POLYMORPHIC VARIATION AT THE -202 LOCUS IN IGFBP3: INFLUENCE ON SERUM LEVELS OF INSULIN-LIKE GROWTH FACTORS, INTERACTION WITH PLASMA RETINOL AND VITAMIN D AND BREAST CANCER RISK

EVA S. SCHERNHAMMER,¹ ² 8*, SUSAN E. HANKINSON ³ 4, DAVID J. HUNTER ³ 4, 5, MARIE J. BLOUIN ⁵ AND MICHAEL N. POLLAK ⁵

¹Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
²Ludwig Boltzmann-Institute for Applied Cancer Research, KFI-Spital, Vienna, Austria
³Department of Epidemiology, Harvard School of Public Health, Boston, MA
⁴Harvard Center for Cancer Prevention, Boston, MA
⁵Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada

Previous reports have suggested an association between circulating IGFBP-3 levels and the risk of premenopausal breast cancer, and a single nucleotide polymorphism (SNP) in the promoter region of IGFBP-3 (nucleotide -202) was shown to influence transcription. There is prior evidence that the action of antiproliferative agents such as retinoids and selective estrogen receptor modulators (SERMs) act in part by upregulating IGFBP3 gene expression. We identified 677 women with incident breast cancer and 834 matched controls from the Nurses’ Health Study (NHS) and genotyped this site in the other 1306. For 943 of these women, we had previously measured IGF-I and IGFBP-3 plasma levels, and for 861 of these subjects, plasma retinol levels were available. Age-adjusted mean circulating IGFBP-3 levels were highest in the individuals with the AA genotype and decreased significantly in a stepwise manner in the presence of 1 or 2 copies of the C allele (4,426 ng/ml, 4,060 ng/ml and 3,697 ng/ml, respectively). We found a positive relation between age-adjusted IGFBP-3 levels and plasma retinol (14% difference in top vs. bottom tertiles of retinol, p for trend < 0.001; Spearman correlation coefficient r = 0.25), which was similar across genotypes at the -202 IGFBP3 locus (interaction term, F = 0.10, p = 0.91). Breast cancer risk was not significantly related to genotype at the -202 locus in our prospective analyses. We confirmed a relation between the -202 IGFBP3 polymorphism and IGFBP-3 serum levels and observed a positive correlation between circulating retinol levels and circulating IGFBP-3 levels, providing further evidence that retinoids may influence IGFBP-3 physiology. Our data do not demonstrate a significant influence of this locus on breast cancer risk, but we cannot exclude a minor influence or an influence confined to subgroups.

Key words: insulin-like binding protein 3 (IGFBP3) polymorphism; breast cancer; retinol; vitamin D; epidemiology

Insulin-like growth factor binding protein-3 (IGFBP-3) is 1 of 6 currently identified IGFBPs that, by binding IGF peptides, prolong their half-lives and maintain the reservoir of IGF. Insulin-like growth factors regulate cellular proliferation and differentiation, thereby potentially controlling cancer growth. Evidence from observational studies for an association between IGFBP-3 and breast cancer risk is limited and inconsistent.²–⁶ There is increasing evidence, however, for a relatively strong, positive association between IGF-I and breast cancer risk, and a single nucleotide polymorphism (SNP) at the -202 position relative to the CAP site. IGFBP-3 is an important regulator of the IGF system and has been shown to interact with the IGF-1 receptor and other major medical events. Follow-up questionnaires are available for > 90% of the cohort. Incident breast cancers are identified by self-report and confirmed by medical record review. From 1989 to 1990, blood samples were collected from 32,826 women. Approximately 97% of the blood samples were returned within 26 hr of blood draw, immediately centrifuged, aliquoted into plasma, RBC and buffy coat fractions and stored in liquid nitrogen freezers. The

MATERIAL AND METHODS

Study population

In 1976, 121,700 female registered nurses ages 30–55 years and living in 11 large U.S. states were enrolled in the Nurses’ Health Study. Since baseline they have completed biennial mailed questionnaires that include items about their health status, medical history and known or suspected risk factors for cancer¹⁹ and heart disease.²⁰ Every 2 years, follow-up questionnaires have been sent to cohort members to update the information on potential risk factors and to identify newly diagnosed case subjects of cancer and other major medical events. Follow-up data are available for > 90% of the cohort. Incident breast cancers are identified by self-report and confirmed by medical record review. From 1989 to 1990, blood samples were collected from 32,826 women. Approximately 97% of the blood samples were returned within 26 hr of blood draw, immediately centrifuged, aliquoted into plasma, RBC and buffy coat fractions and stored in liquid nitrogen freezers. The

Grant sponsor: National Cancer Institute (NCI). Grant numbers: CA44949, CA87969; Grant sponsor: NCI Specialized Program of Research Excellence (SPORE) in breast cancer at the Channing Laboratory.

*Correspondence to: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115. Fax: +617-525-2008. E-mail: eva.schernhammer@channing.harvard.edu
follow-up has been $>98\%$ for this subcohort. Further details of the Nurses' Health Study are described elsewhere.21,22

From all women with no cancer diagnosis (with the exception of nonmelanoma skin cancer) prior to blood collection, there were 728 cases of breast cancer reported anytime after blood collection up to June 1, 1996. All of those were confirmed by review of pathology report. In total, 621 were pathologically confirmed invasive cancers and 107 were in situ cancers. Two controls were matched to each premenopausal and postmenopausal case not using hormone replacement therapy at blood, and one control was matched to all other women on their year of birth, menopausal status at blood draw (postmenopausal vs. not), recent postmenopausal hormone (PMH) use defined as use within 3 months of blood collection vs. not, time of day of blood draw, month of blood collection for a particular year and fasting status at blood draw (≥ 10 hr since a meal vs. not). Samples were not available for 40 women, thus, there were 721 incident breast cancer cases and 884 matched controls available for these analyses. Our study was approved by the Committee on the Use of Human Subjects in Research at the Brigham and Women's Hospital.

We evaluated IGFBP3 polymorphism genotype and breast cancer risk both overall and by menopausal status. Menopausal status was assessed at the time of breast cancer diagnosis for cases and their matched controls. We defined women as premenopausal if they reported having at least one natural menstrual cycle within the previous year or if they reported a surgical menopause without bilateral oophorectomy and were under age 48 years (if a non-smoker) or under age 46 years (if a current smoker). These ages were defined based on the age when $<10\%$ of the cohort had gone through natural menopause. Women were categorized as postmenopausal if they reported having a natural menopause or a bilateral oophorectomy. Women who reported a hysterectomy with either one or both ovaries remaining were defined as postmenopausal if they were at least 56 years (if a nonsmoker) or 54 years (if a current smoker). Similarly, these ages were derived from when a natural menopause had occurred in 90% in the cohort. We excluded women with uncertain menopausal status from all menopause-specific analyses. We also separately examined women who were premenopausal and younger than 50 years of age at blood collection—a subgroup where we previously observed the strongest relation between IGF and breast cancer risk.7

Genotyping of the -202 single nucleotide polymorphism

A single polymorphism at position -202 relative to the CAP site was selected for further study because of prior evidence that genotype at this locus was related to circulating IGFBP-3 levels.12,14 In a subset, there was agreement between the previously described RFLP method,12 Taqman, and direct sequencing methods.

From 1,605 eligible women, 94 were not genotyped because of low volume and problems with PCR amplification, which left DNAs from 677 breast cancer cases and 834 controls for genotyping. We employed the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA) in 384-well format. The 5′ nuclease assay (TaqMan®) was used to distinguish the 2 alleles of the A→C transition at position -202 in the IGFBP3 gene. The IGFBP3 PCR amplification was carried out on 5–20 ng DNA using 1× TaqMan® universal PCR master mix (No Amp-

<table>
<thead>
<tr>
<th>Genotype at the -202 locus</th>
<th>Mean levels of IGFBP3 (ng/ml)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>4.426</td>
<td>68.8</td>
</tr>
<tr>
<td>AC</td>
<td>4.060</td>
<td>45.8</td>
</tr>
<tr>
<td>CC</td>
<td>3.697</td>
<td>59.2</td>
</tr>
</tbody>
</table>

1568 people less than the total study population (no IGFBP-3 levels available).
erase UNG), 900 nM forward (CACCCTGGTTCTTGGTACGAC-GACAAG) and reverse (GCGGTCAGCTGACGACT) primers, 200 nM of the FAM-labeled probe (TCCTGCTGCAGCCG) and 200 nM of the VIC-labeled probe (TCCTGCTGCAGCA) in a 5 μl reaction (the polymerase base is shown underlined). Amplification conditions on an ABI 9700 dual plate thermal cycler (Applied Biosystems) were as follows: 1 cycle of 95°C for 10 min, followed by 50 cycles of 92°C for 15 sec and 58°C for 1 min. TaqMan® primers and probes were designed using the Primer Express® Oligo Design software v2.0 (ABI PRISM). Laboratory personnel who performed genotyping were blinded to case-control status. Furthermore, to validate genotype identification procedures, 10% of the total samples were blinded quality-control samples. For those, concordance was 100%.

IGF-I, IGFBP-3, vitamin D and retinol plasma levels

IGF-I and IGFBP-3 were assayed by ELISA with reagents from Diagnostic Systems Laboratory (Webster, TX). Measurement of retinol, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels were performed by high-performance liquid chromatography. All samples were masked to case or control status. Masked split specimens included within each batch were used to calculate the coefficient of variation within batches; for IGF-I these ranged from 4.1–8.7% and for IGFBP-3 from 5.1–9.3%. Between-batch CVs were 15.6 for IGF-I and 19.4 for IGFBP-3, respectively. Within-batch CVs for retinol ranged from 7.7–19.5% and between-batch CVs from 16.0–25.8%. For 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D, within-batch CVs ranged from 4.3–10.6% and between-batch CVs from 7.8–23.7%, respectively.

Statistical analyses

To assess significant departures of the genotype distributions from the Hardy-Weinberg equilibrium, we used the χ² test. We estimated the percent variation in the IGFBP-3 that can be explained by the -202 polymorphism alone or by the genotype and age, using a general linear regression model (ANCOVA). Analysis of covariance models were fitted using PROC GLM of SAS to compare the age-adjusted levels of IGFBP-3 according to the genotype. We further assessed (age-adjusted) mean levels according to the genotype and tertile of plasma retinol, tertile of height or weight and for each tertile of circulating retinol levels (in tertiles) and genotype, we tested if there were different regression coefficients for the 3 genotype groups, adding an interaction term into our general linear model.

Previous work suggested a modest association between current hormone replacement therapy (HRT) and plasma IGFBP-3 levels, with even stronger associations between HRT and plasma IGF-I levels. In our own data set, mean plasma IGFBP-3 levels did not significantly vary according to postmenopausal hormone use, and we therefore did not exclude current HRT users from our analyses. To assess whether plasma IGF-I levels varied by the -202 polymorphism, however, we analyzed the subset of control women who were not postmenopausal hormone users at blood collection. Women with an IGFBP3 polymorphism genotype of CC were the referent group in all analyses. Conditional logistic regression was used to estimate relative risks (RRs) and 95% confidence intervals (95% CIs) in the total data set. Because results were similar with either method and to increase statistical power, we used unconditional logistic regression, controlling for the matching factors, for all subset analyses (according to menopausal status). The RRs were also calculated adjusting for body mass index (BMI) at age 18, weight change since age 18, age at menarche, parity/age at first birth, first-degree family history of breast cancer, personal history of benign breast disease, duration of postmenopausal hormone use and age at menopause. Because relations between the -202 polymorphism and breast cancer risk did not differ substantially when we excluded in situ cancers, we used both invasive and in situ cancers for all analyses. We did not adjust for IGF-I levels in our models because plasma levels were not available for all women. Moreover, in a subset of women for whom plasma IGF-I had been assessed, further adjustment for IGF-I did not materially alter the RRs. All p-values are 2-sided, and all analyses used the SAS program package (SAS Institute, Cary, NC).

RESULTS

From the 1,961 women from the Nurses’ Health Study (breast cancer cases and matched controls 1:1 and 1:2) who were available for analyses, 1,511 women were successfully genotyped at the -202 locus. For 943 of these, we had previously measured IGF-I and IGFBP-3 plasma levels and we included an additional 807 of these subjects, plasma retinol levels were also determined. Data for 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D levels, IGFBP-3 levels and IGFBP3 -202 genotype were available for 329 and 276 subjects, respectively.

Variation at the -202 locus was common in the study population (genotype distribution: AA = 323, AC = 753, CC = 435), and the genotype frequencies were in Hardy-Weinberg equilibrium (χ² = 0.004; p > 0.90). In accordance with a previous study among men, we found that the A allele (46%) was less frequent than the C allele (54%).

Mean IGFBP-3 levels were lowest in the individuals with the CC genotype at the -202 IGFBP3 locus and increased significantly in a stepwise manner in the presence of 1 or 2 copies of the A allele (p < 0.001 for each pairwise comparison, Table I): age-adjusted mean IGFBP-3 levels according to genotype were 4,426 ng/ml, 4,060 ng/ml and 3,697 ng/ml, respectively (20% difference between AA and CC). The relation between genotype and circulating serum IGFBP-3 levels was apparent with or without adjustment for age. Using a general linear model, we estimated that the percent variation in IGFBP-3 that can be explained by the -202 polymorphism is 6% (r² = 0.06). The -202 genotype was not associated with the total circulating IGF-I level [AA = 183 ± 9 ng/ml vs. AC = 182 ± 6 ng/ml vs. CC = 178 ± 8 ng/ml, respectively (p > 0.5 for all pairwise comparisons)].

We examined the possibility that breast cancer risk might be related to genotype at the -202 IGFBP3 locus (Table II). There was no statistically significant relation between genotype and RR for breast cancer, either overall or when assessed by menopausal status. Using the CC genotype as the reference (RR = 1.0), the simple RR for all women combined associated with the AC genotype was 0.99 (95% CI 0.77–1.26), and the RR associated with the AA genotype was 0.97 (95% CI 0.72–1.30). Further adjustment for established breast cancer risk factors and additional control for retinol did not materially alter these estimates. We also examined this association in subgroups of menopausal status (Table I). Among the small group of premenopausal women younger than age 50, we observed a modest, nonsignificant, inverse relation between genotype AA and breast cancer risk (multivariate RR = 0.67, 95% CI 0.20–2.20). This trend is in the direction one would predict, assuming that IGFBP-3 functions as a growth inhibitor and that the AA promoter variant is more active.

Among postmenopausal women who never used postmenopausal hormones, the RR for the AA genotype was 0.84 (95% CI 0.42–1.52). All associa-
tions between the -202 polymorphism and breast cancer risk re-
mained essentially unchanged when we assessed them among
invasive cancers only (data not shown).

Data for retinol levels, IGFBP-3 levels and IGFBP3 -202 ge-
genotype were available for 861 subjects (Table III). Age-adjusted
IGFBP-3 levels increased across tertiles of plasma retinol (trend
analysis: \(p < 0.001 \); Spearman correlation coefficient: \(r = 0.25; p = 0.0001 \)). When the age-adjusted mean levels of IGFBP-3 in
each retinol tertile were analyzed after stratification by genotype at
the -202 locus, higher levels of IGFBP-3 were consistently ob-
served with the AA genotype regardless of retinol levels (Fig. 1).
The IGFBP-3 and retinol relation was similar across categories of
genotype (interaction term, \(F = 0.10, p = 0.91 \)). BMI and height
did not modify the influence of the IGFBP-3 -202 polymorphism
on circulating IGFBP-3 levels.

We found no association between the polymorphism and 25-
hydroxy vitamin D or 1,25-dihydroxy vitamin D levels [for exam-
on circulating IGFBP-3 levels.

3. Del Giudice ME, Fantus IG, Ezzat S, McKeown-Eyssen G, Page D,
and their role in controlling IGF actions. Endocrinol Rev 1995;16:3–

FIGURE 1 – Mean IGFBP-3 levels stratified by both genotype at
nucleotide -202 and circulating retinol tertile (1, lower tertile; 2,
middle tertile; 3, upper tertile).

DISCUSSION
In a matched, nested case-control study of breast cancer, we
found that the -202 polymorphism in the promoter region of
IGFBP3 influences circulating IGFBP-3 levels in women. Circu-
lating IGFBP-3 levels vary considerably between normal individ-
uals. The literature remains scant, but estimates from twin stud-
ies\(^\text{10}\) propose that approximately 40% of the intraindividual
variability in IGFBP3-3 levels are attributable to genetic variants.
Our results suggest that 6% of the variation in plasma IGFBP-3 is
due to genotype at the -202 locus.

Consistent with earlier reports that show a similar association in
adult men\(^\text{12}\) and premenopausal women,\(^\text{12}\) we found the AA ge-
notype to be associated with higher circulating levels of IGFBP-3,
which were previously described to be associated with reduced
breast cancer risk. We also evaluated the relation between IGFBP3
polymorphism and breast cancer risk; although the polymorphism
would be only one determinant of levels, even modest differences
in levels over a lifetime may result in measurable differences in
risk. In addition, in contrast to rare mutations (e.g., in BRCA1) that
have a major influence on risk, modest influences on risk associ-
ated with common polymorphisms would apply to a larger number
of people and therefore may be important on a population basis.
We did not observe a significant relation between this IGFBP3
polymorphism and overall risk of breast cancer.

Although there is some evidence from laboratory studies that
both retinols and vitamin D can upregulate IGFBP3 levels, in our
cohort we only found retinol to upregulate IGFBP3 expression. In
contrast, there was no association between vitamin D and IGFBP-3
levels in our study.

The design of our study, a case-control study nested within the
Nurses’ Health Study cohort where blood samples were taken from
the cohort before occurrence of disease, eliminates concerns about
blood sampling time relative to breast cancer diagnosis. However,
we had only a small number of premenopausal women in our
cohort, the subgroup where the inverse correlation between IG-
FBP-3 level and breast cancer risk was originally described,\(^2\) and
these findings will therefore need to be replicated in larger data
sets. Furthermore, as the -202 locus accounts for only approxi-
ately 6% of the interindividual variability in IGFBP3-3 levels,
future studies should examine disease risk in relation to haplotypes
obtained by simultaneously considering variability at several poly-
morphic sites in IGFBP3.

Overall, our observations do not support an important role of
this IGFBP3 polymorphism alone in the etiology of breast cancer.
Our data confirm previous reports of an important relation between
circulating IGFBP3-3 levels and a -202 polymorphism in the pro-
moter region of IGFBP-3. Furthermore, we found a positive rela-
tion between age-adjusted IGFBP3-3 levels and plasma retinol.
Thus, our data provide support for the laboratory observation that
the induction of IGFBP3 expression is functionally important in
the action of chemopreventative agents such as retinoids.

ACKNOWLEDGEMENTS
M.N.P. was partially supported by grants from the Streams of
Excellence Program of the Canadian Breast Cancer Initiative. We
are indebted to the participants of the ongoing Nurses’ Health
Study for their continuing outstanding dedication to the study and
to K. Corsano for technical assistance. We thank Dr. G. Colditz,
Ms. J. Sparrow, Mr. D. Coppola, Dr. H. Ranu and Mr. R. O’Brien
for their expert assistance. No authors have declared a financial
interest in a company whose product was studied in the work
presented here.

REFERENCES
1. Jones JI, Clemmons DR. Insulin-like growth factor binding proteins
and their role in controlling IGF actions. Endocrinol Rev 1995;16:3–

2. Bohlike K, Cramer DW, Trichopoulos D, Mantzoros CS. Insulin-like
growth factor-I in relation to premenopausal ductal carcinoma in situ

3. Del Giudice ME, Fantus IG, Ezzat S, McKeown-Eysen G, Page D,
Goodwin PJ. Insulin and related factors in premenopausal breast

4. Li BD, Khosravi MJ, Berkel HJ, Diamandi A, Dayton MA, Smith M,
Yo H. Free insulin-like growth factor-I and breast cancer risk. Int J

5. Mg EH, Ji CY, Tan PH, Soo KC, Lee KO. Altered serum levels
of insulin-like growth factor-I in relation to premenopausal ductal

6. Toniolo P, Bruning PF, Akhmedkhanov A, Bonferr JM, Koenig, KL,
Lukanova A, Shore RE, Zeleniuch-Jacquotte A. Serum insulin-like
growth factor-I in relation to premenopausal ductal carcinoma in situ

7. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS,
Deroo B, Rosner B, Speizer FE, Pollak M. Circulating concentrations
of insulin-like growth factor-I and risk of breast cancer. Lancet

W. Insulin-like growth factors and breast cancer risk in Chinese

9. Ehrenborg E, Larsson C, Sten I, Janson M, Powell DR, Luthman H.
Contiguous localization of the genes encoding human insulin-like
growth factor binding proteins 1 (IGFBP1) and 3 (IGFBP3) on chromo-

10. Ferrari M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J,
Eriksson J, Toivainen L, Koskenvuo M, Leinonen P, Koistinen R,
Seppala M. Genetic and environmental components of interindividual
variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IG-

11. Kao PC, Matheny AP, Lang CA. Insulin-like growth factor-I compar-
isons in healthy twin children. J Clin Endocrinol Metab 1994;78:
310–2.

12. Deal C, Ma J, Wilkin F, Paquette J, Rozen F, Ge B, Hudson T,

