	itself.	Other	rating	changes	might	be	part	of	

expressive	gestures	by	the	participant,	but	only	as	the	tail	end	of	a	larger	reaction	to	a	specific	event	

in	 the	 music.	 These	 parameters	 or	 definitions	 of	 activity	 must	 not	 only	 encompass	 plausible	

alignment	 with	 the	 stimulus	 but	 also	 allow	 the	 reactions	 in	 responses	 to	 be	 differentiated	 from	

irrelevant	 coincidences.	 No	 definition	 of	 an	 activity	 event	 is	 guaranteed	 to	 capture	 all	 and	 only	

relevant	responses,	but	we	can	use	the	empirical	data	at	hand	to	identify	values	of	parameters	that	

are	measurably	effective	by	some	criteria.	
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Rather	than	presume	to	know	which	collections	of	ratings	contain	examples	of	coordinated	

rating	 changes,	 we	 can	 learn	 the	 reciprocal:	 identify	 parameter	 values	 that	 allow	 us	 to	 reliably	

reject	examples	of	uncoordinated	activity.	This	perspective	is	the	basis	of	frequentist	tests:	defining	

thresholds	to	reject	the	null	hypothesis	of	randomness,	according	to	some	articulated	false	positive	

rate.		

In	 this	 section	we	 use	 continuous	 ratings	 to	music	 from	many	 experiments	 (described	 in	

Appendix	1)	to	establish	a	reasonable	combination	of	Activity	Analysis	parameters	so	that	the	tests	

and	 Coordination	 Scores	 are	 most	 easily	 interpreted.	 To	 reiterate,	 the	 parameters	 of	 minimum	

rating	change	(defining	active	events	such	as	increases	and	decreases	in	ratings)	and	the	window	of	

synchrony	are	being	chosen	to	satisfy	false	positive	rates	of	𝝰crit		=	.01	for	

• continuous	ratings	in	one	dimension;	

• to	Western	classical	or	concert	music;	

• by	 participants	 familiar	 with	 Western	 music	 (involved	 in	 experiments	 run	 in	

Canada,	France,	and	the	USA);	

• in	collections	of	15	to	40	ratings	of	duration	120s	to	400	s	sampled	at	1-10	Hz.	

We	evaluate	the	optimal	combination	of	parameters	by	applying	the	coherence	measures	to	

collections	we	know	are	not	coordinated	by	construction.	To	determine	values	that	exceed	critical	𝝰	

in	within-collection	coherence	measures,	we	use	the	2000	unrelated	response	collections	described	

in	 Appendix	 1.	 These	 are	 composed	 of	 continuous	 ratings	 to	 music,	 preserving	 all	 the	

characteristics	of	 theses	 types	of	stimuli	and	tasks,	combined	to	 form	collections	without	a	single	

common	stimulus	influencing	the	timing	of	activity	events	of	responses.		

Maintaining	 the	 threshold	 values	 of	 2	 for	 Coordination	 Scores,	 Figure	 A.1	 reports	 the	

proportion	of	uncoordinated	collections	or	collection	pairs	that	exceed	threshold	per	combination	
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of	activity	parameters.	Each	plot	reports	the	results	for	a	different	test	or	event,	and	the	trends	of	

change	over	different	windows	of	 synchrony	 (ranging	 from	1	s	 to	5	s)	and	minimum	rating	scale	

change	for	increases	or	decreases	in	ratings	(roughly	logarithmic	from	.3%	to	20%).		

[insert	Figure	A.1]	

The	top	two	plots	report	the	false	coordination	rates	for	the	parametric	mono-activity	tests	

for	increases	(Fig.	A.1A)	and	decreases	(Fig.	A.1B).	Windows	of	synchrony	that	are	too	short	(1	s)	

and	 too	 long	 (5	 s)	 both	 yield	 excess	 false	 positives.	 At	 the	 short	 end,	 the	 activity-levels	 would	

generally	be	very	 low,	and	more	coincidences	across	 two	or	 three	responses	would	 influence	 the	

calculation.	At	 the	 long	 end,	 the	 coordination	 test	would	 suffer	 from	having	 too	 few	 time	 frames	

with	 little	variation	 in	activity	 levels.	Note	 that	 the	 functions	used	 for	 the	parametric	calculations	

automatically	 reduce	 the	 number	 of	 bins	 if	 it	 is	 not	 possible	 to	 split	 the	 expected	 distribution	 of	

activity	levels	according	to	the	reported	binning	criteria.	The	rarity	of	rating	changes	greater	than	

20%	challenges	these	parametric	tests	in	a	similar	manner.		

Selecting	 parameters	 through	 this	 kind	 of	 search	 allows	 us	 to	 find	 values	 that	 suite	 the	

significance	tests	 in	their	capacity	to	reject	false	positives,	without	any	reference	to	true	positives	

or	false	negatives.	The	results	of	these	coherence	measures	do	not	determine	if	a	musical	stimulus	

influenced	 the	 listeners	 or	 their	 responses.	 Rather	 they	 only	 report	whether	 the	 coincidences	 in	

activity	 events	 across	 responses	 exceed	 𝝰crit	 against	 a	 well-defined	 alternative	 of	 accidental	

alignment.	A	rating	of	liking	to	a	Brahms	piano	concerto	may	sometimes	increase	at	the	same	time	

as	a	rating	of	emotional	valence	to	Grieg’s	In	the	Hall	of	the	Mountain	King,	but	such	changes	would	

necessarily	 be	 coincidences.	 Additionally	 if	 a	 collection	 of	 emotional	 intensity	 ratings	 to	 the	 first	

movement	 of	Mozart’s	 First	 Symphony	 showed	 no	more	 coincidental	 activity	 than	most	 of	 these	

collections	of	unrelated	responses,	this	is	a	good	reason	to	acknowledge	that	the	little	rondo	might	

not	have	had	a	significant	coordinating	effect	on	the	emotional	experience	of	these	listeners.		
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For	 the	 between-collection	 measures,	 experimental	 collections	 that	 are	 not	 related	 by	

stimulus	serve	to	provide	a	distribution	of	statistical	values	without	cause	for	significant	coherence.	

If	 the	correlation	between	the	averages	of	 two	audiences	responses	 to	a	performance	of	Mozart’s	

Clarinet	Concerto	 in	A	Minor	 is	no	better	 than	most	of	 those	between	 responses	 to	 two	different	

pieces,	we	 should	 be	 hesitant	 to	 read	 too	much	 into	 the	 concurrent	 swoops	 of	 these	 collections’	

summaries.	Across	 the	40	experiment	collections,	748	pairs	are	not	 related	by	stimulus	or	 rating	

scale.	To	compare	these	collections,	the	longer	of	each	pair	was	truncated	to	match	the	shorter,	and	

one	was	 resampled	 to	match	 the	other	before	 applying	 a	between-collection	 coherence	measure.	

The	Nonparametric	Coordination	Test	(Fig.	A.1C)	is	slower	to	focus	than	the	parametric	scores.	A	2-

s	synchrony	window	and	minimum	rating	change	of	2.5%	yields	a	false	positive	rate	of	4.6%,	rather	

more	than	the	preferred	1%.	In	this	case,	a	smaller	threshold	or	larger	window	of	synchrony	would	

come	 closer	 to	 the	 target	 rate.	 Here	 we	 compromise	 for	 the	 combination	 of	 tests	 to	 support	 a	

standard	set	of	parameters	for	rating	change	active	events.	

In	the	false	coordination	rates	of	between-collection	coordination	(Fig.	A.1D),	the	window	of	

synchrony	is	the	most	important	parameter.	Unless	the	window	is	large	enough	to	allow	a	range	of	

joint	 activity	 levels,	 this	 test	 defaults	 to	 excessive	 false	 coordination	 rates.	 For	 this	 test,	 the	

parameter	 combination	 of	 a	 2-s	window	 of	 synchrony	 and	 a	 2.5%	 activity	 threshold	 produces	 a	

slightly	higher	rate	of	false	positives	than	the	target.	However,	given	the	combination	of	tests	and	

other	criteria,	this	pair	of	parameters	appears	relatively	effective.	

Nonparametric	Coordination	Parameters	

From	 the	 Coordination	 Scores,	we	 have	 reason	 to	 use	 2	s	 as	 a	window	 of	 synchrony	 and	

2.5%	rating	change	minimum	over	2	s	as	criterion	for	defining	an	activity	event.	The	nonparametric	

coordination	 test	and	the	 local	activity	 test	 involve	one	more	parameter.	The	shuffling	window	is	

evaluated	here	by	 tracking	 the	proportion	of	 time	 frames	marked	with	exceptionally	high	or	 low	
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activity	 for	 different	 shuffling	 ranges,	 both	 on	 experimental	 collections	 and	 a	 random	 subset	 of	

unrelated	response	collections.	A	time	frame	is	counted	as	having	exceptionally	high	activity	if	the	

experimental	 activity	 level	 for	 that	 frame	 is	 greater	 than	 97.5%	 of	 the	 activity	 levels	 from	 the	

alternative	 shufflings	 on	 that	 frame.	 Exceptionally	 low	 activity	 time	 frames	 are	 correspondingly	

below	97.5%	of	those	from	the	alternative	alignments	of	responses.	As	the	shuffling	range	increases	

(sampled	 logarithmically),	 these	 ratios	 reach	 a	 plateau,	maintaining	 stable	 average	 rates	 of	 10%	

extreme	 low	 activity	 levels	 and	 15%	 extreme	 high	 activity-levels	 for	 the	 experiment	 collections,	

each	 approximately	8%	higher	 than	 the	 rates	 for	unrelated-response	 collections.	 For	 this	 type	of	

activity	 event,	 increases	 and	 decreases	 of	 at	 least	 2.5%	 of	 the	 rating	 scales	 in	 2-s	 time	 frames,	

counted	in	2-s	windows	of	synchrony,	a	shuffling	range	of	at	least	30	s	is	suitable.	

[insert	Figure	A.2]	

Appendix	4:	Collection	Dimensions	and	Coherence	Measures	

Collections	 of	 continuous	 ratings	 vary	 in	 size,	 specifically	 the	 duration	 of	 responses	

collected	 and	 the	 number	 of	 responses	 gathered	 to	 the	 common	 stimulus.	 As	 suggested	 in	 the	

discussion	of	Within-Collection	Coherence	measures,	 the	dimensions	of	a	collection	of	ratings	can	

have	 impacts	 of	 the	 value	 of	 a	 measure,	 raising	 or	 lower	 measure	 value	 for	 reasons	 mostly	

independent	of	the	questions	of	coherence.	This	can	complicate	efforts	to	compare	the	coherences	

of	 response	 collections.	 Collection	 dimensions	 relate	 to	 the	 amount	 of	 information	 on	 which	 an	

assessment	of	coherence	can	be	made,	the	sample-defined	degrees	of	freedom	by	which	to	interpret	

these	 measures	 as	 frequentist	 tests	 of	 coherence.	 We	 cannot	 offer	 analytic	 derivations	 of	 false-

positive	thresholds	given	the	number	of	ratings	in	a	collection	or	their	duration	in	seconds,	but	we	

can	 demonstrate	 the	 direction	 of	 these	 dependences	 with	 some	 careful	 manipulation	 of	 the	

unrelated	 response	 collections.	 Here	we	 explain	 the	 evaluation	 of	 collection	 sizes	 on	 the	within-

collection	coherence	measures	described	in	the	Activity	Analysis	in	Context	section	of	the	main	text.	
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To	assess	 the	 impact	on	 the	number	of	 responses	 in	a	 collection,	we	used	200	unrelated-

response	collections	of	36	ratings	each,	and	applied	 the	within-collection	coherence	measures	on	

subsets	 of	 nine	 different	 sizes	 from	 12	 to	 36	 ratings.	 We	 then	 considered	 the	 distribution	 of	

measure	 values	 generated	on	 collections	 of	 each	 size,	 testing	whether	 and	how	 the	 variance	 and	

means	 changed	 with	 increased	 sizes.	 Differences	 in	 variance	 were	 evaluated	 using	 the	 non-

parametric	Brown-Forsythe	test,	and	differences	in	means	were	tested	with	a	single	factor	ANOVA.	

The	outcomes	for	the	measures	discussed	in	the	Analysis	in	Context	section	are	listed	in	columns	2	

and	3	of	Table	A.6.		

[insert	Table	A.6]	

The	 number	 of	 continuous	 ratings	 in	 a	 collection	 has	 impacts	 on	 these	 measures	 of	

coherence	 in	 different	 ways.	 As	 shown	 in	 Fig.	 A.3A,	 the	 distribution	 of	 Cronbach's	 α	 changes	

substantially:	the	variance	decreases	as	the	number	of	responses	increases,	while	the	mean	value	of	

these	 incoherent	 collections	 rises	 significantly.	 This	 has	 the	 effect	 of	 squeezing	 the	 range	 of	

coherent	 values	 even	 further.	 The	 MeanCorr	 measure	 of	 coherence	 does	 the	 opposite:	 these	

unrelated-response	 collections	 concentrate	 in	 lower	 measure	 values	 with	 more	 responses	 to	

evaluate	(see	Fig	A.3C).	As	expected,	the	C	Scores	are	not	affected	by	the	number	of	responses	in	a	

collection.	

[insert	Figure	A.3]	

To	 evaluate	 at	 the	 impact	 of	 response	 duration	 on	within-collection	 coherence	measures,	

we	 generated	new	unrelated-response	 collections	 from	 the	 longer	 responses	 in	 the	 experimental	

data	sets	and	applied	the	measures	to	these,	truncated	to	various	durations.	Sixteen	of	the	available	

experiment	 collections	 were	 of	 ratings	 longer	 than	 360s,	 containing	 a	 total	 of	 573	 individual	

unidimensional	ratings.	Of	these	200	collections	were	randomly	generated	by	the	same	process	as	
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described	 in	Appendix	 1.	 These	 collections	 are	 necessarily	 less	 diverse	 than	 those	 sampled	 from	

more	experiment	collections,	increasing	the	likelihood	of	coherent	rating	changes.	While	they	may	

not	 be	 composed	 of	 completed	 unrelated	 responses,	 their	 distributions	 in	 relation	 to	 response	

duration	 are	 still	 informative.	 Columns	 4	 and	 5	 of	 Table	 A.6	 report	 the	 direction	 of	 influence	 of	

longer	ratings	on	these	measures	of	within	collection	coherence.	Again,	 the	rating	change	activity	

Coordination	Scores	are	not	affected	by	this	parameter	(see	Fig	A.3F).	Cronbach's	α's	variance	on	

these	 collections	 does	 not	 change	 significantly	 from	 120s	 to	 360s,	 but	 the	 average	 shifts	

significantly	downwards	(see	Fig	A.3B),	and	the	MeanCorr	measure	behaves	much	the	same	way	as	

it	did	to	increases	in	the	number	of	responses	(see	Fig	A.3D).	

Lastly,	we	should	consider	sample	rate.	Above	a	minimum	frequency,	sample	rate	does	not	

change	the	amount	of	stimulus-related	information	in	continuous	ratings,	but	it	can	still	affect	these	

measures.	 Unfortunately,	 our	 collections	 do	 not	 vary	 sufficiently	 widely	 to	 evaluate	 this	

numerically.	 However,	 we	 expect	 that	 within	 a	 certain	 range,	 the	 coordination	 scores	 would	

decrease	 in	 variance	 with	 an	 increase	 in	 sample	 rate,	 as	 they	 have	 more	 opportunity	 to	 be	

smoothed	with	a	greater	number	of	samples	per	window	of	synchrony.	
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Tables	

Table	 1.	 Performance	 of	 within-collection	 coherence	 measures	 on	 unrelated-response	

collections	and	experiment	collections.	

Within-
collection	
Coherence	
Measures	

95th%	on	the	
Unrelated-
response	
Collections	

Experiment	
Collections	over	95th	

%	Threshold	

99th%	on	the	
Unrelated-
response	
Collections	

Experiment	
Collections	
over	99th	%	
Threshold	

Cronbach's	α	 0.82	 25	 0.85	 20	
InterCorr	 0.35	 14	 0.39	 12	

MeanCorr	(r)	 0.42	 26	 0.47	 17	
VarRatio	 0.17	 23	 0.21	 16	
C	Score,	inc	 1.33	 33	 1.9	 28	
C	Score,	dec	 1.24	 30	 1.9	 25	
NPC	Score,	inc	 1.92	 36	 2.8	 28	

Note:	In	columns	two	and	four	we	report	the	threshold	values	that	would	yield	5%	and	1%	

false-positive	 rates	 on	 the	 unrelated-response	 collections,	 i.e.,	 2000	 randomly	 assembled	

collections	of	real	continuous	ratings	that	do	not	share	a	common	musical	stimulus.	Columns	three	

and	five	report	the	number	of	experiment	collections,	out	of	40,	that	exceed	these	false-positive	rate	

thresholds,	our	numerical	approximation	of	p	<	𝝰crit =	.05	and	p	<	𝝰crit	=	.01.	
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Table	 2.	 Direct	 comparisons	 between	 within-collection	 coherence	 measures	 by	 their	

evaluation	of	the	experiment	collections.		

Coherence	
Measures	

Corr	with	
Cronbach's	α	

Agree	over	
99th	%	

Corr	with	
MeanCorr	

Agree	over	
99th	%	

Corr	with		
C	score,	Inc	

Agree	over	
99th	%	

Cronbach's	α	 1	 20	(100%)	 .89	***	 16	(80%)	 .62	***	 17	(85%)	
InterCorr	 .4	*	 7	(58%)	 .53	***	 8	(67%)	 .42	**	 9	(75%)	

MeanCorr	(r)	 .89	***	 16	(94%)		 1	 17	(100%)	 .61	***	 17	(100%)	
VarRatio	 .95	***	 15	(93%)	 .95	***	 16	(100%)	 .57	***	 16	(100%)	
C	Score,	inc	 .62	***	 17	(61%)	 .61	***	 17	(61%)	 1	 28	(100%)	
C	Score,	dec	 .74	***	 18	(72%)	 .63	***	 15	(60%)	 .58	***	 19	(76%)	
NPC	Score,	inc	 .41	**	 17	(61%)	 .43	**	 16	(57%)	 .66	***	 25	(89%)	

Note:	 *	p<.05,	 **	p<.01,	 ***	p<.001.	 For	 three	measures,	 Cronbach's	 α,	MeanCorr,	 and	 the	

Activity	Analysis	Coordination	Score	on	rating	increases,	we	list	how	they	correlate	(Spearman’s	𝜌)	

with	the	other	studied	measures	(df	=	38).	For	each	pairing	of	measures,	we	also	report	the	number	

of	the	40	collections	that	exceed	both	99th	percentile	value	sets	for	each	measure	on	the	unrelated-

response	 collections,	 along	 with	 the	 percentage	 of	 the	 second	 measure's	 supra-threshold	

collections	are	covered	in	this	overlap.	

	 	



	 80	

Table	 3:	 Between-collection	 coherence	 measures	 on	 combinations	 of	 experiment	

collections.		

Between-collection	
Coherence	Statistics	

95th%	on	
Unrelated	
Pairs	of	

Collections	

Stimulus-related	
Collection	Pairs	
over	95th	%	
Threshold	

99th%	on	
Unrelated	
Pairs	of	

Collections	

Stimulus-related	
Collection	Pairs	
over	99th	%	
Threshold	

Bi-C	Score,	inc	 1.13	 10	(3)	 1.92	 7	(3)	
Bi-C	Score,	dec	 1.19	 13	(1)	 2.3	 7	(1)	

Bi-C	Score,	all	changes	 1.4	 19	(0)	 2.9	 13	(0)	
Pearson	on	full	means	 0.68	 4	(3)	 0.83	 3	(3)	
Pearson,	means	less	12	s	 0.57	 4	(2)	 0.83	 2	(2)	
Pearson,	differenced	means	 0.25	 5	(2)	 0.36	 3	(2)	

Spearman	on	means	 0.55	 4	(0)	 0.73	 3	(0)	
Spearman,	means	less	12s	 0.54	 4	(2)	 0.78	 1	(0)	

Spearman,	differenced	means	 0.17	 4	(2)	 0.25	 4	(2)		
Note:	Columns	two	and	four	report	the	95th	and	99th	percentile	values	of	each	measure	on	

the	748	possible	pairings	of	the	40	experiment	collections	unrelated	by	musical	stimulus.	Columns	

three	and	 five	 report	number	of	 stimulus-related	experiment	 collection	pairs,	 out	of	27,	 found	 to	

exceed	 these	 thresholds	 per	 statistic,	 and	 thus	 suggested	 to	 be	 coherent.	 (Of	 these	 27	 pairs,	 23	

share	the	musical	stimulus	but	differ	in	rating	scale,	and	none	are	guaranteed	to	be	coherent.)	The	

number	of	stimulus	and	rating	scale	related	pairs	(4)	exceeding	threshold	is	reported	in	brackets.	

The	 measures	 compared	 are	 variations	 on	 Activity	 Analysis	 Coordination	 Scores	 between	

collections	(Bi-C	Score),	and	variations	on	Pearson	and	Spearman	correlations	between	the	average	

rating	time	series	(means).	 	
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Table	 4:	 Rating	 change	 coordination	 scores	 for	 the	 within-collection	 coordination	 on	

increases	(inc)	and	decreases	(dec)	in	the	perceived	emotional	arousal	and	valence	ratings	to	each	

stimulus	of	the	Korhonen	(2004)	data	set.		

Composer	 Stimulus		 Duration	(s)	 Dimension		 C	score	(inc)	
C	score	
(dec)	

Liszt	
Allegro	

	
315	

Arousal	
Valence	

16***	
13.8***	

16***	
9.8***	

Rodrigo	
Aranjuez	

	
164	

Arousal	
Valence	

14***	
1.9*	

3.0***	
0.9	

Copland	
Fanfare	

	
169	

Arousal	
Valence	

2.5**	
5.6***	

3.7***	
7.4***	

Beethoven	
Moonlight	

	
152	

Arousal	
Valence	

2.2**	
1.0	

4.6***	
1.9*	

Grieg	
Morning	

	
163	

Arousal	
Valence	

15.6***	
13.6***	

16***	
6.9***	

Strauss	
Pizzicato	

	
150	

Arousal	
Valence	

9.9***	
10.5***	

7.2***	
3.5***	

Note:	*	p<.05,	**	p<.01,	***	p<.001.	More	stimulus	details	shared	in	Appendix	1,	Table	A3.		 	
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Table	5:	Coordination	Scores	for	rating-change	activity	in	felt	emotional	intensity	reported	

continuously	 by	 participants	 in	 audiences	 attending	 a	 live	 performance	 of	 the	 Boston	 Symphony	

Orchestra	(Live)	or	watching	a	reproduction	in	a	concert	hall	(Recorded).		

Stimulus	 Audience	
C	score	
(inc)	

C	score	
(dec)	

Bi-C	score	
(inc)	

Bi-C	score	
(dec)	

Figaro	Overture,	
K492	

Live	
Recorded	

3.4***	
3.7***	

4.0***	
1.6*	

5.5***	 4.9***	

First	Symphony,	
K16	

Live	
Recorded	

2.3**	
0.4	

0.2	
0.1	

0.1	 0.4	

Clarinet	Concerto,	
K622	

Live	
Recorded	

2.2**	
2.0**	

0.3	
1.1	

2.1**	 0.3	

Jupiter	Finale,	
K551	

Live	
Recorded	

3.9***	
1.5*	

5.4***	
2.0**	

2.1**	 0.9	

Note:	*	p<.05,	**	p<.01,	***	p<.001.	The	within-collection	rating	change	activity	per	concert	

condition	 (C	 Score)	 is	 reported	 along	 side	 the	 between-collection	 rating-change	 activity	

coordination	(Bi-C	Score)	between	these	two	groups.	The	activity	events	assessed	were	changes	of	

at	least	.025	of	the	rating	scale	in	2-s	windows	of	synchrony	in	the	direction	of	increases	(inc)	and	

decreases	(dec).	The	music	performed	were	four	excerpts	of	Mozart's	Symphonic	repertoire,	more	

details	in	Table	A.2.		 	
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Table	A.1.	The	continuous	rating	collections	in	the	data	set	from	The	Angel	of	Death	project.		

Piece		
							Performer		
							Composer	

Rating	dimension	
Context	
Rating	device	

No.	participants	
Sampling	rate	
Duration	(s)	

The	Angel	of	Death,	D-S	version	
							G.	Cheng,	SONOR	Ensemble	
							R.	Reynolds	

Emotional	force	
Live	concert	
1D	slider	

41  	
2	Hz	
2054.5	

The	Angel	of	Death,	S-D	version	
							G.	Cheng,	SONOR	Ensemble	
							R.	Reynolds	

Emotional	force	
Live	concert	
1D	slider	

51  	
2	Hz	
2033.5	

The	Angel	of	Death,	D-S	version	
							JM	Cottet,	Court	Circuit  	
							R.	Reynolds	

Force	émotionnelle	
Live	concert	
1D	slider	

54  	
2	Hz	
2067.5	

The	Angel	of	Death,	S-D	version	
							JM	Cottet,	Court	Circuit  	
							R.	Reynolds	

Force	émotionnelle	
Live	concert	
1D	slider	

41  	
2	Hz	
2067.5	

The	Angel	of	Death,	D-S	version	
							G.	Cheng,	SONOR	Ensemble	
							R.	Reynolds	

Resemblance		
Live	concert	
1D	slider	

34  	
2	Hz	
2054.5	

The	Angel	of	Death,	S-D	version	
							G.	Cheng,	SONOR	Ensemble	
							R.	Reynolds	

Resemblance		
Live	concert	
1D	slider	

43  	
2	Hz	
2033.5	

The	Angel	of	Death,	D-S	version	
							JM	Cottet,	Court	Circuit  	
							R.	Reynolds	

Familiarité	
Live	concert	
1D	slider	

36  	
2	Hz	
2067.5	

The	Angel	of	Death,	S-D	version	
							JM	Cottet,	Court	Circuit  	
							R.	Reynolds	

Familiarité	
Live	concert	
1D	sliders	

40  	
2	Hz	
2067.5	
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Table	A.2.	The	continuous	rating	collections	in	the	Boston	Symphony	Orchestra	data	set.	

Piece	
							Performers	
							Composer	

Rating	dimension	
Context	
Rating	device	

No.	participants	
Sampling	rate	
Duration	(s)	

Overture,	The	Marriage	of	Figaro,	K492	
							Boston	Symphony	Orchestra  	
							W.	A.	Mozart	

Emotional	intensity	
Live	concert	
1D	slider	

30	
2	Hz	
239.5	

Overture,	The	Marriage	of	Figaro,	K492	
							Boston	Symphony	Orchestra  	
							W.	A.	Mozart	

Emotional	intensity	
Recorded	concert	
1D	slider	

23	
2	Hz	
239.5	

Rondo,	Symphony	No.	1,	K16	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Live	concert	
1D	slider	

30	
2	Hz	
128	

Rondo,	Symphony	No.	1,	K16	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Recorded	concert	
1D	slider	

22	
2	Hz	
128	

Adagio,	Clarinet	Concerto	in	A,	K622	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Live	concert	
1D	slider	

31	
2	Hz	
401.5	

Adagio,	Clarinet	Concerto	in	A,	K622	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Recorded	concert	
1D	slider	

22	
2	Hz	
401.5	

Finale,	Symphony	No.	41	(Jupiter),	K551	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Live	concert	
1D	slider	

31	
2	Hz	
350.5	

Finale,	Symphony	No.	41	(Jupiter),	K551	
							Boston	Symphony	Orchestra	
							W.	A.	Mozart	

Emotional	intensity	
Recorded	concert	
1D	slider	

22	
2	Hz	
350.5	
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Table	 A.3.	 The	 continuous	 rating	 collections	 in	 the	 data	 set	 collected	 by	Mark	 Korhonen	

(2004).		

Piece	
							Performers	
							Composer	

Rating	dimension	
Context	
Rating	device	

No.	participants	
Sampling	rate	
Duration	(s)	

Allegro,	Piano	Concerto	No.	1  	
							J.	Banowetz	w/	Slovak	Radio	Symph.	Orch.	
							F.	Liszt	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
315	

Allegro,	Piano	Concerto	No.	1  	
							J.	Banowetz	w/	Slovak	Radio	Symph.	Orch.	
							F.	Liszt	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
315	

Adagio,	Concierto	de	Aranjuez	
							Norbert	Kraft	w/	Northern	Chamber	Orch.	
							J.	Rodrigo	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
165	

Adagio,	Concierto	de	Aranjuez	
							Norbert	Kraft	w/	Northern	Chamber	Orch.	
							J.	Rodrigo	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
165	

Fanfare	for	the	Common	Man	
							Slovak	Radio	Symph.	Orch.	
							A.	Copland	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
170	

Fanfare	for	the	Common	Man	
							Slovak	Radio	Symph.	Orch.	
							A.	Copland	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
170	

Adagio,	Moonlight	Sonata	
							J.	Jando  	
							L.	van	Beethoven	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
153	

Adagio,	Moonlight	Sonata	
							J.	Jando  	
							L.	van	Beethoven	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
153	

Morning,	Peer	Gynt	Suite,	No.	1	
							BBC	Scottish	Symph.	Orch.	
							E.	Grieg	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
164	

Morning,	Peer	Gynt	Suite,	No.	1	
							BBC	Scottish	Symph.	Orch.	
							E.	Grieg	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
164	

Pizzicato	Polka	
							Slovak	Radio	Symph.	Orch.	
							Johann	Strauss	II,	Josef	Strauss	

Emotional	arousal	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
164	

Pizzicato	Polka	
							Slovak	Radio	Symph.	Orch.	
							Johann	Strauss	II,	Josef	Strauss	

Emotional	valence	
Recording,	alone	
2D	emotion	space	

35	
1	Hz	
164	
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Table	A.4.	 The	 continuous	 rating	 collections	 in	 the	 CARS	data	 set,	 collected	 in	March	 and	

October	2009.		

Piece	
							Performers	
							Composer	

Rating	dimension	
Context	
Rating	device	

No.	participants	
Sampling	rate	
Duration	(s)	

Il	bianco	e	dolce	cigno	
							King's	Singers	
							J.	Arcadelt	

Emotional	arousal	
Recorded,	1D	or	2D	
iPod	GUI	

30	
10	Hz	
119.7	

Il	bianco	e	dolce	cigno	
							King's	Singers	
							J.	Arcadelt	

Emotional	valence	
Recorded,	1D	or	2D	
iPod	GUI	

30	
10	Hz	
119.7	

Andante-Allegro,	String	Qt	No.	3,	Op.	48	
							St.	Laurence	Quartet  	
							R.	Schumann	

Emotional	valence	
Recorded,	1D	or	2D	
iPod	GUI	

30	
10	Hz	
488.6	

Andante-Allegro,	String	Qt	No.	3,	Op.	48	
							St.	Laurence	Quartet  	
							R.	Schumann	

Emotional	valence	
Recorded	
1D	or	2D	iPod	GUI	

30	
10	Hz	
488.6	

Everybody	to	the	Power	of	One	(V.	1)	
							d.	andrew	stewart  	
							d.	andrew	stewart	

Emotional	arousal	
Recorded	
1D	or	2D	iPod	GUI	

30	
10	Hz	
390.4	

Everybody	to	the	Power	of	One	(V.	1)	
							d.	andrew	stewart  	
							d.	andrew	stewart	

Emotional	valence	
Recorded	
1D	or	2D	iPod	GUI	

30	
10	Hz	
390.4	

Il	bianco	e	dolce	cigno	
							Live	(Orpheus	Singers)	
							J.	Arcadelt	

Emotional	arousal	
Live	concert	
2D	iPod	GUI	

17	
10	Hz	
128.4	

Il	bianco	e	dolce	cigno	
							Live	(Orpheus	Singers)	
							J.	Arcadelt	

Emotional	valence	
Live	concert	
2D	iPod	GUI	

17	
10	Hz	
128.4	

Andante-Allegro,	String	Qt	No.	3,	Op.	48	
							Live	(Student	Quartet)  	
							R.	Schumann	

Emotional	arousal	
Live	concert	
2D	iPod	GUI	

8	
10	Hz	
130	

Andante-Allegro,	String	Qt	No.	3,	Op.	48	
							Live	(Student	Quartet)  	
							R.	Schumann	

Emotional	valence	
Live	concert	
2D	iPod	GUI	

8	
10	Hz	
130	

Everybody	to	the	Power	of	One	(V.	2)	
							d.	andrew	stewart  	
							d.	andrew	stewart	

Emotional	arousal	
Live	concert	
2D	iPod	GUI	

30	
10	Hz	
446.1	

Everybody	to	the	Power	of	One	(V.	2)	
							d.	andrew	stewart  	
							d.	andrew	stewart	

Emotional	valence	
Live	concert	
2D	iPod	GUI	

30	
10	Hz	
446.1	
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Table	 A.5.	 The	 continuous	 rating	 collections	 to	 different	 scrambled	 versions	 of	 a	 Brahms	

piano	concert	excerpt.		

Piece	
							Performers	
							Composer	

Rating	dimension	
Context	
Rating	device	

No.	participants	
Sampling	rate	
Duration	(s)	

Concerto	Excerpt	(Original)	
							Soloist	w/	Orchestra	(conductor)	
							J.	Brahms	

Liking	
Recording	
1D	GUI	

22	
10	Hz	
256	

Concerto	Excerpt	(Section	Scrambled)	
							Soloist	w/	Orchestra	(conductor)  	
							J.	Brahms	

Liking	
Recording	
1D	GUI	

22	
10	Hz	
256	
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Table	 A.6.	 The	 impact	 of	 continuous	 rating	 collection	 size	 on	within-collection	 coherence	

measures,	 both	 the	 number	 of	 responses	 and	 the	 response	 duration.	 Directions	 of	 effect	 are	

reported	in	relation	to	increases	in	these	factors.		

Coherence	
measure	

Size	Variance	 Size	Mean	 Duration	
Variance	

Duration	Mean	

Cronbach's	α	 Decreases***	 Increases***	 No	Trend	 Decreases***	
InterCorr	 Decrease***	 No	Trend	 Decreases***	 Decreases***	

Mean	Corr	(r)	 Decreases***	 Decreases***	 Decrease***	 Decreases***	
Var	Ratio	 Decreases***	 Decreases***	 Decrease***	 Decreases***	
C	score,	inc	 No	Trend	 No	Trend	 No	Trend	 No	Trend	
C	score,	dec	 No	Trend	 No	Trend	 No	Trend	 No	Trend	
NPC	score,	inc	 Increases***	 Increases***	 Increases**	 Increases**	
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Figure	captions	

FIGURE	1.	An	example	of	a	continuous	rating	response	and	activity	events	it	contains.	A)	A	

single	 listener’s	 rating	 time	 series	 of	 perceived	 emotional	 valence	 to	 the	Allegro	movement	 of	 F.	

Liszt’s	Piano	Concerto	No.	1,	performed	by	J.	Banowetz	with	the	Slovak	Radio	Symphony	Orchestra,	

collected	as	part	of	the	Korhonen	data	set	(See	Appendix	1).	In	the	following	panels,	different	kinds	

of	activity	events	in	this	single	response	as	point	processes	are	marked.	B)	Increases	(inc)	of	at	least	

2.5%	of	the	rating	scale	in	a	sequence	of	2-s	frames.	C)	Rating	decreases	(dec)	in	the	same	sequence	

of	frames.	D)	Zero	crossings	(0cross),	moments	when	the	response	moves	between	the	regions	of	

positive	and	negative	emotional	valence.	

FIGURE	2.	Summaries	of	 the	collection	of	perceived	emotional	valence	ratings	 to	 the	Liszt	

excerpt	from	the	Korhonen	data	set	(see	Figure	1).	A)	The	35	response	time	series	(Rsp)	and	their	

average	 (Avg).	 B)	 Four	 activity-level	 time	 series	 for	 rating	 increases	 in	 this	 collection	 with	

minimum	 rating	 change	 thresholds	 of	 0.5%,	 2.5%,	 10%,	 and	 20%	 of	 the	 valence	 rating	 scale	 in	

overlapping	 time	 frames	 (2-s	window	of	 synchrony).	 C)	 Four	 activity-level	 time	 series	 for	 rating	

decreases,	with	the	same	rating	change	thresholds	and	time	frames	as	B.	D)	The	activity-level	time	

series	of	 increases	(inc)	and	decreases	(dec)	of	at	 least	2.5%	in	nonoverlapping	time	frames,	with	

decreases	shown	below	the	x-axis.		

FIGURE	3.	The	assessment	of	activity	coordination	in	the	felt	emotional	intensity	ratings	by	

an	 audience	 watching	 and	 listening	 to	 a	 recording	 of	 a	 concert	 performance	 of	 the	 Overture	 to	

Mozart’s	Marriage	of	Figaro	(K492).	A)	Individual	response	time	series	and	the	average	time	series	

in	black.	B)	Activity-level	time	series	for	increases	(inc,	above	zero)	and	decreases	(dec,	below	zero)	

in	 rating	 changes	 of	 at	 least	 2.5%,	 over	 2-s	 time	 frames.	 Activity-level	 distributions	 (act	 lvls)	 for	

increases	 (C)	 and	 decreases	 (D)	 in	 rating	 values	 along	 with	 the	 parametric	 model	 of	 random	

independent	activity	used	to	assess	 the	activity	coherence.	The	contraction	of	 the	distributions	of	
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activity	into	four	bins	for	the	goodness-of-fit	(GoF)	test,	increases	(E)	and	decreases	(F),	which	finds	

both	to	be	significantly	different	from	random	uncoordinated	activity.	

FIGURE	 4.	 Joint	 activity	 of	 emotional	 intensity	 rating	 increases	 in	 two	 collections	 of	

responses	to	the	same	performance	of	Mozart’s	K492	by	the	Boston	Symphony	Orchestra.	A)	Two	

activity-level	time	series,	that	of	the	live	audience	above	(Live	(inc)),	and	the	audience	watching	a	

recording	below	(Rec	(inc)).	The	large	middle	graph	(C)	shows	the	actual	joint	distribution	of	time	

frames	per	combination	of	activity	levels	for	rating	increases	in	each	collection,	supported	by	their	

respective	activity-level	distributions	of	increases	for	Collection	1	(B)	to	the	live	performance	and	

Collection	 2	 (E)	 to	 the	 recording.	 D)	 The	 expected	 alternative	 joint	 distribution	 of	 independent	

activity	 levels.	 Dotted	 lines	 on	 both	 distribution	 graphs	 (B	 and	 E)	 frame	 the	 bins	 used	 for	

contingency	 table	 sums:	 independent	 random	 model	 (F)	 and	 actual	 joint-distribution	 (G).	 The	

results	of	the	contingency	table	test	are	shown	at	the	bottom	right,	rejecting	the	null	hypothesis	of	

independent	rating	increases	activity	between	these	collections.		

FIGURE	5	Evaluation	of	moments	with	exceptional	coherence	 in	perceived	arousal	ratings	

to	the	Grieg	excerpt	(Morning	Mood)	from	the	Korhonen	data	set.	A)	The	collection’s	responses	and	

average	(thick	black	line).	B)	Moments	of	locally	extreme	high	activity	levels	(open	circles)	and	low	

activity	 levels	 (filled	 circles)	 on	 the	 activity	 level	 time	 series	 of	 rating	 increases	 (max	NPC	 score,	

3.3)	for	extremes	of	p	<	.025.	C)	Moments	(stars)	selected	by	the	modified	Wilcoxon	test	with	90th	

percentile	 selection	 criteria	 on	 the	 median	 first-order	 difference	 time	 series	 (1	 Hz)	 of	 the	

collection’s	ratings,	grey	circles	marking	test	positives	on	80th	percentile	selection	criteria.	D)	The	

collection’s	standard	deviation	time	series	with	moments	highlighted	by	Schubert’s	(2007)	second-

order	 SD;	 black	 dots	 mark	moments	 identified	 using	 the	 full	 stimulus	 duration	 and	 grey	 circles	

indicate	those	selected	on	the	same	relative	threshold	when	excluding	the	first	12	s	for	thresholds	

of	the	times	series	mean	plus	one	standard	deviation;	black	asterisks	mark	threshold	of	time	series	
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mean	minus	one	standard	deviation,	also	without	the	first	12	s.	

FIGURE	6.	Continuous	ratings	of	perceived	emotion	to	an	excerpt	of	the	Adagio	movement	

from	 Concierto	 de	 Aranjuez	 by	 J.	 Rodrigo	 and	 performed	 by	 Norbert	 Kraft	 with	 the	 Northern	

Chamber	Orchestra.	These	 ratings	 from	 the	Korhonen	data	 set	were	collected	continuously	along	

two	dimensions,	emotional	valence	and	arousal,	here	treated	independently.	A)	Continuous	ratings	

of	arousal	(Rsp,	responses)	and	their	average	(Avg).	B)	Activity	 levels	for	arousal	rating	increases	

(Inc)	 and	 decreases	 (Dec)	 of	 at	 least	 2.5%	 in	 non-overlapping	 2-s	 time	 frames.	 C)	 Continuous	

ratings	of	valence	(Rsp)	and	their	average	(Avg).	D)	Activity	levels	for	valence	rating	increases	(Inc)	

and	decreases	(Dec).		

FIGURE	7.	Continuous	ratings	of	felt	emotional	intensity	by	two	participant	groups,	one	to	a	

live	 concert	 performance	 of	 the	 Finale	 movement	 from	W.	 A.	 Mozart's	 Jupiter	Symphony	 by	 the	

Boston	 Symphony	 Orchestra	 (Collection	 1)	 and	 the	 other	 to	 a	 reproduction	 of	 the	 same	

performance	in	a	recital	hall	with	video	and	stereo	audio	(Collection	2).	A)	Ratings	by	the	audience	

attending	 the	 live	 concert	 (Rsp)	and	 their	average	 rating	 time	series	 (Avg).	B)	Average	 ratings	of	

both	response	collections	(Coll	1:	live,	Coll	2:	recording).	C)	Rating-change	activity-level	time	series	

for	 the	 two	collections	with	 increases	of	at	 least	2.5%	above,	 (Inc	1	 from	Collection	1,	 Inc	2	 from	

Collection	 2)	 and	 the	 corresponding	 decreases	 below	 the	 x	 axis.	 D)	 Collection	 2's	 ratings	 of	

emotional	intensity	to	the	concert	reproduction	(Rsp)	and	their	average	time	series	(Avg).	

FIGURE	 8.	 Continuous	 ratings	 of	 felt	 emotional	 arousal	 ratings	 to	 two	 different	

interpretations	of	the	Renaissance	madrigal	Il	blanco	e	dolce	cigno	by	J.	Arcadelt.	A)	30	ratings	(Rsp	

(Rec))	and	their	average	times	series	(Avg)	to	a	recording	by	the	King's	Singers,	plotted	in	metrical	

time	 and	 C)	 17	 ratings	 (Rsp	 (Rec))	 and	 their	 average	 (Avg)	 to	 a	 live	 performance	 by	 the	 semi-

professional	 choir,	 the	 Orpheus	 Singers,	 plotted	 in	metrical	 time.	 B)	 The	 activity	 levels	 of	 rating	

increases	(minimum	2.5%	in	2-s	time	frames)	on	overlapping	time	frames,	aligned	in	metrical	time,	
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of	 ratings	 to	 the	 recording	 above	 (Rec	 (inc))	 (max	 NPC	 Score,	 3.3),	 and	 to	 the	 live	 performance	

below	(Live	(inc))	(max	NPC	score,	3.3),	with	time	frames	of	 locally	extreme	high	and	low	activity	

levels	(X-Act)	marked	in	grey	circles	and	black	diamonds.		

FIGURE	9.	 Exploring	 the	 impact	 of	 two-dimensional	 rating	 tasks	 on	 continuous	 ratings	 of	

felt	 and	perceived	emotion,	Arousal	 x	Valence,	with	Coordination	Scores.	The	horizontal	 line	at	C	

score	=	2	in	each	plot	marks	the	p	<	.001	threshold	for	these	scores.	From	one	session	of	the	CARS	

experiment,	 a	 third	of	 participants	 rated	both	dimensions	of	 emotion	 simultaneously	 (2D)	 for	 all	

three	musical	stimuli	(S1,	S2,	S3),	the	other	two	thirds	rating	each	of	the	dimensions	independently	

(1D).	 A)	 Activity	 coordination	 within	 and	 between	 these	 participant	 group	 collections,	 per	

dimension,	 direction	 of	 rating	 change,	 and	 stimulus.	 B)	 All	 combinations	 of	 rating-change	

coordination	 between	 these	 dimensions	 of	 emotion:	 any	 change	 in	 Arousal	 and	 Valence	 (A/V	

change),	 increases	 in	both	Arousal	and	Valence	 (A/V	 inc),	decreases	 in	both	Arousal	and	Valence	

(A/V	dec),	increases	in	Arousal	against	decreases	in	Valence	(Ainc/Vdec),	and	decreases	in	Arousal	

with	 increases	 in	 Valence	 (Adec/Vinc).	 These	 combinations	 of	 between-collection	 activity	 scores	

(Bi-C	Scores)	 are	of	 the	dimensions	of	 emotion	 from	participants	 rating	both	 simultaneously	 (2D	

ratings)	 and	 those	 between	 the	 two	 groups	 rating	 either	 one	 alone	 (1D	 ratings).	 C)	 Between-

collection	coordination	scores	or	the	dimensions	of	emotion	in	the	same	combinations	as	plot	B,	for	

the	2D	perceived	emotion	ratings	to	the	six	stimuli	from	the	Korhonen	data	sets.		

FIGURE	A.1.	Estimates	of	false	positive	rates	for	Activity	Analysis	coordination	tests	across	

combinations	 of	 window	 of	 synchrony	 sizes	 and	 event	 thresholds	 for	 rating	 change	 activity	 on	

continuous	ratings	to	music.	These	heat	maps	report	the	proportion	of	the	incoherent	collections	or	

collection	pairs	exceeding	the	target	Coordination	score	values	of	2	(α	=	.01)	for	each	combination	

of	window	of	synchrony	sizes,	from	1	to	5	s,	and	minimum	rating-change	thresholds,	(from	.3%	to	

20%	 of	 the	 rating	 scale).	 A)	 Proportions	 of	 the	 2000	 unrelated-response	 collections	 reporting	
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Coordination	 Scores	 >	 2	 for	 increases	 in	 ratings,	 given	 the	 activity	 parameters.	 B)	 The	 same	 for	

decreases	 in	 ratings.	 C)	 Proportions	 of	 the	 2000	 unrelated-response	 collections	 reporting	

Nonparametric	Coordination	Scores	>	2	(1000	iterations)	for	increases	in	ratings.	D)	Proportion	of	

the	748	unrelated-collection	pairs	with	Bi-Coordination	Scores	>	2	 for	 increases	 in	 ratings,	 given	

these	activity	parameters.		

FIGURE	 A.2.	 The	 effect	 of	 the	 nonparametric	 coordination	 test's	 shuffling	 range	 on	 the	

proportion	of	time	frames	found	to	have	locally	extreme	high	activity	levels	and	low	activity	levels	

of	 rating	 increases	 on	 experiment	 collections	 of	 continuous	 ratings	 (40)	 and	 a	 random	 subset	 of	

unrelated-response	 collections	 (88).	 The	 shuffling	 range	 parameter	 is	 varied	 from	 2	 s	 to	 64	 s,	

sampled	at	 ticks,	 and	 reported	 in	 log-scale.	Each	 line	 reports	 the	percentage	of	 time	 frames	with	

activity	 levels	 ranked	below	2.5%	of	 their	2000	stimulus-asynchronous	alternatives	 (A)	or	above	

98.5%	(B).	Each	fainter	lines	make	the	percentages	of	individual	collections	(experiment	collections	

in	 thin	 lines,	 unrelated-response	 collection	 in	 dotted	 lines),	 and	 the	 average	 percentages	 for	 two	

types	of	collections	are	reported	in	thicker	grey	(experiment)	and	black	(unrelated).	

FIGURE	 A.3.	 The	 interaction	 of	 response	 collection	 dimensions	 and	 within-collection	

coherence	 measures,	 demonstrated	 on	 unrelated-response	 collections.	 Each	 subplot	 reports	 the	

distribution	of	measure	values	on	200	randomly	generated	unrelated-response	collections	with	the	

size	specified	on	the	x	axis.	The	5th,	50th,	and	95th	percentile	values	per	collection	dimension	are	

traced	over	 the	heat	maps	 in	black.	The	top	row	reports	 the	distributions	of	Cronbach's	α	values,	

below	that	 the	MeanCorr	values,	and	at	 the	bottom,	Coordination	Scores	 for	rating	 increases.	The	

left	column	covers	the	number	of	responses	in	a	collection,	counted	over	the	coherence	measure's	

full	 value	 range.	 The	 right	 column	 shows	 the	 distributions	 per	 duration	 of	 response	 on	 a	 value	

range	limited	to	the	middle	98%	of	values	taken	by	these	unrelated-response	collections.	
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