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Summary of the Argument

I Points on scales represent intervals

I Can (almost) never rank two groups with respect to mean
happiness without strong additional assumptions

I Even assuming everyone has the same reporting function

I Applications to:

I Moving to Opportunity
I Changes in male/female happiness
I Easterlin paradox

I Suggest some partial solutions
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Modeling Happiness

I Standard question in happiness literature asks if respondent is:

I very happy
I somewhat happy
I not very happy

I Sometimes modeled as 0, 1 ,2
I Frequently modeled in standard deviations (essentially the
same)

I Best, modeled as ordered probit/logit
I Key point: Stochastic Dominance in Categories 9
Rankable Means
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Introduction “Theory” Applications Conclusion

Example with Normality

Example 1

Group A Group B
Very happy 20 15
Pretty happy 25 30
Not too happy 55 55

I Group A happier if we impose common variance (would be
rejected with reasonable sample size)

I With different variances/same cutoffs
I Mean for group A = −.18
I Mean for group B = −.14
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A More Extreme Example

Example 2

Group A Group B
Very happy 45 0
Pretty happy 0 45
Not too happy 55 55

I Mean for group A = −∞
I Mean for group B = 0
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Limits of ordered probit/logit

I Should not normalize variance

I implies different cutoffs between very happy/somewhat happy
for different groups

I Instead normalize cutoffs (e.g. 0, 1)
I Then mean and variance of distribution are identified
I Seems to imply ranking of mean happiness/utility
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An Example with the “Right”Ranking
Logistic Distribution

Example 3

Group A Group B
Very happy .20 .28
Pretty happy .60 .53
Not too happy .20 .19

I Mean for group A = .50; Spread parameter=.36
I Mean for group B = .61; Spread parameter=.42
I CDFs cross at 14th percentile.
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Normality: Always Simple Log-Normal Transformation
I Recall that only µ/σ is identified. Choosing a different cutoff
changes µ and σ proportionally

I µ1 > µ2, σ2 > σ1

I Let ũ = exp (u)
I Mean (ũi ) = exp

(
µi + .5σ2i

)
I Adjust cutoff to multiply µ, σ by c
I cµ1 + .5c

2σ21 = cµ2 + .5c
2σ22,

I c = 2µ1−µ2
σ22−σ21

> 0

I µ1 > µ2, σ2 < σ1

I Let ũ = − exp (−u)
I Mean (ũi ) = − exp

(
−µi + .5σ2i

)
I Adjust cutoff to multiply µ, σ by c
I −cµ1 + .5c

2σ21 = −cµ2 + .5c
2σ22,

I c = 2.0 µ1−µ2
0σ21−σ22

> 0
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I Mean (ũi ) = exp

(
µi + .5σ2i

)
I Adjust cutoff to multiply µ, σ by c
I cµ1 + .5c

2σ21 = cµ2 + .5c
2σ22,

I c = 2µ1−µ2
σ22−σ21

> 0

I µ1 > µ2, σ2 < σ1

I Let ũ = − exp (−u)
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I Let ũ = exp (u)
I Mean (ũi ) = exp
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I Let ũ = − exp (−u)
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I Let ũ = exp (u)
I Mean (ũi ) = exp
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I Let ũ = − exp (−u)
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Introduction “Theory” Applications Conclusion

General Result for Two-Parameter Distributions

I Assume CDF = F ((u −m) /s)

I Assume u is unbounded
I Estimated variances will (almost) never be identical
I Therefore FOSD fails
I Therefore ∃ a monotonic transformation of the utility function
that reverses the ranking.

I Technical details in paper
I Note:two assumptions above suffi cient, not necessary
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MTO

Table: Distribution of Happiness - Moving to Opportunities

Control Compliers Experimental Compliers
Very Happy 0.242 0.262
Pretty Happy 0.470 0.564
Not Too Happy 0.288 0.174

Source: Ludwig et al (2013), Appendix Table 7.

Experimental estimates are TOT.
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MTO Log-Normal Happiness Distribution with Equal Means
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MTO: Concluding Remarks

I Solution in test gap paper is to tie scale to some other
outcome

I Seems roundabout here - might as well measure effect on
other outcomes

I Beneficial results for psychological well-being are unchanged
conditional on accepting medical scales
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Female-Male Happiness Gap

Table: Distribution of Happiness - General Social Survey

Male Female
Panel A: 1972-1976

Very Happy 0.337 0.384
Pretty Happy 0.530 0.493
Not Too Happy 0.132 0.122
Normal Mean 0.727 0.798
Normal Variance 0.424 0.471

Panel B: 1998-2006
Very Happy 0.330 0.339
Pretty Happy 0.566 0.553
Not Too Happy 0.104 0.109
Normal Mean 0.742 0.748
Normal Variance 0.346 0.367
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Gap Change for Different Degrees of Skewness
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Easterlin Paradox: United States
Assuming Normality
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Variance: United States
Assuming Normality

.5
5

.6
.6

5
.7

St
an

da
rd

 D
ev

ia
tio

n 
of

 H
ap

pi
ne

ss

10.2 10.4 10.6 10.8
Log Per Capita Real GDP

Bond/Lang Purdue University/Boston University

McGill Presentation



Introduction “Theory” Applications Conclusion

Eliminating Easterlin Paradox: United States
Assuming Left-Skewed LogNormality (C=.7)
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Reversing the Easterlin Paradox: United States
Assuming Left-Skewed LogNormality (c=2.6)
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Easterlin Paradox: Internationally

I World Values Survey

I Use normal and log normal with c=2, 0.5, -.5, 2
I Pairwise rankings very sensitive to level of left or right
skewness

I Rank-correlation between log-normal transformations with
C = 2 and C = −2 is .156.

Bond/Lang Purdue University/Boston University

McGill Presentation



Introduction “Theory” Applications Conclusion

Easterlin Paradox: Internationally

I World Values Survey
I Use normal and log normal with c=2, 0.5, -.5, 2

I Pairwise rankings very sensitive to level of left or right
skewness

I Rank-correlation between log-normal transformations with
C = 2 and C = −2 is .156.

Bond/Lang Purdue University/Boston University

McGill Presentation



Introduction “Theory” Applications Conclusion

Easterlin Paradox: Internationally

I World Values Survey
I Use normal and log normal with c=2, 0.5, -.5, 2
I Pairwise rankings very sensitive to level of left or right
skewness

I Rank-correlation between log-normal transformations with
C = 2 and C = −2 is .156.

Bond/Lang Purdue University/Boston University

McGill Presentation



Introduction “Theory” Applications Conclusion

Easterlin Paradox: Internationally

I World Values Survey
I Use normal and log normal with c=2, 0.5, -.5, 2
I Pairwise rankings very sensitive to level of left or right
skewness

I Rank-correlation between log-normal transformations with
C = 2 and C = −2 is .156.

Bond/Lang Purdue University/Boston University

McGill Presentation



Introduction “Theory” Applications Conclusion

Sensitivity of Country “Happiness”to Distributional
Assumptions

I “Happiest countries”

I Right-skewed: Ghana, Guatemala, Mexico, Trinidad and
Tobago, South Africa

I Normal: Mexico, Trinidad and Tobago, Great Britain, Ghana,
Colombia

I Left-skewed: New Zealand, Sweden, Canada, Norway, Great
Britain

I “Least happy”countries

I Right-skewed: Iraq, Romania, Hong Kong, Moldova, Serbia
I Normal: Moldova, Iraq, Romania, Bulgaria, Zambia
I Left-skewed: Ethiopia, Zambia, Ghana, Moldova, Peru
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Conclusion

Conclusions

I Houston, we have a problem.

I Some fixes do not seem promising

I Assume the question gives the policy-relevant categories
I Scales with more points

I More positive:

I Some results are robust (Moldova, Great Britain)
I Tolstoy assumption
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