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Summary.

This course is one of several designed to act indirectly as an introduction to some of the important
issues in the philosophy and history of mathematics. There are many basic philosophical questions
about mathematics. There are, first, matters of metaphysics: What is mathematics about? Does it have
a subject matter, and if so, what is it? For instance, what are numbers, sets, points, lines, functions,
and so on? Or is mathematics merely formal and about nothing in particular, like logic? There are
also related semantic matters: What do mathematical statements mean, and can they be true? If
so, what is the nature of mathematical truth? And there are, too, matters of epistemology: How is
mathematics known? What is its methodology? Is observation involved, or is it a purely mental
exercise? In particular, what is proof, and what is a proof? Are proofs absolutely certain, immune from
rational doubt? Are they thought-experiments, tests, which might suggest or which might be wrong
or misleading? Or are they just ‘gas’, as one famous mathematician called them? If they are a root to
knowledge, do proofs constitute the only way we can know mathematical truths? And a question
which becomes important in the light of Gödel’s Incompleteness Theorems: are there unknowable
(unprovable?) mathematical truths?

To approach (some of) these matters historically means to approach (some of) them (often indirectly)
by looking at some central developments which shaped modern mathematics, for instance the growth
of what we now know as real analysis (through Cartesian analytic geometry, then the differential and
integral calculus, and then the modern characterisation of the limit notions and the real numbers),
the introduction of the complex numbers (following on the use of the so-called ‘imaginary numbers’,
and the consequent proof of the Fundamental Theorem of Algebra and then complex analysis), the
gradual realisation of the importance and inevitability of the theoretical treatment of infinity, and the
development in the 19th century of what became known as the axiomatic method. All of this had a
profound effect on what we take mathematics to be about, as did the gradual discovery of more and
more interconnections between all of these strands. To all of this we have to add the recognition of
the importance of ‘rigour’ in mathematics and with it the recognition of the importance of formal
logic on all of this, plus the discovery of the paradoxes and the effect this had on virtually all of these
developments. Only with an understanding of these developments does the importance of the epochal
work of Gödel in the 1930s fully stand out.

It’s an interesting (side) question whether there can be revolutions in mathematics, akin to the
Copernican Revolution in astronomy, or the Newtonian Revolution in physics. Perhaps the best
candidate for a ‘revolution’ is the discovery of what became known as non-Euclidean geometry, for this
had an enormous impact on how we understand what mathematics is about, and on the development
of the axiomatic method mentioned above. In his remarkable work The Elements (c. 300 BCE), Euclid
(from Alexandria in present-day Egypt) set out in 13 Books an axiomatic study of geometry which
dominated the study of geometry (and to a lesser extent space) until late into the 19th-c. As one of

1



his five postulates, from which (together with certain so-called Common Notions) all the propositions
(certainly of plane geometry) are meant to follow, Euclid included his famous Parallel Postulate (EPP),
which plays a crucial role in the development of his system, above all in showing that the angle-sum
in any triangle is two right-angles (180◦ — we’ll call this the Angle-Sum Theorem or AST) and that
there can actually be rectangles and squares. From early on, apparently, the postulate was not taken as
having the same degree of evidence as the others, and attempts were made, especially in the modern
era, to prove it from the other postulates (or from these together with a with a more plausible substitute
for EPP), thus showing its dispensability while preserving its results. Some of these proofs we will
look at, particularly the attempts by Wallis, Saccheri and Legendre. One of the things which which
became obvious later was that many of the famous proofs innocently assume some principle or other
which turns out to be equivalent to the EPP (and there are many such). One central method (pursued
most prominently by the French mathematician, Legendre) was to try to prove AST independently
of assuming EPP; it was then taken that this is enough to give us PP, AST being taken as equivalent
to Euclid’s PP (it nearly is, but not quite!). Speaking quite generally, in principle the angle-sum in a
triangle can be either < 180◦ or = 180◦ (which is what the AST asserts) or > 180◦. If we can show that
the assumptions that it is < 180◦ or > 180◦ lead respectively to contradictions, then the remaining
possibility (i.e., the AST) will be proved by reductio, thus (it was assumed) yielding EPP. It was fairly
easily proved that the assumption that the angle-sum is > 180◦ will lead to a contradiction, but no
contradiction could be derived from the assumption that < 180◦. This led de facto to a geometry in
which4s have angle-sum < 180◦, and not = 180◦, so a non-Euclidean geometry, a geometry in which
there are generally no similar (non-congruent) triangles, where the area of a triangle is related to the
degree to which its angle-sum falls short of 180◦, there are no rectangles, and so on. This geometry
was developed above all by Gauss (c. 1800, but unpublished), and then Bolyai (1832) and Lobachevsky
(1820s on). (Time permitting, we will look at some of Lobachevsky’s presentation.) Nevertheless, it
was recognised that the fact that no contradiction had yet appeared does not mean no contradiction
can appear. This then led to the search for ‘models’ of non-Euclidean geometry, and (in a further step)
these were taken to show the consistency of non-E. geometry, i.e., that no contradiction is possible.
We will look at these models (in particular the so-called ‘Poincaré model’) and at the structure of the
consistency proofs, and what exactly is proved. We will also look at the philosophical conclusions that
were drawn from the existence of these models, as well as from the discovery of the geometry itself.
We will also look at some of the philosophical literature provoked by the discovery of non-Euclidean
geometry, above all in Helmholtz’s writings (c. 1865) and in Russell’s monograph from 1897 and his
exchanges with the mathematician Poincaré (and the latter’s own views) on the status of geometry.
We will also look at the conclusions drawn from all these developments by David Hilbert as it is
represented in the Frege-Hilbert correspondence of 1899 and 1900 and in Hilbert’s famous short paper
on the number-concept (1900), where important elements in the birth of modern abstract mathematics
(and the ‘axiomatic method’) can be clearly seen.

We will look with some care at the set-up of Euclid’s Elements (through Heath’s translation and ex-
tensive commentary), Proclus’s discussion and criticism of Euclid’s parallel postulate (c. 450 AD/CE),
then some of the historical developments subsequently, particularly those of Wallis, Saccheri and
Legendre, and finally the philosophical reflections. Some of these developments will be presented
directly through the original work, and some through selections from the excellent presentations in
books by Ian Mueller, Jeremy Gray, Robin Hartshorne and Marvin Greenberg. All the reading material
will be presented as PDFs through the course web site on MyCourses.

Prerequisites. Having done PHIL 210 or equivalent is essential, and it would be good if students
have done (or plan to do) PHIL 310 (Intermediate Logic) or equivalent and PHIL 311. Having
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pursued courses in the history of mathematics (e.g., that sometimes offered in the McGill Mathematics
Department) would also be an advantage.

Readings. The lectures will concentrate on close reading and discussion of the original texts and
readings made available through the MyCourses Website. These readings will be essential. Many of the
lectures will consider these texts in detail, and will assume that they have been read beforehand.

Requirements & grading. Students will be required to attend and participate in class, do the
assigned readings, and be prepared to discuss them. The final grade depends on a final class paper
(60%) (up to 5000 words), on participation in class (10%), and also on submission of two ‘quizzes’ for
the course, each worth 15%, and spread evenly throughout the course. Each quiz will consist of a
series of questions (almost always closely associated with the readings) demanding short answers,
and will then ask for a sketch of an essay on one of several questions set. The final essay will generally
be an expansion or elaboration of one of your sketch essays.

NB: I require that all material (quizzes and final paper) be submitted to me as electronic files in
PDF form. Submission will be arranged through the MyCourses site.

McGill Policies
NB1. McGill University values academic integrity. Therefore all students must understand the meaning and consequences of cheating,

plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see www. mcgill. ca/

integrity for more information).

2. In the event of extraordinary circumstances beyond the University’s control, the content and/or evaluation scheme in this course
is subject to change.

3. Students have the right to submit work in French..
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