The Sad Truth About Happiness Scales

Timothy Bond and Kevin Lang

Purdue University/Boston University

March 18, 2015

<ロ> <四> <回> <回> <回> <回> <回> <回> <回> <</p>

Purdue University/Boston University

Points on scales represent intervals

Purdue University/Boston University

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions

Purdue University/Boston University

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function
- Applications to:

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function
- Applications to:
 - Moving to Opportunity

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function
- Applications to:
 - Moving to Opportunity
 - Changes in male/female happiness

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function
- Applications to:
 - Moving to Opportunity
 - Changes in male/female happiness
 - Easterlin paradox

- Points on scales represent intervals
- Can (almost) never rank two groups with respect to mean happiness without strong additional assumptions
 - Even assuming everyone has the same reporting function
- Applications to:
 - Moving to Opportunity
 - Changes in male/female happiness
 - Easterlin paradox
- Suggest some partial solutions

"Theory" ●000000	Applications 0000000000	Conclusion O

> Standard question in happiness literature asks if respondent is:

Purdue University/Boston University

- > Standard question in happiness literature asks if respondent is:
 - very happy

Purdue University/Boston University

> Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy

Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy
- not very happy

> Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy
- not very happy
- Sometimes modeled as 0, 1,2

Purdue University/Boston University

Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy
- not very happy
- Sometimes modeled as 0, 1,2
- Frequently modeled in standard deviations (essentially the same)

Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy
- not very happy
- Sometimes modeled as 0, 1,2
- Frequently modeled in standard deviations (essentially the same)
- Best, modeled as ordered probit/logit

Standard question in happiness literature asks if respondent is:

- very happy
- somewhat happy
- not very happy
- Sometimes modeled as 0, 1,2
- Frequently modeled in standard deviations (essentially the same)
- Best, modeled as ordered probit/logit
- ► Key point: Stochastic Dominance in Categories → Rankable Means

Example with Normality

Example 1				
	Group A	Group B		
Very happy	20	15		
Pretty happy	25	30		
Not too happy	55	55		

- Group A happier if we impose common variance (would be rejected with reasonable sample size)
- With different variances/same cutoffs
 - Mean for group A = -.18
 - ▶ Mean for group B = −.14

A More Extreme Example

Example 2				
	Group A	Group B		
Very happy	45	0		
Pretty happy	0	45		
Not too happy	55	55		

- Mean for group $A = -\infty$
- Mean for group B = 0

Should not normalize variance

Purdue University/Boston University

- Should not normalize variance
 - implies different cutoffs between very happy/somewhat happy for different groups

- Should not normalize variance
 - implies different cutoffs between very happy/somewhat happy for different groups
- Instead normalize cutoffs (e.g. 0, 1)

- Should not normalize variance
 - implies different cutoffs between very happy/somewhat happy for different groups
- Instead normalize cutoffs (e.g. 0, 1)
- Then mean and variance of distribution are identified

- Should not normalize variance
 - implies different cutoffs between very happy/somewhat happy for different groups
- Instead normalize cutoffs (e.g. 0, 1)
- Then mean and variance of distribution are identified
- Seems to imply ranking of mean happiness/utility

An Example with the "Right" Ranking Logistic Distribution

Example 3				
	Group A	Group B		
Very happy	.20	.28		
Pretty happy	.60	.53		
Not too happy	.20	.19		

- Mean for group A = .50; Spread parameter=.36
- ▶ Mean for group B = .61; Spread parameter=.42
- CDFs cross at 14th percentile.

"Theory"	Applications	Conclusion
0000000		

Normality: Always Simple Log-Normal Transformation

• Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally

Purdue University/Boston University

McGill Presentation

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \, \sigma_2 > \sigma_1$

Purdue University/Boston University

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- ► $\mu_1 > \mu_2$, $\sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$

Purdue University/Boston University

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \ \sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$
 - Mean $(\widetilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \ \sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$
 - Mean $(\widetilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$
 - Adjust cutoff to multiply μ , σ by c

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \ \sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$
 - Mean $(\widetilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$
 - Adjust cutoff to multiply μ , σ by c

•
$$c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$$
,

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \ \sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$
 - Mean $(\widetilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$
 - Adjust cutoff to multiply μ , σ by c
 - $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$,

•
$$c = 2 \frac{\mu_1 - \mu_2}{\sigma_2^2 - \sigma_1^2} > 0$$

McGill Presentation

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \, \sigma_2 > \sigma_1$
 - Let $\widetilde{u} = \exp(u)$
 - Mean $(\widetilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$
 - Adjust cutoff to multiply μ , σ by c
 - $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$, • $c = 2\frac{\mu_1 - \mu_2}{2} > 0$

$$\mu_1 > \mu_2, \ \sigma_2^{2-\sigma_1^2} < \sigma_1$$

Purdue University/Boston University

McGill Presentation

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- ▶ $\mu_1 > \mu_2, \sigma_2 > \sigma_1$ ▶ Let $\tilde{u} = \exp(u)$ ▶ Mean $(\tilde{u}_i) = \exp(\mu_i + .5\sigma_i^2)$ ▶ Adjust cutoff to multiply μ, σ by c▶ $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$, ▶ $c = 2\frac{\mu_1 - \mu_2}{\sigma_2^2 - \sigma_1^2} > 0$ ▶ $\mu_1 > \mu_2, \sigma_2 < \sigma_1$ ▶ Let $\tilde{u} = -\exp(-u)$

Purdue University/Boston University

McGill Presentation

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \sigma_2 > \sigma_1$ • Let $\widetilde{u} = \exp(u)$ • Adjust cutoff to multiply μ, σ by c• $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$, • $c = 2\frac{\mu_1 - \mu_2}{\sigma_2^2 - \sigma_1^2} > 0$ • $\mu_1 > \mu_2, \sigma_2 < \sigma_1$ • Let $\widetilde{u} = -\exp(-u)$ • Mean $(\widetilde{u}_i) = -\exp(-\mu_i + .5\sigma_i^2)$ • Adjust cutoff to multiply μ, σ by c

 Introduction
 "Theory"
 Applications
 Conclusion

 0
 0000000
 0000000000
 0

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \, \sigma_2 > \sigma_1$ • Let $\widetilde{u} = \exp(u)$ • Mean $(\widetilde{u}_i) = \exp\left(u_i + .5\sigma_i^2\right)$ • Adjust cutoff to multiply μ , σ by c• $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$, • $c = 2 \frac{\mu_1 - \mu_2}{\sigma_2^2 - \sigma_1^2} > 0$ • $\mu_1 > \mu_2, \, \sigma_2 < \sigma_1$ • Let $\widetilde{u} = -\exp(-u)$ • Mean $(\widetilde{u}_i) = -\exp\left(-\mu_i + .5\sigma_i^2\right)$ • Adjust cutoff to multiply μ , σ by c• $-cu_1 + .5c^2\sigma_1^2 = -cu_2 + .5c^2\sigma_2^2$.

 Introduction
 "Theory"
 Applications
 Conclusion

 0
 0000000
 0000000000
 0

Normality: Always Simple Log-Normal Transformation

- Recall that only μ/σ is identified. Choosing a different cutoff changes μ and σ proportionally
- $\mu_1 > \mu_2, \, \sigma_2 > \sigma_1$ • Let $\widetilde{u} = \exp(u)$ • Mean $(\widetilde{u}_i) = \exp\left(u_i + .5\sigma_i^2\right)$ • Adjust cutoff to multiply μ , σ by c• $c\mu_1 + .5c^2\sigma_1^2 = c\mu_2 + .5c^2\sigma_2^2$, • $c = 2 \frac{\mu_1 - \mu_2}{\sigma_2^2 - \sigma_1^2} > 0$ • $\mu_1 > \mu_2, \, \sigma_2 < \sigma_1$ • Let $\widetilde{u} = -\exp(-u)$ • Mean $(\widetilde{u}_i) = -\exp\left(-\mu_i + .5\sigma_i^2\right)$ • Adjust cutoff to multiply μ , σ by c• $-cu_1 + 5c^2\sigma_1^2 = -cu_2 + 5c^2\sigma_2^2$, • $c = 2.0 \frac{\mu_1 - \mu_2}{0\sigma_2^2 - \sigma_2^2} > 0$

"Theory"	Applications	Conclusion
000000●	0000000000	O

General Result for Two-Parameter Distributions

• Assume CDF = F((u - m) / s)

Purdue University/Boston University

Introduction "Theory" Applications Conclusion o occooco o o

General Result for Two-Parameter Distributions

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded

Purdue University/Boston University

Introduction "Theory" Applications Conclusion o oocooco o oocooco o

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded
- Estimated variances will (almost) never be identical

Introduction "Theory" Applications Conclusion o occoco occoco o

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded
- Estimated variances will (almost) never be identical
- Therefore FOSD fails

Introduction "Theory" Applications Conclusion o oooooo o o

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded
- Estimated variances will (almost) never be identical
- Therefore FOSD fails
- ► Therefore ∃ a monotonic transformation of the utility function that reverses the ranking.

Introduction "Theory" Applications Conclusion o occoco o occoco o

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded
- Estimated variances will (almost) never be identical
- Therefore FOSD fails
- ► Therefore ∃ a monotonic transformation of the utility function that reverses the ranking.
- Technical details in paper

Introduction "Theory" Applications Conclusion occoco occo occoco occo occoco occo occoco occo occoco occo occoco occo occo

- Assume CDF = F((u m) / s)
- Assume *u* is unbounded
- Estimated variances will (almost) never be identical
- Therefore FOSD fails
- ► Therefore ∃ a monotonic transformation of the utility function that reverses the ranking.
- Technical details in paper
- Note:two assumptions above sufficient, not necessary

"Theory"	Applications	Conclusion
0000000	●000000000	O

MTO

Table: Distribution of Happiness - Moving to Opportunities

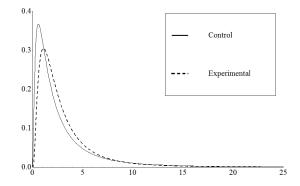
	Control Compliers	Experimental Compliers
Very Happy	0.242	0.262
Pretty Happy	0.470	0.564
Not Too Happy	0.288	0.174

Source: Ludwig et al (2013), Appendix Table 7.

Experimental estimates are TOT.

"Theory"	Applications	Conclusion
0000000	0●00000000	O

MTO Log-Normal Happiness Distribution with Equal Means



Purdue University/Boston University

MTO: Concluding Remarks

 Solution in test gap paper is to tie scale to some other outcome

Purdue University/Boston University

MTO: Concluding Remarks

- Solution in test gap paper is to tie scale to some other outcome
- Seems roundabout here might as well measure effect on other outcomes

MTO: Concluding Remarks

- Solution in test gap paper is to tie scale to some other outcome
- Seems roundabout here might as well measure effect on other outcomes
- Beneficial results for psychological well-being are unchanged conditional on accepting medical scales

Female-Male Happiness Gap

Table: Distribution of Happiness - General Social Survey

	Male	Female	
Panel A: 1	972-197	6	
Very Happy	0.337	0.384	
Pretty Happy	0.530	0.493	
Not Too Happy	0.132	0.122	
Normal Mean	0.727	0.798	
Normal Variance	0.424	0.471	
Panel B: 1998-2006			
Very Happy	0.330	0.339	
Pretty Happy	0.566	0.553	
Not Too Happy	0.104	0.109	
Normal Mean	0.742	0.748	
Normal Variance	0.346	0.367	

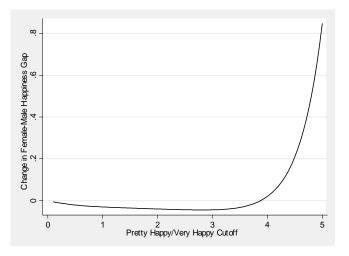
Purdue University/Boston University

3

< 17 ▶

McGill Presentation

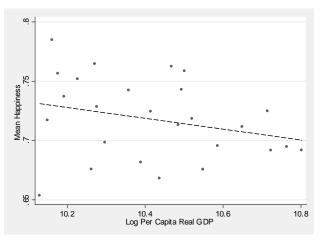
Gap Change for Different Degrees of Skewness



McGill Presentation

Easterlin Paradox: United States

Assuming Normality

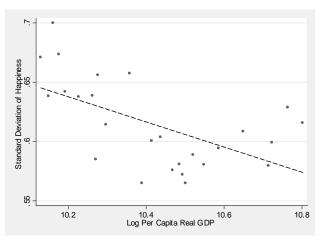


Purdue University/Boston University

McGill Presentation

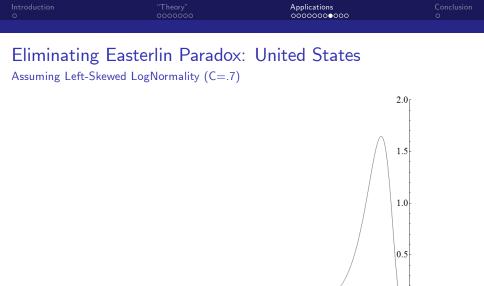
Variance: United States

Assuming Normality



Purdue University/Boston University

McGill Presentation



-3

-2

-1

Bond/Lang McGill Presentation

-6

-5

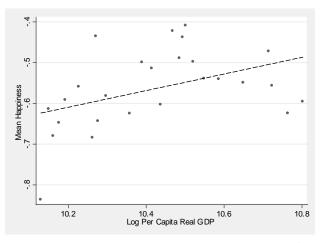
-4

Purdue University/Boston University

0

Reversing the Easterlin Paradox: United States

Assuming Left-Skewed LogNormality (c=2.6)



McGill Presentation

Bond/Lang

Purdue University/Boston University

"Theory"	Applications	Conclusion
000000	00000000●0	O

World Values Survey

Purdue University/Boston University

- World Values Survey
- Use normal and log normal with c=2, 0.5, -.5, 2

- World Values Survey
- ▶ Use normal and log normal with c=2, 0.5, -.5, 2
- Pairwise rankings very sensitive to level of left or right skewness

- World Values Survey
- ▶ Use normal and log normal with c=2, 0.5, -.5, 2
- Pairwise rankings very sensitive to level of left or right skewness
- ▶ Rank-correlation between log-normal transformations with C = 2 and C = -2 is .156.

McGill Presentation

	"Theory" 0000000	Applications 000000000●	Conclusion O
Sensitivity of Co Assumptions	untry "Happiness"	' to Distributional	

"Happiest countries"

Purdue University/Boston University

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia
 - Left-skewed: New Zealand, Sweden, Canada, Norway, Great Britain

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia
 - Left-skewed: New Zealand, Sweden, Canada, Norway, Great Britain
- "Least happy" countries

Purdue University/Boston University

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia
 - Left-skewed: New Zealand, Sweden, Canada, Norway, Great Britain
- "Least happy" countries
 - ▶ Right-skewed: Iraq, Romania, Hong Kong, Moldova, Serbia

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia
 - Left-skewed: New Zealand, Sweden, Canada, Norway, Great Britain
- "Least happy" countries
 - Right-skewed: Iraq, Romania, Hong Kong, Moldova, Serbia
 - Normal: Moldova, Iraq, Romania, Bulgaria, Zambia

- "Happiest countries"
 - Right-skewed: Ghana, Guatemala, Mexico, Trinidad and Tobago, South Africa
 - Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana, Colombia
 - Left-skewed: New Zealand, Sweden, Canada, Norway, Great Britain
- "Least happy" countries
 - Right-skewed: Iraq, Romania, Hong Kong, Moldova, Serbia
 - Normal: Moldova, Iraq, Romania, Bulgaria, Zambia
 - Left-skewed: Ethiopia, Zambia, Ghana, Moldova, Peru

	"Theory"	Applications	Conclusion
	0000000	0000000000	•
Conclusion			

► Houston, we have a problem.

Purdue University/Boston University

- Houston, we have a problem.
- Some fixes do not seem promising

Purdue University/Boston University

- Houston, we have a problem.
- Some fixes do not seem promising
 - Assume the question gives the policy-relevant categories

- Houston, we have a problem.
- Some fixes do not seem promising
 - Assume the question gives the policy-relevant categories
 - Scales with more points

- Houston, we have a problem.
- Some fixes do not seem promising
 - Assume the question gives the policy-relevant categories
 - Scales with more points
- More positive:

- Houston, we have a problem.
- Some fixes do not seem promising
 - Assume the question gives the policy-relevant categories
 - Scales with more points
- More positive:
 - Some results are robust (Moldova, Great Britain)

- Houston, we have a problem.
- Some fixes do not seem promising
 - Assume the question gives the policy-relevant categories
 - Scales with more points
- More positive:
 - Some results are robust (Moldova, Great Britain)
 - Tolstoy assumption