

### INTRODUCTION

- > There is growing evidence that prenatal maternal stress (PNMS) due to a natural disaster impacts on fetal development and child outcomes <sup>(1-3)</sup>.
- $\succ$  Cortisol, a glucocorticoid (GC) is thought to be the main hormone in linking PNMS and adverse development <sup>(4)</sup>.  $\succ$  The placenta expresses the type 2 11-beta-hydroxysteroid dehydrogenase (11 $\beta$ -HSD2, HSD11B2 gene)
- enzyme. This enzyme converts cortisol into inactive cortisone and is known to be reduced by PNMS<sup>(5)</sup>.  $\succ$  Cortisol exerts its action by binding to glucocorticoid receptor alpha (GR- $\alpha$ , NR3C1- $\alpha$  gene) that acts as a transcription factor which regulate the expression of several placental genes, such as type 1 glucose transporter (GLUT1, *SLC2A1* gene) <sup>(5,6)</sup>.
- $\succ$  The cortisol response is inhibited by the inactive GR- $\beta$  receptor <sup>(7)</sup>.
- $\succ$  Placental sex is a known factor to moderate the effect of stress on fetal development <sup>(8)</sup>.

### HYPOTHESIS AND OBJECTIVE

- We **hypothesize** that increased PNMS will be associated with a :
- decrease in placental genes associated with reducing glucocorticoid effects (HSD11B2, *NR3C1-*β).
- increase in genes associated with promoting glucocorticoid effects (HSD11B1, NR3C1- $\alpha$ , CRH).
- decrease in GLUT1 (SLC2A1) and increase in SLC2A3 and SLC2A4

The specific **objective** is to determine if the placenta mediates the effects of disaster-related PNMS on children's early development.



- Were included in the regression model if significant:

  - Depression (EDPS: edinburgh postnatal depression scale)
    Anxiety (STAI: State-Trait Anxiety Inventory)
    Socio-economic status (SEIFA: Socio-Economic Indexes for Areas)
- Fetal sex and timing of the flood were tested as moderators
- Mediation was used to link PNMS, placental biomarkers and child development
- Statistical analysis were performed using SPSS Statistics software (IBM) where p<0.10 was considered marginally significant and p<0.05 statistically significant

### RESULTS

Table 1: Descriptive statistics for stress, anxiety, depression, maternal factors and child outcome measures by child sex (Student's T test, \* p<0.05).

|                                    | All                        | Boys                       | GIRIS                     | <b>C</b> :- |
|------------------------------------|----------------------------|----------------------------|---------------------------|-------------|
|                                    | Mean (n, SD)               | Mean (n <i>,</i> SD)       | Mean (n, SD)              | Sig.        |
| Predictor variables                |                            |                            |                           |             |
| QFOSS                              | 17.27 (96 <i>,</i> 15.09)  | 16.45 (51 <i>,</i> 15.51)  | 18.20 (45 <i>,</i> 14.72) | 0.574       |
| COSMOSS                            | -0.16 (96, 0.85)           | -0.08 (51 <i>,</i> 1.02)   | -0.25 (45, 0.59)          | 0.324       |
| IES-R                              | 5.34 (96 <i>,</i> 9.28)    | 6.30 (51, 10.86)           | 4.25 (45 <i>,</i> 7.07)   | 0.282       |
| PDI                                | 10.67 (96 <i>,</i> 7.91)   | 11.50 (51 <i>,</i> 9.03)   | 9.72 (45 <i>,</i> 6.38)   | 0.273       |
| PDEQ                               | 4.64 (96 <i>,</i> 5.92)    | 4.85 (51, 7.18)            | 4.41 (45 <i>,</i> 4.10)   | 0.722       |
| Covariates                         |                            |                            |                           |             |
| STAI                               | 36.45 (96 <i>,</i> 9.06)   | 38.26 (51, 8.45)           | 34.40 (45 <i>,</i> 9.37)  | 0.036*      |
| EPDS                               | 4.98 (83 <i>,</i> 3.95)    | 5.07 (44, 3.55)            | 4.87 (39 <i>,</i> 4.41)   | 0.823       |
| SEIFA                              | 1050.01 (96, 60.56)        | 1043.43 (51, 67.95)        | 1057.47 (45, 50.65)       | 0.259       |
| Days of pregnancy before the flood | 82.30 (96, 48.26)          | 78.34 (51, 46.58)          | 86.79 (45 <i>,</i> 50.25) | 0.395       |
| Outcome variables                  |                            |                            |                           |             |
| Bayley Mental                      | 106.67 (48 <i>,</i> 10.33) | 108.15 (27 <i>,</i> 10.30) | 104.76 (21, 10.31)        | 0.264       |
| Bayley Motor                       | 105.98 (47 <i>,</i> 15.22) | 104.15 (26 <i>,</i> 19.44) | 108.24 (21 <i>,</i> 7.13) | 0.366       |
| ASRS                               | 14.95 (57 <i>,</i> 6.95)   | 13.72 (29 <i>,</i> 6.53)   | 16.21 (28 <i>,</i> 7.25)  | 0.179       |
| Gestation length (weeks)           | 39.45 (96 <i>,</i> 5.36)   | 39.37 (51 <i>,</i> 1.25)   | 39.53 (45 <i>,</i> 1.12)  | 0.510       |
| Birth weight (Kg)                  | 3.60 (96 <i>,</i> 0.40)    | 3.62 (51, 0.43)            | 3.58 (45 <i>,</i> 0.38)   | 0.635       |
| Birth weight for gestational age   | 0.33 (96 <i>,</i> 0.73)    | 0.26 (51, 0.78)            | 0.40 (45, 0.67)           | 0.335       |
| Placental weight (kg)              | 0.65 (93, 0.12)            | 0.65 (50, 0.12)            | 0.65 (43, 0.13)           | 0.889       |
| Placental index                    | 0.18 (93, 0.03)            | 0.18 (50, 0.03)            | 0.18 (43, 0.03)           | 0.973       |
| Mothers' characteristics           |                            |                            |                           |             |
| Previous pregnancies               | 0.74 (94, 0.97)            | 0.67 (51, 0.88)            | 0.84 (43, 1.07)           | 0.400       |
| BMI                                | 24.54 (96, 5.08)           | 24.57 (51, 4.46)           | 24.50 (44, 5.77)          | 0.943       |
| Age at birth                       | 30.98 (96, 5.36)           | 30.84 (51, 5.11)           | 31.15 (45, 5.69)          | 0.779       |

### Table legend:

QFOSS: Queensland flood objective stress score; COSMOSS: Composite score of the mother's subjective stress; EDPS: edinburgh postnatal depression scale; STAI: State-Trait Anxiety Inventory SEIFA: Socio-Economic Indexes for Areas; CRH: Corticotropin-releasing hormone; NR3C1-α, -β: Nuclear Receptor Subfamily 3 Group C Member 1-α, -β; HSD11B1: Hydroxysteroid 11-Beta dehydrogenase type 1; 11β-HSD2 and HSD11B2: Hydroxysteroid 11-Beta dehydrogenase type 2; GLUT1 and SLC2A1: glucose transporter type 1; Solute Carrier Family 2 type 1; SLC2A3: Solute Carrier Family 2 type 3; **SLC2A4**: Solute Carrier Family 2 type 4.

<sup>a</sup> Adjusted for Sex and Timing. <sup>b</sup> Adjusted for Sex, Timing, and QFOSS; <sup>c</sup> Adjusted for Timing; <sup>d</sup> Adjusted for Timing and QFOSS; <sup>e</sup> Also adjusted for SES; <sup>f</sup> Also adjusted for maternal anxiety; <sup>g</sup> Also adjusted for maternal depression

<u>Underline</u> *p* < 0.10; \* *p* < 0.05; \*\* P<0.01.

# Natural disaster-related prenatal maternal stress is associated with alterations in placental glucocorticoid signaling pathway: A QF2011 Queensland Flood Study

# Joey St-Pierre<sup>1,2</sup>, David P. Laplante<sup>3</sup>, Guillaume Elgbeili<sup>3</sup>, Paul Dawson<sup>4</sup>, Sue Kildea<sup>4,5</sup>, Suzanne King<sup>3,6</sup>, Cathy Vaillancourt<sup>1,2</sup>

<sup>1</sup>INRS-Institut Armand-Frappier and BioMed Research Center, Laval, Canada and <sup>2</sup>Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montreal, Canada; <sup>3</sup>Douglas Mental Health University Institute, Montreal, Canada; <sup>4</sup>Mothers, Babies and Women's Health, Mater Research Institute, The University of Queensland (UQ) Brisbane, Australia; <sup>5</sup>The School of Nursing, Midwifery and Social Work UQ, Brisbane, Australia; 6 McGill University Montreal, Canada





• Bayley mental (N=48) • Bayley motor (N=47) • Autism spectrum rating scale (ASRS) (N=57)

Table 2: Pearson's product moment correlations (r) between predictors and placental mRNA level of genes implicated in glucocorticoid (GC) promoting and inhibiting signal, and glucose transport in all placentas, and in placentas for boys and girls. <u>Underline</u>: p<0.10; \* p<0.05; \*\*p<0.01

|           |       |              | GC promot    | ing     | _ | GC inh  | nibiting      | _      |
|-----------|-------|--------------|--------------|---------|---|---------|---------------|--------|
|           |       | CRH          | NR3C1-a      | HSD11B1 |   | HSD11B2 | NR3C1-β       | NR3C1  |
|           | All   | 0.007        | -0.050       | 0.019   |   | 0.078   | -0.065        | -0.155 |
| QFOSS     | Boys  | -0.027       | -0.036       | -0.027  |   | 0.074   | 0.004         | -0.176 |
|           | Girls | 0.010        | -0.066       | 0.071   |   | 0.087   | -0.137        | -0.131 |
|           | All   | -0.152       | -0.091       | -0.045  |   | 0.052   | -0.232*       | -0.149 |
| COSMOSS   | Boys  | -0.166       | -0.124       | -0.098  |   | 0.018   | <u>-0.257</u> | -0.167 |
|           | Girls | -0.113       | -0.026       | 0.076   |   | 0.112   | -0.235        | -0.131 |
|           | All   | 0.163        | <u>0.173</u> | 0.221*  |   | -0.110  | -0.025        | 0.001  |
| Timing    | Boys  | 0.184        | 0.028        | 0.116   |   | -0.187  | -0.167        | -0.138 |
|           | Girls | 0.121        | .366*        | 0.341*  |   | -0.036  | 0.172         | 0.145  |
| Fetal sex | All   | <u>0.176</u> | -0.024       | 0.031   |   | -0.023  | -0.117        | -0.003 |
|           | All   | <u>0.195</u> | 0.164        | 0.088   |   | 0.037   | -0.021        | -0.038 |
| Seifa     | Boys  | 0.151        | 0.06         | -0.075  |   | -0.037  | 0.003         | -0.122 |
|           | Girls | 0.224        | .366*        | .357*   |   | 0.144   | -0.028        | 0.086  |
|           | All   | -0.088       | -0.064       | -0.016  |   | 0.099   | -0.111        | -0.128 |
| STAI      | Boys  | 0.055        | -0.068       | -0.169  |   | 0.051   | -0.039        | -0.110 |
|           | Girls | -0.144       | -0.077       | 0.172   |   | 0.137   | <u>-0.264</u> | -0.153 |
|           | All   | -0.156       | -0.154       | -0.139  |   | 0.010   | 0.006         | -0.137 |
| EPDS      | Boys  | -0.100       | -0.196       | -0.212  |   | -0.095  | -0.223        | -0.207 |
|           | Girls | -0.193       | -0.116       | -0.067  |   | 0.086   | 0.244         | -0.079 |

**Table 5**: Interaction effect (R2 change) of the timing of the stressful event on the effect of stress

 on placental glucocorticoid system and glucose transporters separated by fetal sex or taken together. <u>Underline</u> p<0.10; \* p<0.05; \*\*p<0.01

|          |                           |                      | Interac            | tion timing          |                    |                   |  |
|----------|---------------------------|----------------------|--------------------|----------------------|--------------------|-------------------|--|
| Gene     |                           | All                  | F                  | Boys                 | Girls              |                   |  |
|          | <b>QFOSS</b> <sup>a</sup> | COSMOSS <sup>b</sup> | QFOSS <sup>c</sup> | COSMOSS <sup>d</sup> | QFOSS <sup>c</sup> | COSMOSS           |  |
| CRH      | .001                      | .020                 | .027               | .000                 | .023               | <u>.070</u>       |  |
| NR3C1-α  | .000                      | <u>.035</u>          | .007               | .082*                | .012 <sup>e</sup>  | .002e             |  |
| HSD11B1  | .006                      | .024                 | .007               | .080*                | <b>.008</b> e,f    | <b>.000</b> e,f   |  |
| HSD11B2  | .005                      | .003                 | .000               | .028                 | .018               | .025              |  |
| NR3C1-β  | .001                      | .000                 | .001               | .000                 | .021g              | .009g             |  |
| NR3C1    | .005                      | .015                 | .007               | .016                 | <u>.063</u>        | .032              |  |
| SLC2A1   | .002                      | .022                 | .006               | .006                 | .030               | .033              |  |
| SLC2A3   | .011                      | .010                 | .014               | .018                 | .021               | .010              |  |
| SLC2A4   | .001                      | <u>.035</u>          | .011               | .012                 | .001               | .053              |  |
| Protein  |                           |                      |                    |                      |                    |                   |  |
| 11β-HSD2 | .013                      | .006                 | .035               | .005                 | .000e              | .000e             |  |
| GLUT1    | .001                      | .014                 | .015               | .001                 | .001 <sup>g</sup>  | .048 <sup>g</sup> |  |
| Activity |                           |                      |                    |                      |                    |                   |  |
| 11β-HSD2 | .005                      | .000                 | .023               | .005                 | .025g              | .031g             |  |

**Table 6:** Significant hierarchical multiple linear regression results of prenatal stress and timing
 interaction effects on placental mRNA level of genes tested for boy placentas only. \* p<0.05; \*\*p<0.01

| Pro              | edictor variables | B     | Std.<br>Error | β      | R    | <b>R</b> <sup>2</sup> | $\Delta R^2$ | F     |
|------------------|-------------------|-------|---------------|--------|------|-----------------------|--------------|-------|
| NR3C1-           | α Boys            |       |               |        |      |                       |              |       |
| Step 1           |                   |       |               |        | .028 | .001                  | .001         | .039  |
|                  | Timing            | .000  | .001          | .028   |      |                       |              |       |
| Step 2           |                   |       |               |        | .040 | .002                  | .001         | .039  |
|                  | Timing            | .000  | .001          | .018   |      |                       |              |       |
|                  | QFOSS             | 016   | .078          | 030    |      |                       |              |       |
| Step 3           |                   |       |               |        | .132 | .017                  | .016         | .277  |
| -                | Timing            | .000  | .001          | 028    |      |                       |              |       |
|                  | QFOSS             | .021  | .089          | .041   |      |                       |              |       |
|                  | COSMOSS           | 062   | .071          | 159    |      |                       |              |       |
| Step 4           |                   |       |               |        | .316 | .100                  | .082*        | 1.274 |
| - · · · <b>I</b> | Timing            | 001   | .001          | 113    |      |                       |              |       |
|                  | QFOSS             | .042  | .087          | .083   |      |                       |              |       |
|                  | COSMOSS           | .077  | .096          | .198   |      |                       |              |       |
|                  | COSMOSS X Timing  | 003   | .002          | 513*   |      |                       |              |       |
| HSD11E           | B1 Boys           |       |               |        |      |                       |              |       |
| Step 1           | 2                 |       |               |        | .116 | .014                  | .014         | .674  |
| •                | Timing            | .001  | .002          | .116   |      |                       |              |       |
| Step 2           | 0                 |       |               |        | .117 | .014                  | .000         | .333  |
| •                | Timing            | .001  | .002          | .120   |      |                       |              |       |
|                  | OFOSS             | .007  | .101          | .011   |      |                       |              |       |
| Sten 3           | ~                 |       |               |        | .134 | .018                  | .004         | .286  |
| stop s           | Timing            | .001  | .002          | .096   |      |                       |              |       |
|                  | OFOSS             | .032  | .115          | .048   |      |                       |              |       |
|                  | COSMOSS           | - 041 | 092           | - 082  |      |                       |              |       |
| Ston A           | Contract          | .011  | .072          | .002   | 313  | 098                   | 080*         | 1 248 |
| ысрт             | Timing            | 000   | 002           | 013    | .515 | .070                  | 1000         | 1.210 |
|                  | OFOSS             | 059   | 113           | 089    |      |                       |              |       |
|                  | COSMOSS           | 135   | 125           | 269    |      |                       |              |       |
|                  | COSMOSS X Timing  | - 004 | 002           | - 505* |      |                       |              |       |
|                  | COSMOSS & TIMIng  | 004   | .002          | -1202. |      |                       |              |       |

(1) Walder, et al. Prenatal maternal stress predicts autism traits in 61/2 year-old children: Project Ice Storm. PsychiatryResearch 2014 219 353–360. (2) Cao, L. et al. Prenatal Maternal Stress Affects Motor Function in 51/2-Year-Old Children: Project Ice Storm. Dev Psychobiol 2014 56: 117–125, (3) Simcock, G. et al. Age-related changes in the effects of stress in pregnancy on infant motor development by maternal report: The Queensland Flood Study. Dev Psychobiol 2016 Jul;58(5):640-59 (4) Draper, N. and P.M. Stewart, 11β-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. Journal of Endocrinology, 2005. 186(2): p. 251-271. (5) Seckl, J.R. and M.C. Holmes, Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal 'programming' of adult pathophysiology. Nature Clinical Practice 2007 Nov;3(6) (6) Hahn, T., et al., Placental glucose transporter expression is regulated by glucocorticoids. Journal of Clinical Endocrinology and Metabolism, 1999. 84(4): p. 1445-1452. (7) Oakley, R.H. et al. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013 Nov;132(5):1033-44. (8) Clifton, V.L., Review: Sex and the Human Placenta: Mediating Differential Strategies of Fetal Growth and Survival. Placenta, 2010. 31(SUPPL.): p. S33-S39.

### RESULTS

<u>Underline</u>: p<0.10; \* p<0.05; \*\*p<0.01

Glucose transporters SLC2A1 SLC2A3 SLC2A4 -0.017 0.068 -0.185 0.097 -0.061 0.008 0.056 0.161 0.103 0.117 0.159 0.053 0.231 -0.049 -0.088 -0.035 0.053 -0.224 -0.087 0.130 -0.107 0.038 0.062 0.066 0.089 -0.007 0.023 0.108 -0.167 0.038 0.011 0.110 -0.168 0.170 0.021 -0.223 0.110 0.085 -0.071 0.202 0.226 0.058 -0.197 -0.019 0.024

|                 |                           |                      |                           |          |                            |                          | Predicto | r variables   | В     | Std.<br>Error | в           | R    | R <sup>2</sup> | ∆R <sup>2</sup> | F            | ΔF      |
|-----------------|---------------------------|----------------------|---------------------------|----------|----------------------------|--------------------------|----------|---------------|-------|---------------|-------------|------|----------------|-----------------|--------------|---------|
|                 |                           | All                  | ]                         | Boy      |                            | Girl                     | NR3C1- , | βAII          |       |               |             | 110  | 014            | 014             | 650          | 650     |
| IIKNA           | <b>OFOSS</b> <sup>a</sup> | COSMOSS <sup>b</sup> | <b>OFOSS</b> <sup>c</sup> | COSMOSSd | <b>OFOSS</b> <sup>c</sup>  | COSMOSSd                 | Step 1   | Sex           | 076   | .068          | 116         | .110 | .014           | .014            | .039         | .039    |
|                 | 025                       | 150                  | 025                       | 150      | <b>Q</b> - 000             | 20211022                 | Stop 2   | Timing        | .000  | .001          | 015         | 100  | 010            | 004             | F 4 0        | 226     |
| KH              | .023                      | -122                 | .022                      | 139      | .022                       | 202                      | Step 2   | Sex           | - 072 | 069           | - 110       | .133 | .018           | .004            | .548         | .336    |
| $R2C1_{\alpha}$ | 012                       | 062                  | 030                       | 159      | <b>-</b> .134 <sup>e</sup> | 037e                     |          | Timing        | .000  | .001          | 028         |      |                |                 |              |         |
| NJ01-u          | 10 2 2                    |                      |                           | 1207     | 1201                       | 1007                     |          | QFOSS         | 027   | .046          | 062         |      |                |                 |              |         |
| SD11B1          | .066                      | 025                  | .011                      | 082      | <b>101</b> e,f             | <b></b> 107 e,f          | Step 3   | C             | 400   | 0.67          | 450         | .296 | .088           | .070**          | <u>2.192</u> | 7.013** |
|                 | 060                       | 010                  | 017                       | 111      | 005                        | 007                      |          | Sex<br>Timing | 100   | .067          | 152         |      |                |                 |              |         |
| SD11B2          | .000                      | 012                  | .017                      | -,111    | .000                       | .097                     |          | QFOSS         | .045  | .052          | .103        |      |                |                 |              |         |
| ID2C1_R         | 062                       | 323**                | 054                       | 491**    | 125g                       | 286g                     |          | COSMOSS       | 126   | .048          | 323**       |      |                |                 |              |         |
| NJCI-p          | 1002                      |                      |                           |          |                            |                          | NR3C1-/  | Boys          |       |               |             |      |                |                 |              |         |
| R3C1            | 163                       | 104                  | 244                       | 205      | 118                        | 099                      | Step 1   | Timing        | 001   | 001           | 167         | .167 | .028           | .028            | 1.398        | 1.398   |
|                 | 160                       | 020                  | 070                       | 050      | 202                        | 176                      | Step 2   | Tinnig        | 001   | .001          | 107         | .174 | .030           | .003            | .751         | .129    |
| LCZA1           | -109                      | .028                 | 072                       | .020     | <u>295</u>                 | 120                      |          | Timing        | 001   | .001          | 184         |      |                |                 |              |         |
| 1(2)            | .064                      | .060                 | .127                      | .142     | .033                       | .058                     |          | QFOSS         | 025   | .068          | 054         |      |                |                 |              |         |
|                 |                           | 1000                 |                           |          | 1000                       | 1000                     | Step 3   | Timing        | 002   | 001           | 277*        | .426 | .182           | .151**          | 3.476*       | 8.685** |
| LC2A4           | 043                       | .266*                | 081                       | .281     | 001                        | <u>.366</u>              |          | OFOSS         | 002   | .001          | .168        |      |                |                 |              |         |
|                 |                           |                      |                           |          |                            |                          |          | COSMOSS       | 169   | .058          | 491**       |      |                |                 |              |         |
| rotein          |                           |                      |                           |          |                            |                          | SLC2A4   | 4//           |       |               |             |      |                |                 |              |         |
| 10 000          | - 071                     | - 119                | - 113                     | - 179    | <b>064</b> e               | - 040e                   | Step 1   | Timing        | 000   | 001           | 0.00        | .143 | .020           | .020            | .969         | .969    |
| тр-пэрг         | 1071                      |                      | 1110                      | 11/ /    | 1001                       | 1010                     |          | Sex           | 000   | .001<br>058   | 060<br>135  |      |                |                 |              |         |
| LUT1            | .056                      | 025                  | .071                      | .068     | <b>.003</b> g              | <b></b> 305 <sup>g</sup> | Step 2   | 2011          | 1070  | 1000          | 1100        | .149 | .022           | .002            | .695         | .166    |
|                 |                           |                      |                           |          |                            |                          |          | Timing        | .000  | .001          | 070         |      |                |                 |              |         |
| ctivity         |                           |                      |                           |          |                            |                          |          | Sex           | .078  | .058          | .139        |      |                |                 |              |         |
| 10 11000        | _ 115                     | 126                  | - 1/10                    | 168      | - 052g                     | <b>1Q</b> <i>L</i> g     | Stop 2   | QF055         | 016   | .039          | 043         | 264  | 070            | 048*            | 1 708        | 4 662*  |
| тр-нэрг         | -113                      | .120                 | -140                      | .100     | -10330                     |                          | Step 5   | Timing        | .000  | .001          | 028         | .201 | .070           | 1010            | 1.700        | 1.002   |
|                 |                           |                      |                           |          |                            |                          |          | Sex           | .098  | .058          | <u>.174</u> |      |                |                 |              |         |
|                 |                           |                      |                           |          |                            |                          |          | QFOSS         | 066   | .045          | 179         |      |                |                 |              |         |
|                 |                           |                      |                           |          |                            |                          |          | COSMOSS       | .088  | .041          | .266*       |      |                |                 |              |         |



Table 4: Significant hierarchical multiple linear regression results of prenatal stress effects on Table 3: Standardized coefficients (adjusted for covariates) from hierarchical multiple linear regression of stress measures effect on placental glucocorticoid system and glucose transporters. placental mRNA level of genes tested for either all placentas or for boy placentas only. <u>Underline</u>: p<0.10; \* p<0.05; \*\*p<0.01

Mater 🖉

SANTÉ MENTALE

The University

McG-ill

 
 Table 7: Standardized coefficients from hierarchical
 multiple linear regression of subjective stress measures effect on placental NR3C1- $\beta$ , NR3CI – $\alpha$ and SLC2A4 either for all or for boy placentas only following significant COSMOSS effect. Underline:

| NR3C1-β | NR3C1-β    | SLC2A4      |
|---------|------------|-------------|
| all     | boys       | all         |
| 336**   | 363*       | .350**      |
| 096     | <u>305</u> | .254*       |
| 166     | <u>303</u> | <u>.215</u> |

Table 8: Interaction effect (R<sup>2</sup> change) of the timing of the stressful event on the effect of stress on NR3C1  $-\alpha$  and HSD11B1 for boy placentas. <u>Underline</u>: p<0.10; \* p<0.05; \*\*p<0.01

| Predictor | <i>NR3C1-α</i><br>boys | HSD11B1<br>boys |
|-----------|------------------------|-----------------|
| IES-R     | .142**                 | .144**          |
| PDI       | .018                   | .045            |
| PDEQ      | .038                   | <u>.075</u>     |

## **DISCUSSION AND CONCLUSION**

### PNMS from a natural disaster is linked with:

a reduction in placental NR3C1- $\beta$  mRNA, especially for boys, but not HSD11B2, suggesting an increase in sensitivity to cortisol by the reduction in GR- $\beta$ 

- a reduction in SLC2A1 mRNA in girls placentas and an increase in placental SLC2A4 mRNA, suggestion a shift towards insulin-sensitive glucose transport in the placenta
- Timing of the flood has a significant moderating effect on placental NR3C1- $\alpha$  and HSD11B1 mRNA NR3C1- $\alpha$ : marginally significant difference between early and mid gestation for high subjective distress
  - HSD11B1: marginally significant difference between early and mid gestation for low subjective distress

data collection.

- interaction of fetal sex on the effect of PNMS on placental mRNA level
- moderation link between PNMS, placental biomarkers and children assessment tested

This is the first study to show the effect of PNMS originating from a natural disaster on placental mRNA level of genes implicated in glucocorticoid response and glucose transport suggesting placental adaptation to PNMS.

Further studies are needed to determine if these alterations in placental biomarkers could be linked to programming effect in the children

