A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3

Robert C. Kaplan1,∗,†, Ann-Kristin Petersen4,†, Ming-Huei Chen2,†, Alexander Teumer9,†, Nicole L. Glazer14, Angela Döring4, Carolyn S.P. Lam2, Nele Friedrich10, Anne Newman15, Martina Müller4,6,7, Qiong Yang2,3, Georg Homuth9, Anne Cappola16, Norman Klopp4, Holly Smith2, Florian Ernst9, Bruce M. Psaty14, H.-Erich Wichmann4,6,8, Douglas B. Sawyer2, Reiner Biffar12, Jerome I. Rotter17, Christian Gieger4, Lisa S. Sullivan2,3, Henry Völzke13, Kenneth Rice14, Ariadni Spyroglou5, Heyo K. Kroemer11, Y.-D. Ida Chen17, Jenny Manolopoulou5, Matthias Nauck10, Howard D. Strickler1, Mark O. Goodarzi17, Martin Reincke5, Michael N. Pollak18, Martin Bidlingmaier5,†, Ramachandran S. Vasan2,†, and Henri Wallaschofski10,†

1Albert Einstein College of Medicine, Bronx, NY 10461, USA, 2Boston University School of Medicine, Boston, MA 02118, USA, 3Boston University School of Public Health, Boston, MA 02118, USA, 4Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany, 5Medizinische Klinik - Innenstadt, Ludwig-Maximilians University, Munich 80337, Germany, 6Institute of Medical Informatics, Biometry and Epidemiology and 7Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich 80539, Germany, 8Klinikum Großhadern, Munich 81377, Germany, 9Interfaculty Institute for Genetics and Functional Genomics, 10Institute of Clinical Chemistry and Laboratory Medicine, 11Institute of Pharmacology and 12Department of Restorative Dentistry, Periodontology and Endodontology, Unit of Periodontology, University of Greifswald, Greifswald 17487, Germany, 13Institute for Community Medicine, University of Greifswald, Greifswald 17475, Germany, 14Department of Biostatistics, University of Washington, Seattle, WA 98195, USA, 15Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA, 16School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 17Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA and 18Lady Davis Research Institute of Jewish General Hospital and McGill University, Montreal, QC, Canada H3T 1E2

Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) are involved in cell replication, proliferation, differentiation, protein synthesis, carbohydrate homeostasis and bone metabolism. Circulating IGF-I and IGFBP-3 concentrations predict anthropometric traits and risk of cancer and cardiovascular disease. In a genome-wide association study of 10 280 middle-aged and older men and women from four community-based cohort studies, we confirmed a known association of single nucleotide polymorphisms in the IGFBP3 gene region on chromosome 7p12.3 with IGFBP-3 concentrations using a significance threshold of $P < 5 \times 10^{-8}$ ($P = 3.3 \times 10^{-10}$). Furthermore, the same IGFBP3 gene locus (e.g. rs11977526) that was associated with IGFBP-3 concentrations was also associated with the opposite direction of effect, with IGF-I concentration after adjustment for IGFBP-3 concentration ($P = 1.9 \times 10^{-26}$). A novel and independent locus on chromosome 7p12.3 (rs700752) had genome-wide significant associations with higher IGFBP-3 ($P = 4.4 \times 10^{-21}$) and higher IGF-I ($P = 4.9 \times 10^{-9}$) concentrations; when the two

∗To whom correspondence should be addressed at: Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 1306C, Bronx, NY 10461, USA. Tel: +1 7184304076; Fax: +1 7184303588; Email: rkaplan@aecom.yu.edu
†The authors wish it to be known that, in their opinion, the first four authors should be regarded as joint Lead Authors, and the last three authors should be regarded as joint Senior Authors.
measurements were adjusted for one another, the IGF-I association was attenuated but the IGFBP-3 association was not. Two additional loci demonstrated genome-wide significant associations with IGFBP-3 concentration (rs1065656, chromosome 16p13.3, \(P = 1.2 \times 10^{-11} \), IGFBALS, a confirmatory finding; and rs4234798, chromosome 4p16.1, \(P = 4.5 \times 10^{-10} \), SORCS2, a novel finding). Together, the four genome-wide significant loci explained 6.5% of the population variation in IGFBP-3 concentration. Furthermore, we observed a borderline statistically significant association between IGF-I concentration and FOXO3 (rs2153960, chromosome 6q21, \(P = 5.1 \times 10^{-7} \)), a locus associated with longevity. These genetic loci deserve further investigation to elucidate the biological basis for the observed associations and clarify their possible role in IGF-mediated regulation of cell growth and metabolism.

INTRODUCTION

Insulin-like growth factors (IGFs) constitute an evolutionarily conserved system of peptides that has diverse functions throughout embryonic development, growth and adulthood. IGF-I, which is carried in the circulation by IGF-binding protein-3 (IGFBP-3), is synthesized by the liver and by most other tissues of the body upon stimulation by growth hormone (GH) and is a central mediator of metabolic, endocrine and anabolic effects of GH. IGF-I promotes cell proliferation and differentiation, inhibits apoptosis and has insulin-like metabolic effects (1). A family of six IGFBPs bind with high affinity to IGF-I and may inhibit or potentiate interaction of IGF-I with its receptors, which include the IGF-I receptor and the insulin receptor. In addition to its effects on IGF-I bioavailability, IGFBP-3 has been shown to have intrinsic antiproliferative and proapoptotic activity in experimental studies (2–4). In population-based studies, circulating IGF-I and IGFBP-3 concentrations as well as genes for IGF proteins, receptors and downstream signaling molecules (e.g. IGF-I receptor) have been associated with longevity (5), cancer (6,7) and common chronic diseases (8–17).

Prior work has shown high heritability for blood IGF-I (\(\sim 40–60\% \)) and IGFBP-3 concentrations (60%) (18–20). We conducted a genome-wide association (GWA) study to identify single nucleotide polymorphisms (SNPs) associated with circulating IGF-I and IGFBP-3 concentrations among 10,280 middle-aged to older adults of European origin from four population-based cohorts.

RESULTS

Included in the analyses were 10,280 men and women, comprising 1712 participants in the Cardiovascular Health Study (CHS), 3507 participants in the Framingham Heart Study (FHS), 1607 participants in the Cooperative Research in the Region of Augsburg (KORA) study and 3454 participants in the Study of Health in Pomerania (SHIP). Characteristics are presented in Table 1, with additional details in Supplementary Material, Table S1.

SNPs associated with IGFBP-3 concentrations

Four SNPs had genome-wide significant associations with IGFBP-3 concentrations (Table 2, Q–Q and Manhattan plots appear in Supplementary Material, Figure S1, cohort-specific results appear in Supplementary Material, Table S2). These four genome-wide significant SNPs were: rs11977526 on chromosome 7p12.3, minor allele frequency (MAF) = 0.41, \(P = 3.3 \times 10^{-10} \) (Fig. 1, top panel); rs700752 on chromosome 7p12.3, MAF = 0.35, \(P = 4.4 \times 10^{-21} \) (Fig. 2, bottom panel); rs4234798 on chromosome 4p16.1, MAF = 0.39, \(P = 4.5 \times 10^{-10} \) (Fig. 3) and rs1065656 on chromosome 16p13.3, MAF = 0.32, \(P = 1.2 \times 10^{-11} \) (Fig. 4). Withing each study cohort, the effect size for rs11977526 was larger than that for the other genome-wide significant SNPs. Together, these four genome-wide significant SNPs explained 6.5% of the population variation in IGFBP-3 concentrations. Within the four cohorts, \(r^2 \) values ranged from 5.4 to 7.7% of intra-individual variance explained (Supplementary Material, Table S3).

The SNP that was most strongly associated with IGFBP-3 concentrations, rs11977526, is in the IGFBP3 region on chromosome 7p12.3, which is known to be associated with circulating IGFBP-3 (21–23). In the SHIP cohort, we individually genotyped rs2854746 (non-synonymous, exon 1, Gly32Ala), which appears to be the strongest SNP signal in the region (23) and which has strong linkage disequilibrium (LD) with rs11977526 (\(r^2 = 0.89 \)). Figure 1, bottom panel, presents the regional plot for GWA results, including rs11977526, in the SHIP cohort. After adjustment for rs2854746, we observed no significant independent association between rs11977526 and IGFBP-3 concentration (\(P = 0.13 \)). In the same model, rs2854746 remained associated with IGFBP-3 concentration after adjustment for rs11977526 (\(P = 1.1 \times 10^{-7} \)). The other genome-wide significant SNP on chromosome 7p12.3 (rs700752) remained associated with IGFBP-3 concentrations after adjustment for either rs11977526 (\(P = 6.4 \times 10^{-8} \)) or rs2854746 (\(P = 1.4 \times 10^{-7} \)).

Another SNP associated with IGFBP-3 concentrations, rs1065656, is in a region near IGFBALS that was recently reported by Gu et al. (24) to associate with IGFBP-3 levels. We conducted conditional analyses that examined rs1065656 in combination with the significant SNPs reported by Gu et al. (rs11865665, rs17559, rs1178463 and rs344352). These analyses suggested that rs1065656, rs1178463 and rs344352 represent one IGFBP-3-related locus in the IGFBALS region, and rs11865665 and rs17559 probably represent a second independently associated locus.

SNPs associated with IGF-I concentrations

Analyses of SNPs associated with IGF-I concentrations appear in Table 2 (see Q–Q and Manhattan plots in Supplementary
Three additional SNPs achieved concentration at the level of genome-wide significance. Rs700752 was the only SNP associated with IGF-I concentrations (meta-analysis associated with IGFBP-3 concentrations after adjusting for IGFBP-3 concentrations). Constructed models that examined rs700752 as a predictor of IGFBP-3 concentrations while adjusting for IGF-I concentrations. The SNP most strongly associated with IGFBP3 region was rs1496499 (Fig. S4). While SNPs in the IGFBP3 gene were not associated with IGF-I concentrations in our initial analyses, we found a genome-wide significant association of the IGFBP3 region with IGF-I in analyses that adjusted for IGFBP-3 concentrations. The IGFBP3 SNP most strongly associated with IGF-I concentration after adjustment for IGFBP-3 concentration was rs1496499 (P = 3.8 × 10^{-27}) (Fig. 5). This SNP had no significant association with IGF-I in analyses that were adjusted only for age and sex (P = 6.7 × 10^{-5}). The SNPs that were associated with higher IGFBP-3 levels were associated with lower IGFBP-3-adjusted IGF-I levels. For SNPs that were associated with higher IGFBP-3 levels were adjusted only for age and sex (P < 5 × 10^{-8} and P < 1 × 10^{-6} level).

Table 1. Characteristics of 10,280 individuals and genotyping methods for the four cohorts included in the meta-analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Cardiovascular Health Study (CHS)</th>
<th>Framingham Heart Study (FHS)</th>
<th>Cooperative Research in the Region of Augsburg (KORA)</th>
<th>Study of Health in Pomerania (SHIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males, %</td>
<td>1712</td>
<td>3507</td>
<td>1607</td>
<td>3454</td>
</tr>
<tr>
<td>Age [mean (SD)], years</td>
<td>71.5 (4.8)</td>
<td>39.9 (8.7)</td>
<td>60.0 (8.7)</td>
<td>47.9 (15.7)</td>
</tr>
<tr>
<td>Body mass index [mean (sd), kg/m²]</td>
<td>26.1 (4.3)</td>
<td>26.8 (5.5)</td>
<td>27.8 (4.6)</td>
<td>27.1 (4.7)</td>
</tr>
<tr>
<td>IGF-I, median (Q1, Q3)</td>
<td>153.3 (115.9, 195.9)</td>
<td>124.5 (101.3, 152.2)</td>
<td>128.0 (101.0, 157.0)</td>
<td>136.0 (105.1, 173.7)</td>
</tr>
<tr>
<td>IGFBP-3, median (Q1, Q3)</td>
<td>3846 (3261, 4474)</td>
<td>2960 (2273, 3824)</td>
<td>3405 (2870, 3972)</td>
<td>1918 (1596, 2210)</td>
</tr>
<tr>
<td>Genotyping center</td>
<td>Cedars-Sinai Medical Center</td>
<td>Affymetrix</td>
<td>HMGU, Neuberger, Germany</td>
<td>Affymetrix</td>
</tr>
<tr>
<td>Genotyping platform and SNP panel</td>
<td>Illumina 370CNV</td>
<td>Affymetrix 550K</td>
<td>Affymetrix 6.0</td>
<td>Affymetrix 6.0</td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>Illumina BeadStudio</td>
<td>BRLMM</td>
<td>Birdseed2</td>
<td>Birdseed2</td>
</tr>
<tr>
<td>Average call rate</td>
<td>95%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>Imputation software</td>
<td>BIMBAM10 v0.99</td>
<td>MACH</td>
<td>IMPUTE v0.4.2</td>
<td>IMPUTE v0.5.0</td>
</tr>
<tr>
<td>Number of SNPs in data set</td>
<td>306 655</td>
<td>378 163</td>
<td>869 339</td>
<td>869 224</td>
</tr>
<tr>
<td>Number of SNPs in imputed data set</td>
<td>2 332 667</td>
<td>2 543 887</td>
<td>2 743 205</td>
<td>2 748 910</td>
</tr>
</tbody>
</table>

A° Shown are sample sizes for analyses of IGF-I concentrations. For analyses of IGFBP-3 concentrations, sample sizes were 1465 for CHS, 3507 for FHS, 1592 for KORA and 3454 for SHIP.

Table 2. Loci associated with IGF-I and IGFBP-3 concentrations at the genome-wide significant (P < 5 × 10^{-8}) and P < 1 × 10^{-6} level

<table>
<thead>
<tr>
<th>Chr</th>
<th>Position</th>
<th>A1</th>
<th>A2</th>
<th>F1</th>
<th>IGF-I, P-value</th>
<th>IGFBP-3, P-value</th>
<th>Nearby genes</th>
<th>Gene distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45,974,635</td>
<td>a</td>
<td>g</td>
<td>0.41</td>
<td>n.s.</td>
<td>3.3 × 10^{-10}</td>
<td>IGFBP3</td>
<td>47 239</td>
</tr>
<tr>
<td>1</td>
<td>46,720,078</td>
<td>c</td>
<td>G</td>
<td>0.35</td>
<td>4.9 × 10^{-9}</td>
<td>4.4 × 10^{-11}</td>
<td>TNS3</td>
<td>561 198</td>
</tr>
<tr>
<td>7</td>
<td>4,270,834</td>
<td>t</td>
<td>g</td>
<td>0.39</td>
<td>n.s.</td>
<td>4.5 × 10^{-10}</td>
<td>SOCS2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1,778,837</td>
<td>a</td>
<td>C</td>
<td>0.32</td>
<td>n.s.</td>
<td>1.2 × 10^{-11}</td>
<td>NUBP2, IGFALS</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7,849,848</td>
<td>a</td>
<td>C</td>
<td>0.45</td>
<td>3.9 × 10^{-7}</td>
<td>n.s.</td>
<td>RP43</td>
<td>125 085</td>
</tr>
<tr>
<td>10</td>
<td>73,519,645</td>
<td>a</td>
<td>G</td>
<td>0.39</td>
<td>5.0 × 10^{-7}</td>
<td>n.s.</td>
<td>SPOCK2</td>
<td>872</td>
</tr>
<tr>
<td>10</td>
<td>109,94,877</td>
<td>a</td>
<td>g</td>
<td>0.69</td>
<td>5.1 × 10^{-7}</td>
<td>n.s.</td>
<td>FOXO3</td>
<td>0</td>
</tr>
</tbody>
</table>

Chr, chromosome; A1, allele 1; A2, allele 2; F1, frequency of allele 1; n.s., not significant. The alleles indicated by bold italicized text were associated with higher levels of circulating IGFBP-3, and the alleles indicated by upper case letters were associated with higher levels of circulating IGF-I.
was also associated with the opposite direction of effect, with IGF-I concentration after adjustment for IGFBP-3 concentration ($P = 1.9 \times 10^{-26}$). The analyses of IGFBP-3-adjusted IGF-I concentrations also confirmed the presence of borderline-significant associations between IGF-I and rs2153960 ($P = 4.6 \times 10^{-5}$), rs1245541 ($P = 1.6 \times 10^{-6}$) and rs7780564 ($P = 4.4 \times 10^{-6}$); these results recapitulate the associations that appear in Table 2, which were not IGFBP-3 adjusted. As noted above, in age- and sex-adjusted analyses, rs700752 had genome-wide significant associations with both IGF-I and IGFBP-3 concentrations, but rs700752 remained associated only with IGFBP-3 (and not with...
IGF-I) when the two analytes were mutually adjusted for one another (see Supplementary Material, Table S4). No other significant or borderline-significant SNPs were identified in analyses of IGFBP-3-adjusted IGF-I concentrations.

Sensitivity analyses

Further analyses addressed the possible influence of laboratory assay methodology on study results. In the SHIP cohort, IGF-I

Figure 2. Regional plot (IGF-I and IGFBP-3) for rs700752 on chromosome 7. The diamond indicates rs700752, the SNP with the lowest P for association with IGF-I (top panel) and IGFBP-3 (bottom panel) concentrations. Red shading indicates LD measure (r^2) with rs700752. The left y-axis indicates P for association with IGFBP-3 or IGF-I concentration, and the right y-axis indicates recombination rate.
and IGFBP-3 measurements were repeated at two study visits using different assay methods (see Materials and Methods). A sensitivity analysis suggested that the two different laboratory assays used at the baseline study visit (SHIP-0) and the repeat year 5 study visit (SHIP-1) produced comparable SNP associations (Supplementary Material, Table S5).

Figure 3. Regional plot (IGFBP-3) for rs4234798 on chromosome 4. The diamond indicates rs4234798, the SNP with the lowest \(P \) for association with IGFBP-3 concentration. Red shading indicates LD measure \((r^2) \) with rs4234798. Red text indicates that rs4234798 lies within the SORCS2 gene. The left \(y \)-axis indicates \(P \) for association with IGFBP-3 concentration, and the right \(y \)-axis indicates recombination rate.

Figure 4. Regional plot (IGFBP-3) for rs1065656 on chromosome 16. The diamond indicates rs1065656, the SNP with the lowest \(P \) for association with IGFBP-3 concentration. Red shading indicates LD measure \((r^2) \) with rs1065656. Non-synonymous SNPs and corresponding genes are marked in blue. The left \(y \)-axis indicates \(P \) for association with IGFBP-3 concentration, and the right \(y \)-axis indicates recombination rate.

IGF-I and IGFBP-3 concentrations were associated with height, weight and body circumferences (Supplementary Material, Table S6). The significant associations reported in Table 2 between SNPs and IGF-I or IGFBP-3 concentrations persisted after adjustment for these anthropometric variables (Supplementary Material, Table S7).
We lacked directly genotyped information for four of the SNPs that were associated with circulating IGF-I or IGFBP-3 concentrations (rs11977526, rs1065656, rs7780564 and rs1245541, see Table 2 and Supplementary Material, Table S2). For each of these four SNPs, we identified the closest available SNP that was directly genotyped to serve as a proxy. The relationships with circulating IGF-I and IGFBP-3 concentrations were similar for the imputed-only SNPs (Table 2) and for the directly genotyped proxy SNPs (Supplementary Material, Table S8).

DISCUSSION

Both adult GH deficiency, which is characterized by low serum IGF-I values, and acromegaly, accompanied by IGF-I oversecretion, have been related to excess mortality, increased cardiovascular disease risk and impaired quality of life and functional abilities (25–28). Moreover, it has also been recognized that in adult populations without frank IGF system abnormalities, circulating IGF-I and IGFBP-3 concentrations independently predict risk of mortality and morbidity. Several large population-based cohorts revealed relationships of low circulating IGF-I concentrations, and both high and low IGFBP-3 concentrations, with higher mortality and greater incidence of cardiovascular conditions including ischemic heart disease and congestive heart failure (8–13,29). Furthermore, studies have suggested that high concentrations of IGF-I may be a risk factor for the development of cancers, including prostate and breast cancers (6,7). Thus, IGF-I and IGFBP-3 appear to mediate several clinical conditions that are associated with substantial mortality, medical costs and loss of quality of life in middle-aged to older adults.

We confirmed an association of circulating IGFBP-3 levels with the IGFBP3 gene region on chromosome 7p12.3. The most highly significant SNP, rs11977526, is in LD with a known region in IGFBP3 (21–23). Another chromosome 7p12.3 SNP that was associated with IGFBP-3 concentrations, rs700752, is in a coding region called LOC730338:FLJ43321 but is not near any known gene and has no known function. rs700752 appeared to represent a second locus on 7p12.3 that is independent of the known IGFBP3 variant. We had data on the known IGFBP3 SNP in only one of the four study cohorts, which is a limitation. A third SNP associated with IGFBP-3 concentration, rs4234798, is located within SORCS2, a recently identified neuropeptide receptor gene. While little is known about SORCS2 in humans, a related gene, SORCS1, has been identified as a type 2 diabetes locus (30,31). A fourth SNP, rs1065656, is ~1 kb away from the IGFALS gene, thus confirming the previously reported association of IGFALS with IGFBP-3 concentrations (24). The IGF acid-labile subunit (ALS) is a liver-derived glycoprotein that regulates IGF-I bioavailability by forming a ternary complex with IGF-I and IGFBP-3 in the circulation, thereby extending the circulating half-life of IGF-I and reducing its interaction with its receptors. Patients with IGFALS mutations are deficient in circulating IGF system proteins, but somewhat surprisingly have relatively modest decreases in linear growth (32,33).

We report two genome-wide significant SNP associations with circulating IGF-I concentrations. rs700752 on chromosome 7p12.3 was associated with both circulating IGF-I and
IGFBP-3 concentrations. The significant association of rs700752 with IGF-I concentrations was attenuated when analyses were conditioned on IGFBP-3 concentrations. In contrast, SNPs in the IGFBP3 gene on chromosome 7 were associated with IGF-I concentrations only after adjustment for IGFBP-3 concentrations. These findings raise several intriguing questions. Do these chromosome 7 SNPs associate with IGF-I concentrations because of their effects on circulating IGFBP-3? Do these findings suggest the presence of a genomic region that might influence the affinity of binding between IGF-I and IGFBP-3? Unfortunately, measurement of free bioavailable IGF-I or IGF-I bioactivity has not been performed in our cohorts, which might have helped elucidate the binding mechanisms (34). Further research is needed to understand the direct or indirect mechanisms that link these SNPs with circulating IGF-I concentrations.

Several other SNPs had marginal associations with circulating IGF-I concentrations but did not meet levels of genome-wide significance. For example, rs1245541 is located in a region of chromosome 10 that has been associated with late-onset Alzheimer’s disease (35). IGF-I may have neuroprotective effects and mediate clearance of beta-amyloid (36,37), suggesting a need to further investigate whether IGF-I may, in part, mediate the association of this chromosome 10 region with Alzheimer’s disease. Another SNP associated with IGF-I concentrations, rs2153960, is located within FOXO3 which regulates the expression of IGFBP-1 (38). Forkhead box O (FOXO) transcription factors induce cell growth arrest and apoptosis, which can be prevented by FOXO phosphorylation by the survival kinase AKT in response to growth factors such as IGF-1 (39). In the absence of growth factors, FOXOs reside in the nucleus and up-regulate genes that inhibit the cell cycle, promote apoptosis and decrease oxidative stress (40). Prior human studies link variation in FOXO3 with longevity (41). Therefore, the association of rs2153960 with IGF-I concentration is plausible and intriguing, even if it did not achieve pre-specified levels of genome-wide statistical significance.

The present study is the first, to our knowledge, that has used a GWA study approach in identifying genetic loci associated with circulating IGF-I and IGFBP-3 concentrations. Studies have found that candidate genes of the GH/IGF-I system such as IGFI (42,43), IGFIIR (44), IGFALS (24), GHI (45) and GHHR (46) may be associated with circulating IGF-I and IGFBP-3 concentrations and with related phenotypes such as breast cancer and colorectal cancer (Supplementary Material, Table S9). While the findings from our GWA study confirmed several likely IGF gene candidates (IGFBP3, IGFALS), they also suggest the existence of other important genes that regulate circulating IGF-I and IGFBP-3 concentrations.

Our study phenotypes included the main mediator of the GH/IGF axis, IGF-I, as well as the most abundant IGFBP, IGFBP-3. Study limitations include lack of phenotypic data on other components of this complex endocrine pathway, including circulating concentrations of GH, IGF-II, ALS and additional members of the IGFBP family. The four cohorts that were studied used different assay methodologies to measure IGF-I and IGFBP-3 concentrations, albeit that all were based on a similar analytical principle. Different assay methodologies produce different estimates of circulating IGF-I concentrations, which represent an important problem in clinical practice (47). This design feature precluded us from combining effect estimates across the cohorts (within-cohort effect estimates appear in Supplementary Material, Table S2). We therefore accounted for variation across cohorts in assay methodologies through a z-score-based data analysis approach, as well as sensitivity analyses that showed consistent results when alternative assay methods were used at two different visits in the SHIP study. Another limitation is the use of imputed rather than directly genotyped information for some SNPs which reduced the effective sample size (48), albeit that in most cases the ratio of the empirically observed variance to the expected binomial variance was well above 0.8, indicating good imputation quality (Supplementary Material, Table S2).

In summary, we provide additional evidence for published associations between circulating IGFBP-3 concentrations and the IGFBP3 (chromosome 7) and IGFALS (chromosome 16) gene regions, and identified a novel chromosome 4 region that was associated with IGFBP-3 concentrations. We also found associations of both IGFBP-3 concentrations and IGF-I concentrations with a second chromosome 7 SNP (rs700752) that was apparently independent of the SNPs near IGFBP3. In combination, these four loci together explained 6.5% of the inter-individual variation in circulating IGFBP-3 concentrations. IGF-I concentrations were associated with SNPs near IGFBP3, but only after adjustment for IGFBP-3 concentrations, suggesting that IGFBP3 polymorphisms may influence the amount of free circulating IGF-I. The findings have implications for understanding the diverse influences that modulate the IGF system in adults.

MATERIALS AND METHODS

Study population

Details of study recruitment, data collection and genotyping appear in Supplementary Materials. We studied men and women enrolled in four community-based epidemiological cohort studies in the USA and Germany: CHS, FHS, KORA and SHIP. The present study was limited to individuals who were of European or Caucasian origin as ascertained by self-report. Individuals with diabetes mellitus or reduced renal function (estimated glomerular filtration rate <50 ml/min/1.73 m²) were excluded. All participants provided informed consent and human subjects’ research review was obtained from each participating cohort.

IGF-I and IGFBP-3 measurements

IGF-I and IGFBP-3 measurements were performed by each cohort study group using stored blood specimens (Supplementary Material, Table S1). In CHS, assays were performed using enzyme-linked immunosorbent assay (ELISA) methods in fasting plasma using reagents from Diagnostic Systems Laboratory. In FHS, assays were performed on fasting serum using ELISA methods with R&D Systems reagents. In KORA, assays were performed on fasting plasma using automated chemiluminescent immunometric assays (Siemens). In
SHIP, IGF-I and IGFBP-3 measurements were made on non-fasting serum from two study visits. At the baseline SHIP visit (SHIP-0), assays were performed using automated two-site chemiluminescence immunnoassays (Nichols Advantage). Repeated non-fasting serum measurements were made at a follow-up visit after 5 years (SHIP-1), using Siemens automated chemiluminescent immunometric assays. For the primary analyses, we used data from the SHIP-0 visit, and we also repeated the analyses using data from the SHIP-1 visit; within-person correlations of the repeated measurements were moderate to high (for IGF-I, r² = 0.71, for IGFBP-3, r² = 0.63). Assay CVs were below 10% in each cohort.

Genotyping and statistical analyses
Genotyping was performed by each cohort using methods described in Table 1. SNP data were imputed using the HapMap CEU population to harmonize data across the genotyping platforms used by the four cohorts (~2.5 million SNPs). Data analyses used an additive model relating SNPs with IGF-I or IGFBP-3 concentration after adjustment for age and sex. P-values from within-cohort results and meta-analysis results were corrected for genomic control (λ-values were 1.03 for analyses of IGF-I concentrations, 1.02 for analyses of IGFBP-3 concentrations and 1.02 for analyses of IGFBP-3-adjusted IGF-I concentrations). Meta-analysis was used to combine study results using a z-score-based approach, with weighting by effective sample size which was calculated as the total sample size multiplied by the imputation quality ratio for the SNP. The z-score-based meta-analysis approach was chosen to account for the non-uniformity in IGF-I and IGFBP-3 assay methods across study cohorts. The total number of individuals in the study was 10,280 for analyses of IGF-I concentrations and 10,018 for analyses of IGFBP-3 concentrations. Individual SNPs were excluded if they had an effective sample size below 8000 in the meta-analysis. A significance threshold of P < 5 × 10⁻⁸ was used as the criterion for genome-wide significance. We estimated the percentage of between-individual variation in circulating IGFBP-3 concentrations that was explained by the genome-wide significant SNPs. This was derived in a linear regression model that contained all genome-wide significant loci, age and sex as independent variables; both cohort-specific and weighted average estimates of r² were estimated. Because most circulating IGF-I is bound to IGFBP-3, the amount of free IGF-I in circulating blood is strongly influenced by the blood IGFBP-3 concentration. Therefore, we also conducted analyses to identify SNPs associated with IGF-I concentrations after adjustment for IGFBP-3 concentrations.

ACKNOWLEDGEMENTS
A full list of CHS principal investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. This research was conducted using data and resources from the Framingham Heart Study of the National Heart, Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine based on analyses by Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. The SHIP authors are grateful for the contribution of Anja Hoffmann and Astrid Petersmann in generating the SNP data.

FUNDING
CHS cohort: supported by the National Heart, Lung and Blood Institute (N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, U01 HL080295 and R01 HL087652); the National Institute of Aging (R01 AG031890); and additional contribution from the National Institute of Neurological Disorders and Stroke. DNA handling and genotyping was supported in part by the National Center for Research Resources (M01-RR00425) to the Cedars-Sinai General Clinical Research Center Genotyping core and National Institute of Diabetes and Digestive and Kidney Diseases (DK063491) to the Southern California Diabetes Endocrinology Research Center.

FHS cohort: supported by the National Heart, Lung and Blood Institute’s Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-64278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.

KORA cohort: initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. This study was in part supported by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.).

SHIP cohort: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (01ZZ9603, 01ZZ0103 and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg - West Pomerania. Genome-wide data have been supported by the Federal Ministry of Education and Research (03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg - West Pomerania. The University of Greifswald is a member of the ‘Center of Knowledge Interchange’ program of Siemens AG. Pfizer provided partial grant support for the determination of serum samples and
data analysis. Computing resources have been made available by the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (HLRB project h1231).

REFERENCES

