

# Faculty of Engineering, including Schools of Architecture and Urban Planning

# **Programs, Courses and University Regulations**

# 2015-2016

This PDF excerpt of *Programs, Courses and University Regulations* is an archived snapshot of the web content on the date that appears in the footer of the PDF.

Archival copies are available at www.mcgill.ca/study.

This publication provides guidance to prospects, applicants, students, faculty and staff.

- **1**. McGill University reserves the right to make changes to the information contained in this online publication including correcting errors, altering fees, schedules of admission, and credit requirements, and revising or cancelling particular courses or programs without prior notice.
- 2. In the interpretation of academic regulations, the Senate is the final authority.
- **3**. Students are responsible for informing themselves of the University's procedures, policies and regulations, and the specific requirements associated with the degree, diploma, or certificate sought.
- **4**. All students registered at McGill University are considered to have agreed to act in accordance with the University procedures, policies and regulations.
- **5**. Although advice is readily available on request, the responsibility of selecting the appropriate courses for graduation must ultimately rest with the student.
- **6**. Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p\_disp\_dyn\_sched for the most up-to-date information on whether a course is offered.
- 7. The academic publication year begins at the start of the Fall semester and extends through to the end of the Winter semester of any given year. Students who begin study at any point within this period are governed by the regulations in the publication which came into effect at the start of the Fall semester.
- 8. Notwithstanding any other provision of the publication, it is expressly understood by all students that McGill University accepts no responsibility to provide any course of instruction, program or class, residential or other services including the normal range of academic, residential and/or other services in circumstances of utility interruptions, fire, flood, strikes, work stoppages, labour disputes, war, insurrection, the operation of law or acts of God or any other cause (whether similar or dissimilar to those enumerated) which reasonably prevent their provision.

# Note: Throughout this publication, "you" refers to students newly admitted, readmitted or returning to McGill.

# **Publication Information**

Published by

# **Enrolment Services**

McGill University 3415 McTavish Street Montreal, Quebec, H3A 0C8 Canada

All contents copyright © 2015 by McGill University. All rights reserved, including the right to reproduce this publication, or portions thereof, in any form.

McGill University reserves the right to make changes to the information contained in this publication - including correcting errors, altering fees, schedules of admission and credit requirements, and revising or cancelling particular courses or programs - without prior notification.

Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p\_disp\_dyn\_sched for the most up-to-date information on whether a course is offered.



- 1 About the Faculty of Engineering, page 9
- 2 History of the Faculty, page 9
- 3 Engineering Microcomputing Facility, page 10
- 4 Schulich Library of Science and Engineering, page 10
- 5 About the Faculty of Engineering (Undergraduate), page 10
  - 5.1 Location, page 11
  - 5.2 Administrative Officers, page 11
- 6 Degrees and Requirements for Professional Registration, page 12
- 7 Admission Requirements, page 13
- 8 Student Progress, page 13
- 9 Student Activities, page 13
- 10 Degrees and Programs Offered, page 13
- 11 Engineering Internship Program, page 14
  - 11.1 Student Eligibility, page 14
- 12 Academic Programs, page 15
  - 12.1 General Engineering Program, page 15
    - 12.1.1 Bachelor of Engineering (B.Eng.) General Engineering Undeclared (30 credits), page 15
  - 12.2 School of Architecture, page 16
    - 12.2.1 Location, page 16
    - 12.2.2 About the School of Architecture, page 17
    - 12.2.3 Architectural Certification in Canada, page 17
    - 12.2.4 Programs of Study, page 17
      - 12.2.4.1 Student Exchanges, page 17
    - 12.2.5 Ancillary Academic Facilities, page 18
    - 12.2.6 Architecture Faculty, page 18
    - 12.2.7 Bachelor of Science (B.Sc.) (Architecture) Architecture (126 credits), page 19
  - 12.3 Department of Bioengineering, page 21
    - 12.3.1 Location, page 21
    - 12.3.2 About the Department of Bioengineering, page 21
    - 12.3.3 Courses in Bioengineering, page 21
    - 12.3.4 Bioengineering Faculty, page 22
  - 12.4 Department of Chemical Engineering, page 22
    - 12.4.1 Location, page 22
    - 12.4.2 About the Department of Chemical Engineering, page 22
    - 12.4.3 Academic Program, page 23
    - 12.4.4 Canadian Society for Chemical Engineering, page 23
    - 12.4.5 Chemical Engineering Faculty, page 23
    - 12.4.6 Bachelor of Engineering (B.Eng.) Chemical Engineering (142 credits) , page 24
      - 12.4.6.1 More about the B.Eng. Degree in Chemical Engineering, page 29
  - 12.5 Department of Civil Engineering and Applied Mechanics, page 29

- 12.5.1 Location, page 29
- 12.5.2 About the Department of Civil Engineering and Applied Mechanics, page 29
- 12.5.3 Academic Programs, page 29
- 12.5.4 Civil Engineering and Applied Mechanics Faculty, page 30
- 12.5.5 Bachelor of Engineering (B.Eng.) Civil Engineering (139 credits), page 31
- 12.6 Department of Electrical and Computer Engineering, page 35
  - 12.6.1 Location, page 35
  - 12.6.2 About the Department of Electrical and Computer Engineering, page 35
  - 12.6.3 Electrical and Computer Engineering Faculty, page 35
  - 12.6.4 Bachelor of Engineering (B.Eng.) Electrical Engineering (138 credits), page 37
  - 12.6.5 Bachelor of Engineering (B.Eng.) Honours Electrical Engineering (138 credits), page 42
  - 12.6.6 Bachelor of Engineering (B.Eng.) Computer Engineering (139 credits), page 46
  - 12.6.7 Bachelor of Software Engineering (B.S.E.) Software Engineering (137 credits), page 49
- 12.7 Department of Mechanical Engineering, page 53
  - 12.7.1 Location, page 53
  - 12.7.2 About the Department of Mechanical Engineering, page 54
  - 12.7.3 Mechanical Engineering Faculty, page 54
  - 12.7.4 Bachelor of Engineering (B.Eng.) Mechanical Engineering (142 credits), page 56
  - 12.7.5 Bachelor of Engineering (B.Eng.) Honours Mechanical Engineering (142 credits), page 60
  - 12.7.6 Bachelor of Engineering (B.Eng.) Mechanical Engineering Aeronautical Engineering (15 credits), page 64
  - 12.7.7 Bachelor of Engineering (B.Eng.) Honours Mechanical Engineering Aeronautical Engineering (15

credits), page 64

- 12.7.8 Bachelor of Engineering (B.Eng.) Mechanical Engineering Design (15 credits), page 65
- 12.7.9 Bachelor of Engineering (B.Eng.) Honours Mechanical Engineering Design (15 credits), page 66
- 12.7.10 Bachelor of Engineering (B.Eng.) Mechanical Engineering Mechatronics (18 credits), page 66
- 12.7.11 Bachelor of Engineering (B.Eng.) Honours Mechanical Engineering Mechatronics (18 credits), page 67
- 12.8 Department of Mining and Materials Engineering, page 67
  - 12.8.1 Location, page 67
  - 12.8.2 About the Department of Mining and Materials Engineering, page 68
    - 12.8.2.1 Scholarships, page 68
  - 12.8.3 Mining and Materials Engineering Faculty, page 68
  - 12.8.4 About Materials Engineering, page 69
    - 12.8.4.1 Materials Engineering (Co-op), page 69
    - 12.8.4.2 Student Advising , page 70
    - 12.8.4.3 Bachelor of Engineering (B.Eng.) Materials Engineering CO-OP (148 credits), page 70
  - 12.8.5 About Mining Engineering, page 73
    - 12.8.5.1 Mining Engineering (Co-op), page 73
    - 12.8.5.2 Student Advising, page 74
    - 12.8.5.3 Bachelor of Engineering (B.Eng.) Mining Engineering CO-OP (150 credits), page 74
- 12.9 School of Urban Planning, page 78

- 12.9.1 Location, page 78
- 12.9.2 About the School of Urban Planning, page 78
- 12.9.3 Undergraduate Courses in Urban Planning, page 79
- 12.9.4 Urban Planning Faculty, page 79
- 12.10 Other Engineering Related Programs, page 80
  - 12.10.1 Bioresource Engineering, page 80
  - 12.10.2 Biomedical Engineering, page 80

#### 12.11 Minor Programs, page 80

- 12.11.1 Bachelor of Engineering (B.Eng.) Minor Arts (24 credits), page 81
- 12.11.2 Bachelor of Engineering (B.Eng.) Minor Biomedical Engineering (21 credits), page 81
- 12.11.3 Bachelor of Engineering (B.Eng.) Minor Biotechnology (for Engineering Students) (24 credits), page 84
- 12.11.4 Bachelor of Engineering (B.Eng.) Minor Chemistry (25 credits), page 86
- 12.11.5 Computer Science Courses and Minor Program, page 87
  - 12.11.5.1 Computer Science Courses in Engineering Programs, page 87

12.11.5.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits), page 87

- 12.11.6 Bachelor of Engineering (B.Eng.) Minor Construction Engineering and Management (24 credits), page 89
- 12.11.7 Bachelor of Engineering (B.Eng.) Minor Economics (18 credits), page 90
- 12.11.8 Minor in Environment, page 91
- 12.11.9 Bachelor of Engineering (B.Eng.) Minor Environmental Engineering (21 credits), page 91
- 12.11.10 Minor Programs in Finance, Management, Marketing, and Operations Management, page 94
  - 12.11.10.1 Minor Finance (For Non-Management Students) (18 credits), page 95
  - 12.11.10.2 Minor Management (For Non-Management Students) (18 credits), page 95
  - 12.11.10.3 Minor Marketing (For Non-Management Students) (18 credits), page 96
  - 12.11.10.4 Minor Operations Management (For Non-Management Students) (18 credits), page 97
- 12.11.11 Bachelor of Engineering (B.Eng.) Minor Materials Engineering (24 credits), page 97
- 12.11.12 Bachelor of Engineering (B.Eng.) Minor Mathematics (24 credits), page 98
- 12.11.13 Bachelor of Engineering (B.Eng.) Minor Mining Engineering (23 credits), page 99
- 12.11.14 Minor in Musical Science and Technology, page 100
- 12.11.15 Bachelor of Engineering (B.Eng.) Minor Physics (18 credits) , page 100
- 12.11.16 Bachelor of Engineering (B.Eng.) Minor Software Engineering (24 credits), page 101
- 12.11.17 Bachelor of Engineering (B.Eng.) Minor Technological Entrepreneurship (18 credits), page 102

# 1 About the Faculty of Engineering

The Faculty currently includes six engineering departments and two schools, and houses three institutes:

| Departments                                                                                            |
|--------------------------------------------------------------------------------------------------------|
| Bioengineering                                                                                         |
| Chemical Engineering                                                                                   |
| Civil Engineering and Applied Mechanics                                                                |
| Electrical and Computer Engineering                                                                    |
| Mechanical Engineering                                                                                 |
| Mining and Materials Engineering                                                                       |
| Schools                                                                                                |
| Architecture                                                                                           |
| Urban Planning                                                                                         |
| Institutes                                                                                             |
| Trottier Institute for Sustainability in Engineering and Design (TISED) (Website: www.mcgill.ca/tised) |
|                                                                                                        |

McGill Institute for Advanced Materials (MIAM) (Website: www.mcgill.ca/miam) (established by the Faculties of Engineering and Science)

McGill Institute for Aerospace Engineering (MIAE) (Website: www.mcgill.ca/miae)

The Faculty serves approximately 3,300 undergraduate students and 1,130 graduate students in a wide variety of academic programs.

**Undergraduate programs** leading to professional bachelor's degrees are offered in all Engineering departments. These programs are designed to qualify graduates for immediate employment in a wide range of industries and for membership in the appropriate professional bodies. Additionally, a non-professional undergraduate degree is offered in the School of Architecture for those who plan to work in related fields not requiring professional qualification.

The curricula are structured to provide suitable preparation for those who plan to continue their education in postgraduate studies either at McGill or elsewhere. The professional degrees in Architecture and Urban Planning are offered at the master's level and are described at *Faculties & Schools > Faculty of Engineering > Graduate*.

The academic programs are divided into required and complementary sections. The required courses emphasize basic principles which permit graduates to keep abreast of progress in technology throughout their careers. Exposure to current technology is provided by the wide variety of complementary courses which allow students to pursue a particular interest in depth. For program details and requirements, refer to *section 12: Academic Programs*.

The **Engineering Internship Program** provides engineering students with the opportunity to participate in four-, eight-, twelve-, or sixteen-month paid work experiences. Details can be found at *www.mcgill.ca/careers4engineers/engineering-internship-program/students*. In addition, co-op programs are offered in Mining Engineering and in Materials Engineering.

**Postgraduate programs** leading to master's and doctoral degrees are offered in all sectors of the Faculty. Numerous areas of specialization are available in each of the departments and schools. All postgraduate programs, including the professional degree programs in Architecture and in Urban Planning, are described at *Faculties & Schools > Faculty of Engineering > Graduate*.

# 2 History of the Faculty

The Faculty of Engineering began in 1871 as the Department of Practical and Applied Science in the Faculty of Arts with degree programs in Civil Engineering and Surveying; Mining Engineering and Assaying; and Practical Chemistry. Diploma courses had been offered from 1859, and by 1871 the staff and enrolments had increased sufficiently to justify the creation of the Department. Continued growth led to the formation of the Faculty of Applied Science in 1878. By 1910 there were ten degree programs offered, including Architecture and Railroad Engineering. Subsequent changes in the overall pattern of the University led to the creation of the Faculty of Engineering in 1931 with a departmental structure very similar to that which exists at present.

For a detailed history of the Faculty from 1811 to 2003, see www.mcgill.ca/engineering/about/history.

# 3 Engineering Microcomputing Facility

In addition to the services provided by McGill's Information Technology Services, the Faculty, in conjunction with its departments and schools, maintains specialized computing and information resources in support of teaching and research. These vary from desktop computers distributed throughout the Engineering complex to very high-performance scientific workstations found in the research laboratories. Each unit organizes and maintains facilities that are designed around specific roles, e.g., CAD/CAM, microelectronic design, software engineering, circuit simulation, process control, polymers, structural mechanics, metal processing, etc., in addition to systems dedicated to administrative support.

The role of the Faculty is to provide access to computing resources on a 24-hour basis and to provide services that are not covered by individual units. Further information is available at www.mcgill.ca/emf.

# 4 Schulich Library of Science and Engineering

Schulich Library of Science and Engineering Macdonald-Stewart Library Building 809 Sherbrooke Street West Montreal QC H3A 0C1

Telephone: 514-398-4769 Email: *schulich.library@mcgill.ca* Website: *www.mcgill.ca/library/branches/schulich* 

Second largest of the McGill Library branches, the Schulich Library of Science and Engineering has historically provided resources and services to support research and teaching programs in engineering and the physical sciences. In the summer of 2013, the bulk of the collection formerly housed in the Life Sciences Library was moved to the Schulich Library such that it now also supports research and teaching in medicine, dentistry, and the natural sciences. The Library holds more than 300,000 books, journals, and other materials and provides access to an extensive collection of online resources, with thousands of electronic journals, e-books, and databases.

The Schulich Library of Science and Engineering has over 100 networked computer workstations, and the entire building is a McGill wireless zone. Within the library's six floors are many options for both quiet and group study, and there are numerous uPrint machines on site for copying, printing, and scanning. The Library provides support for users with disabilities, including wheelchair access and an adaptive workstation. The Schulich Library staff includes ten subject-specialized liaison librarians who offer one-on-one research consultations, as well as a range of tours and workshops designed to help users effectively find, assess, and use information.

The following other branch libraries will be of interest to students in the Faculty of Engineering:

- Blackader-Lauterman Library of Architecture and Art;
- Macdonald Campus Library;
- Edward Rosenthall Mathematics and Statistics Library.

Contact us by phone or email or visit the website to learn more about the Library's services, collections and facilities. We look forward to seeing you in the Library.

# 5 About the Faculty of Engineering (Undergraduate)

Welcome to the undergraduate Faculty of Engineering section of the Undergraduate eCalendar.

The mission of the Faculty of Engineering is to contribute to the advancement of learning and to the socio-economic development of Quebec and Canada, through teaching and research activities at the highest international standards of quality.

Goals:

- · To prepare graduates for productive professional careers through the provision of accredited bachelor's programs
- To train students through focused professional programs to attain the forefront of their fields
- To perform research and other scholarly activities which achieve international recognition
- · To ensure that technological innovations developed through research are transferred to industry
- · To provide a stimulating environment for teaching, learning, and research

In this section, you will find up-to-date information about the Faculty and about the undergraduate programs and courses it offers. For information about graduate studies in the Faculty of Engineering, see *Faculty of Engineering* > *Graduate*.

You will find information on the following topics (and others):

- section 1: About the Faculty of Engineering
- section 2: History of the Faculty
- section 3: Engineering Microcomputing Facility
- section 4: Schulich Library of Science and Engineering
- section 6: Degrees and Requirements for Professional Registration
- section 9: Student Activities
- section 11: Engineering Internship Program (EIP)
- Undergraduate Programs and Courses
- section 12.11: Minor Programs for students in the Faculty of Engineering

For regulations that are specific to undergraduate studies in the Faculty of Engineering, see *University Regulations and Resources (Undergraduate)* and watch for sections and notes that are specific to the Faculty of Engineering.

#### 5.1 Location

#### Faculty of Engineering

Macdonald Engineering Building 817 Sherbrooke Street West Montreal QC H3A 0C3 Canada

Telephone: 514-398-7250 Faculty website: www.mcgill.ca/engineering

The McGill Engineering Student Centre (Student Affairs Office, Career Centre, Peer Tutoring Services) and the Office of the Associate Dean (Student Affairs) are located at the following address:

3450 University Street Montreal QC H3A 0E8 Frank Dawson Adams Building, Suite 22

Telephone: 514-398-7257 McGill Engineering Student Centre website: www.mcgill.ca/engineering/current-students/undergraduate/mesc

#### 5.2 Administrative Officers

#### Dean

James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng. (James McGill Professor)

#### **Associate Deans**

Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (WIlliam Dawson Scholar) (Research and Innovation)

Fabrice Labeau; M.S., Ph.D.(Louvain) (Faculty Affairs)

Mohamed A. Meguid; B.Sc.(Azhar, Cairo), M.Sc., Ph.D.(W. Ont.), P.Eng. (Student Affairs)

Laurent Mydlarski; B.A.Sc.(Wat.), Ph.D.(Cornell), ing. (Academic Programs)

#### **Department Chairs**

Sylvain Coloumbe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), ing. (Chemical Engineering)

Andrew Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (William Dawson Scholar) (Electrical and Computer Engineering)

Luc Mongeau; B.Sc., M.Sc.(École Poly., Montr.), Ph.D.(Penn. St.), ing., A.S.A., S.A.E., A.S.M.E., A.I.A.A. (*Tier 1 Canada Research Chair*) (*Mechanical Engineering*)

Van Thanh Van Nguyen; B.M.E.(Vietnam), M.C. Eng.(A.I.T.), D.A.Sc.(Montr.), Eng. (Civil Engineering and Applied Mechanics)

#### **Department Chairs**

Dan V. Nicolau; B.Eng., M.Eng.(Polytechnic Univ. of Bucharest), M.S.(Acad. of Economic Studies at Bucharest), Ph.D.(Polytechnic Univ. of Bucharest) (*Bioengineering*)

Steve Yue; B.Sc., Ph.D.(Leeds) (James McGill Professor) (Lorne Trottier Chair in Aerospace Engineering) (Mining and Materials Engineering)

#### **Director, School of Architecture**

Annmarie Adams; B.A.(McG.), M.Arch., Ph.D.(Calif., Berk.)

#### **Director, School of Urban Planning**

Raphaël Fischler; B.Eng.(U. Tech. Eindhoven), M.Sc., M.C.P.(MIT), Ph.D.(Calif., Berk.)

#### Secretary of Faculty

Nathaniel Quitoriano; B.Sc.(Calif., Berk.), Ph.D.(MIT)

| Building Manager                     |
|--------------------------------------|
| Kevin Hart (Acting)                  |
| Human Resources Adviser              |
| Susanne Baumann-Moroy                |
| Finance Manager                      |
| Sinikhiwe Maphosa                    |
| Director, Engineering Student Centre |
| Chidinma Offoh-Robert                |

# 6 Degrees and Requirements for Professional Registration

#### Non-Professional

Bachelor of Science (Architecture)

The first professional degree in architecture is the Master of Architecture (Professional). Further information can be found in *Faculty of Engineering* > *Graduate*.

#### Professional

Bachelor of Engineering

Bachelor of Software Engineering

The B.Eng. and B.S.E. programs are accredited by the Canadian Engineering Accreditation Board (CEAB) of Engineers Canada and fulfil the academic requirements for admission to the provincial engineering professional organizations. Engineers Canada has also negotiated agreements with engineering organizations in other countries to grant Canadian licensed engineers the same privileges accorded to professional engineers in those countries. For more information, visit the Engineers Canada website at *www.engineerscanada.ca*. All students are expected to seek professional registration after graduation.

To become a professional engineer in Canada, a graduate must pass an examination on legal aspects and on the principles of professional practice, and acquire two to four years of engineering experience, depending on the province. Only persons duly registered may use the title "engineer" and perform the professional activities reserved for engineers by provincial laws and regulations.

In Quebec, the professional engineering body is the *Ordre des ingénieurs du Québec* (OIQ). In order to better prepare new graduates for the practice of their profession, McGill organizes seminars in cooperation with the OIQ on various aspects of the profession. The OIQ also has a student section. As soon as you have accumulated 60 credits in a B.Eng. or B.S.E. program, you can join the student section of the OIQ. Registration is free. For more information, visit the OIQ website at *www.oiq.qc.ca*.

# 7 Admission Requirements

The Faculty of Engineering offers programs leading to the degrees of B.Eng., B.S.E., and B.Sc.(Arch.). Enrolment in Engineering programs is limited.

For detailed information on admissions requirements, see the Undergraduate Admissions Guide at www.mcgill.ca/applying.

# 8 Student Progress

The length of the B.Eng., B.S.E., and B.Sc.(Arch.) programs varies depending on the program and basis of admission. You can find the curriculum for your program on the website of your department/school. See *www.mcgill.ca/engineering/about/departments-schools-institutes* for links to department/school websites.

You must successfully complete the B.Eng., B.S.E., or B.Sc.(Arch.) program within six years of entry. Candidates admitted to a lengthened program, or to a shortened program because of advanced standing, or who are participating in a work term or in the Engineering Internship Program (EIP), will have a correspondingly greater or lesser period in which to complete their program.

Extensions may be granted by the Committee on Standing in cases of serious medical problems or where other similarly uncontrollable factors have affected your progress.

# 9 Student Activities

The campus offers a wide variety of extracurricular activities for students. All are encouraged to participate. Many of these are organized within the Faculty under the auspices of the Engineering Undergraduate Society (EUS). EUS publishes a handbook describing their operations and the activities of various Faculty clubs and societies; you can also find these on their website (see below). All undergraduate students automatically become members of the EUS. Each department and school also has a student association.

For more information about EUS and links to department/school student association websites, visit the EUS website at www.mcgilleus.ca.

For more information on extra-curricular activities and organizations, see www.mcgill.ca/engineering/current-students/undergraduate/student-life.

For more information on student design teams and projects, see www.mcgill.ca/engineering/student/sao/studentdesign.

# 10 Degrees and Programs Offered

#### **Internship Program**

Engineering Internship Program

#### **Co-op Programs**

Materials Engineering (B.Eng.)

Mining Engineering (B.Eng.)

#### **General Engineering Program**

General Engineering - Undeclared major (Freshman year)

#### **Major Programs**

Architecture (B.Sc.(Arch.))

Chemical Engineering (B.Eng.)

Civil Engineering (B.Eng.)

Computer Engineering (B.Eng.)

Electrical Engineering (B.Eng.)

| Major Programs                                                                                               |
|--------------------------------------------------------------------------------------------------------------|
| Mechanical Engineering (B Eng.)                                                                              |
| Software Engineering (B.S.F.)                                                                                |
| Software Engineering (B.S.E.)                                                                                |
| Honours Programs                                                                                             |
| Electrical Engineering (B.Eng.)                                                                              |
| Mechanical Engineering (B.Eng.)                                                                              |
| Minors                                                                                                       |
| Arts                                                                                                         |
| Biomedical Engineering                                                                                       |
| Biotechnology                                                                                                |
| Chemistry                                                                                                    |
| Computer Science                                                                                             |
| Construction Engineering and Management                                                                      |
| Economics                                                                                                    |
| Environment                                                                                                  |
| Environmental Engineering                                                                                    |
| Management Minors: Minor in Finance, Minor in Management, Minor in Marketing, Minor in Operations Management |
| Materials Engineering                                                                                        |
| Mathematics                                                                                                  |
| Mining Engineering                                                                                           |
| Musical Science and Technology                                                                               |
| Physics                                                                                                      |
| Software Engineering                                                                                         |
| Technological Entrepreneurship                                                                               |
|                                                                                                              |

# 11 Engineering Internship Program

Employers value experience. Internships (four, eight, twelve, or sixteen months) allow you to gain professional work experience during the course of your undergraduate studies while earning a salary within the average range for entry-level professional positions. Other benefits include the following:

- Improved employment prospects upon graduation, often at a higher starting salary
- The opportunity to explore career options prior to graduation
- The opportunity to develop communication skills and to acquire a business perspective that cannot be learned in school

An internship may begin in January, May, or September. Employers choose the most suitable students for their organization through an application and interview process. While employed by the participating companies, you work on assignments related to your field of study. Internships will be recognized on your transcript as one or more non-credit courses entitled "Industrial Practicum." Successful completion of an internship of eight months or more qualifies you to graduate with the Internship Program designation on your transcript.

# 11.1 Student Eligibility

To participate in the Engineering Internship Program, you must:

- have a CGPA of 2.00 or higher;
- be in good financial standing with the University;
- obtain approval from the Engineering Career Centre before registering for or starting your internship;

- be registered full-time in your program before and after your internship;
- remain a degree candidate while on internship;
- return to complete your undergraduate degree at McGill, with a minimum of 15 credits remaining in your program after your internship (i.e., you are not allowed to complete your degree during your internship).

Internship students will receive an automatic extension for the completion of their studies.

International students are eligible (a few restrictions may apply).

For more information, see www.mcgill.ca/careers4engineers or send an email to careers4engineers@mcgill.ca.

#### S Important Information:

- While on internship, you are expected to complete any deferrals you may have been granted, regardless of the location of the internship. If you do not write a deferred exam as scheduled, you will receive a final grade of J. The J grade will calculate as a failure in both the TGPA and CGPA.
- International students must ensure that their health coverage remains in force during their internship.
- During your time as an intern, you are not considered to be in full-time status. Your government loans will become due and payable within the prescribed grace period (usually six months).

# 12 Academic Programs

The programs and courses in the following sections have been approved for the 2015–2016 session as listed, but the Faculty reserves the right to introduce changes as may be deemed necessary or desirable.

# 12.1 General Engineering Program

The General Engineering Program (GEP) is offered in addition to the Faculty of Engineering's majors (Chemical, Civil, Computer, Electrical, Materials, Mechanical, Mining, and Software Engineering). The GEP permits students with strong mathematics, physics, and chemistry results in high school to pursue a common first-year curriculum without declaring a particular major program at the time of application. The GEP spans one academic year only (Year 0). Students then apply for placement and continue in an Engineering major program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

Applicants who already know which major(s) they wish to study should apply directly for the major(s) rather than select the General Engineering Program option.

For more information about the General Engineering Program, see www.mcgill.ca/engineering/student/undergrad/general.

#### 12.1.1 Bachelor of Engineering (B.Eng.) - General Engineering - Undeclared (30 credits)

The General Engineering Program (GEP) is a 30-credit course of study for the first year of a Bachelor of Engineering degree for students who have not completed a Quebec CEGEP diploma. Upon successful completion of these requirements, students must apply for placement and continue in a B.Eng. or B.S.E. program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

#### Year 0 (Freshman) Courses

| (30 credits) |     |                                            |
|--------------|-----|--------------------------------------------|
| CHEM 110     | (4) | General Chemistry 1                        |
| CHEM 120     | (4) | General Chemistry 2                        |
| FACC 100     | (1) | Introduction to the Engineering Profession |
| MATH 133     | (3) | Linear Algebra and Geometry                |
| MATH 140     | (3) | Calculus 1                                 |
| MATH 141     | (4) | Calculus 2                                 |
| PHYS 131     | (4) | Mechanics and Waves                        |
| PHYS 142     | (4) | Electromagnetism and Optics                |
|              |     |                                            |

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR one of the following:

| ARCH 528  | (3) | History of Housing                          |
|-----------|-----|---------------------------------------------|
| BUSA 465* | (3) | Technological Entrepreneurship              |
| ENVR 203  | (3) | Knowledge, Ethics and Environment           |
| ENVR 400  | (3) | Environmental Thought                       |
| FACC 220  | (3) | Law for Architects and Engineers            |
| FACC 500  | (3) | Technology Business Plan Design             |
| FACC 501  | (3) | Technology Business Plan Project            |
| INDR 294* | (3) | Introduction to Labour-Management Relations |
| MATH 338  | (3) | History and Philosophy of Mathematics       |
| MGCR 222* | (3) | Introduction to Organizational Behaviour    |
| MGCR 352* | (3) | Marketing Management 1                      |
| ORGB 321* | (3) | Leadership                                  |
| ORGB 423* | (3) | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at: http://www.mcgill.ca/importantdates/.

Students who successfully complete one or more Science Placement Exams will obtain credit(s) for the equivalent(s), i.e., CHEM 110, CHEM 120, MATH 140, MATH 141, MATH 133, PHYS 131, PHYS 142. Please see http://www.mcgill.ca/students/exams/science for information on Science Placement Exams.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the B.Eng/B.S.E. Complementary Studies requirement.

However, 3 credits may be given for any language course at the 200 level or higher that has a sufficient cultural component. This course must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# 12.2 School of Architecture

#### 12.2.1 Location

Macdonald-Harrington Building, Room 201 815 Sherbrooke Street West Montreal QC H3A 0C2 Telephone: 514-398-6700 Fax: 514-398-7372 Website: *www.mcgill.ca/architecture* 

#### 12.2.2 About the School of Architecture

Founded in 1896, the School of Architecture at McGill University offers professional programs, including B.Sc. (Arch.) and M.Arch. (Professional), and post-professional research programs, including M.Arch. (Post-professional) and Ph.D.

#### Vision

To advance professional architectural education that flourishes through research, critical practice, and community engagement.

#### Mission

The School of Architecture educates professionals who contribute to the global community through the design, construction, and interpretation of the built environment. The School:

- encourages a diverse environment for teaching, learning, and research, supported by both traditional and state-of-the-art digital resources;
- develops professional and post-professional research-based Masters and Ph.D. programs that enable graduates to contribute responsibly to the profession, to research, and to careers in related fields;
- enriches multidisciplinary teaching and research within the University and in connection with other local and international universities;
- engages citizens' groups, local, provincial, and national governments, the private sector, and the profession toward the improvement of the built environment.

#### 12.2.3 Architectural Certification in Canada

In Canada, all provincial/territorial associations/institutes/orders recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board (CACB), which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the **Master of Architecture (M.Arch.)**, and the **Bachelor of Architecture (B.Arch.)**. A program may be granted a two-year, three-year, or six-year term of accreditation, depending on its degree of conformance with established educational standards.

Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the United States.

#### 12.2.4 Programs of Study

Students in the B.Sc.(Arch.) program who intend to proceed to the professional degree must satisfy certain minimum requirements. Students must:

- complete the B.Sc.(Arch.) degree, including the series of required and complementary courses stipulated for professional studies, with a minimum CGPA of 3.00;
- submit a portfolio of work executed in the sequence of six design studios, as well as samples of professional and personal work;
- complete the minimum period of relevant work experience according to the current Work Experience Guidelines (see *www.mcgill.ca/architecture/bboard/bscmai/workexperience*).

Further information on the M.Arch. (Professional) program and application procedures is available at www.mcgill.ca/architecture.

#### 12.2.4.1 Student Exchanges

A limited number of qualified students may participate in an exchange with schools of architecture at other universities that have agreements with the McGill School of Architecture, for a maximum of one term in the second year of the B.Sc.(Arch.) program. These include the following:

- Università Iuav di Venezia (Venice, Italy);
- Fakultät für Raumplanung und Architektur, Technische Universität Wien (Vienna, Austria);
- Université Catholique de Louvain (Brussels, Belgium);
- École Nationale Supérieure d'architecture de Grenoble (Grenoble, France);
- Scuola di Architettura Civile Politecnico di Milano (Boviso) (Milan, Italy);
- The Royal Danish Academy of Fine Arts, School of Architecture (Copenhagen, Denmark) (graduate level only).

#### 12.2.5 Ancillary Academic Facilities

#### Laboratories and Workshops

Facility for Architectural Research in Media Mediation (FARMM) - Professor Michael Jemtrud

Laboratory for Integrated Prototyping and Hybrid Environments (LIPHE) - Professor Aaron Sprecher

Media Centre - Juan Osorio, Media Technician

Workshop Facilities - David Speller, Technician

#### Library

Blackader-Lauterman Library of Architecture and Art, located in the Redpath Library - Jennifer Garland, Liaison Librarian

#### Collections

Architecture Slide Library - Professor Annmarie Adams

The John Bland Canadian Architecture Collection, housed in the Blackader-Lauterman Library - Ann Marie Holland, Liaison Librarian

Orson Wheeler Architectural Model Collection - Professor Pieter Sijpkes

#### 12.2.6 Architecture Faculty

#### Director

Annmarie Adams; B.A.(McG.), M.Arch., Ph.D.(Calif., Berk.) (*Term ending Aug. 31, 2015*) Martin Bressani; B.Arch.(McG.), M.Sc.(MIT), Ph.D.(Paris 1) (*Effective Sept. 1, 2015*)

#### **Graduate Program Directors**

Martin Bressani (Post-professional program)

David Covo (Professional program)

#### **Emeritus Professors**

Bruce Anderson; B.Arch.(McG.), M.Arch.(Harv.), F.R.A.I.C., O.A.Q.

Derek Drummond; B.Arch.(McG.), F.R.A.I.C., O.A.Q., O.A.A. (William C. Macdonald Emeritus Professor of Architecture)

Adrian Sheppard; B.Arch.(McG.), M.Arch.(Yale), A.A.P.P.Q., F.R.A.I.C., O.A.Q.

Radoslav Zuk; B.Arch.(McG.), M.Arch.(MIT), D.Sc.(U.A.A.), F.R.A.I.C., O.A.Q., O.A.A.

#### Professors

Annmarie Adams; B.A.(McG.), M.Arch., Ph.D.(Calif., Berk.), M.R.A.I.C. (William C. Macdonald Professor of Architecture)

Vikram Bhatt; N.Dip. Arch.(Ahmed.), M.Arch.(McG.), M.R.A.I.C.

Martin Bressani; B.Sc., B.Arch.(McG.), M.Sc.(Arch.)(MIT), D.E.A., Docteur(Paris IV), O.A.Q.

Avi Friedman; B.Arch.(Technion), M.Arch.(McG.), Ph.D.(Montr.), O.A.Q., I.A.A.

Alberto Pérez-Gómez; Dipl.Eng.Arch.(Nat. Pol. Inst. Mexico), M.A., Ph.D.(Essex), M.R.A.I.C. (Saidye Rosner Bronfman Professor of Architectural History)

#### **Associate Professors**

Ricardo L. Castro; B.Arch.(Los Andes, Col.), M.Arch., M.A.(Ore.), F.R.A.I.C.

David Covo; B.Sc.(Arch.), B.Arch.(McG.), F.R.A.I.C., O.A.Q.

Michael Jemtrud; B.A., B.Sc., B.Arch.(Penn. St.), M.Arch.(McG.), M.R.A.I.C.

Nik Luka; B.A.A.(Ryerson), M.Arch.(Laval), Ph.D.(Tor.), M.C.I.P.

Robert Mellin; B.Arch., M.Sc.(Arch.)(Penn.), M.Arch.(McG.), M.Sc., Ph.D.(Penn.), F.R.A.I.C., N.A.A.

Aaron Sprecher; B.Arch.(Bezalel), M.Arch.(Calif.-LA).

#### Assistant Professors

David Newton; B.Sc.(Design)(Ariz. St.), M.Arch.(Rice)

David Theodore; B.A., B.Sc.(Arch.), B.Arch., M.Arch.(McG.), Ph.D.(Harv.)

Ipek Türeli; B.Arch.(Istanbul), A.A.Dipl.(A.A.), Ph.D.(Calif., Berk.)

#### **Adjunct Professors**

Howard Davies, Talia Dorsey, Julia Gersovitz, Phyllis Lambert, Conor Sampson

#### **Course Lecturers**

Joe Carter, Nancy Dunton, Marc Hallé, Leslie Lok, Bassem Eid Mohamed, Suresh Perera, Marc-André Plourde, Sevag Pogharian, Carlos Rueda, Pieter Sijpkes, He Hong Yu

#### Visiting Critics and Guest Lecturers

Each year, visitors are involved in the teaching of certain courses as critics and lecturers. These visitors change from year to year. The following were visitors in 2014:

Rami Bebawi, Anne Bordeleau, Sheryl Boyle, Heather Braiden, Sinisha Brdar, Georges Bulette, Eric Bunge, Trevor Butler, Christina Contandriopoulos, Anne Cormier, Tom Egli, Patrick Evans, Andrew Forster, Maude Francoeur, Mia Geo, Ben Gianni, Nathan Godlovitch, Cynthia Hammond, Dan Hanganu, Patrick Harrop, Paul Holmquist, Mary Hunter, Jean-François Julien, Andrew King, Stephan Kowal, Liu Xue Lin, Eric Marosi, Sophie Mayes, Mélanie Mignault, Melanie Mignaur, Shawn Moscovitch, Kai Pippo, Mark Poddubiuk, Wendy Pollard, Alessandra Ponte, Peter Roper, Thomas Schweitzer, Peter Sealy, Angeliki Sioli, Bruno St-Jean, Jennifer Thorogood, James Timberlake, Dustin Valen, Katsu Yamazaki, Howard Yaphe

#### 12.2.7 Bachelor of Science (B.Sc.) (Architecture) - Architecture (126 credits)

Program credit weight: 126 credits

Program credit weight for CEGEP students: 100 credits

McGill's professional program in Architecture is divided into two parts. The first part is an eight-term design-based program (six-term program for students entering with the Quebec Diploma of Collegial Studies in Pure and Applied Science or the equivalent) leading to a non-professional degree, Bachelor of Science (Architecture). Applicants whose background includes a university degree in an area not related to architecture should apply to the B.Sc.(Arch.) program. For detailed information about admission procedures and requirements, please see the Undergraduate Admissions Guide at http://www.mcgill.ca/applying.

The second part, for students with the McGill B.Sc.(Arch.) degree or equivalent non-professional undergraduate architecture degree, is either a three-term or a two-year program leading to the Master of Architecture (Professional) degree. There are two options for the completion of the M.Arch. (Professional) program: Design Studio (45 credits) and Design Studio-Directed Research (60 credits). The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the U.S.

For more information on program structure and courses, visit the School of Architecture website at http://www.mcgill.ca/architecture.

#### Required Year 0 (Freshman) Courses

26 credits

Generally, students admitted to the Architecture program from Quebec CEGEPs are granted transfer credit for the Year 0 (Freshman) courses and enter a 100-credit (six-term) program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

#### **Required Non-Departmental Courses**

# FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

15 credits

| CIVE 284 | (4) | Structural Engineering Basics      |
|----------|-----|------------------------------------|
| CIVE 385 | (3) | Structural Steel and Timber Design |
| CIVE 388 | (3) | Foundation and Concrete Design     |
| CIVE 492 | (2) | Structures                         |
| FACC 220 | (3) | Law for Architects and Engineers   |

# **Required Architectural Courses**

| 73 credits |     |                                               |
|------------|-----|-----------------------------------------------|
| ARCH 201   | (6) | Communication, Behaviour and Architecture     |
| ARCH 202   | (6) | Architectural Graphics and Elements of Design |
| ARCH 221   | (2) | Architectural Drawing                         |
| ARCH 240   | (3) | Organization of Materials in Buildings        |
| ARCH 241   | (3) | Architectural Structures                      |
| ARCH 250   | (3) | Architectural History 1                       |
| ARCH 251   | (3) | Architectural History 2                       |
| ARCH 303   | (6) | Design and Construction 1                     |
| ARCH 304   | (6) | Design and Construction 2                     |
| ARCH 325   | (2) | Architectural Sketching                       |
| ARCH 342   | (3) | Digital Representation                        |
| ARCH 354   | (3) | Architectural History 3                       |
| ARCH 355   | (3) | Architectural History 4                       |
| ARCH 375   | (2) | Landscape                                     |
| ARCH 377   | (3) | Energy, Environment and Buildings             |
| ARCH 405   | (6) | Design and Construction 3                     |
| ARCH 406   | (6) | Design and Construction 4                     |
| ARCH 447   | (2) | Lighting                                      |
| ARCH 451   | (2) | Building Regulations and Safety               |
| ARCH 512   | (3) | Architectural Modelling                       |

#### **Complementary Courses**

| 6 | credits | from | the | fol | lowing: |  |
|---|---------|------|-----|-----|---------|--|
|   |         |      |     |     |         |  |

| ARCH 378 | (3) | Site Usage                          |
|----------|-----|-------------------------------------|
| ARCH 379 | (3) | Summer Course Abroad                |
| ARCH 383 | (3) | Geometry and Architecture           |
| ARCH 461 | (1) | Freehand Drawing and Sketching      |
| ARCH 490 | (2) | Selected Topics in Design           |
| ARCH 514 | (4) | Community Design Workshop           |
| ARCH 515 | (3) | Sustainable Design                  |
| ARCH 517 | (3) | Sustainable Residential Development |
| ARCH 520 | (3) | Montreal: Urban Morphology          |
| ARCH 521 | (3) | Structure of Cities                 |

| ARCH 523 | (3) | Significant Texts and Buildings                  |
|----------|-----|--------------------------------------------------|
| ARCH 525 | (3) | Seminar on Analysis and Theory                   |
| ARCH 526 | (3) | Philosophy of Structure                          |
| ARCH 527 | (3) | Civic Design                                     |
| ARCH 528 | (3) | History of Housing                               |
| ARCH 529 | (3) | Housing Theory                                   |
| ARCH 531 | (3) | Architectural Intentions Vitruvius - Renaissance |
| ARCH 532 | (3) | Origins of Modern Architecture                   |
| ARCH 533 | (3) | New Approaches to Architectural History          |
| ARCH 535 | (3) | History of Architecture in Canada                |
| ARCH 536 | (3) | Heritage Conservation                            |
| ARCH 540 | (3) | Selected Topics in Architecture 1                |
| ARCH 541 | (3) | Selected Topics in Architecture 2                |
| ARCH 564 | (3) | Design for Development                           |
| ARCH 566 | (3) | Cultural Landscapes Seminar                      |
| OCC1 442 | (2) | Environments for the Disabled                    |

#### Electives

6 credits of elective courses outside the School of Architecture must be completed, subject to approval by the Student Adviser.

#### 12.3 Department of Bioengineering

#### 12.3.1 Location

Macdonald Engineering Building, Room 270 817 Sherbrooke Street West Montreal QC H3A 0C3

Telephone: 514-398-7138 Fax: 514-398-7379 Email: *adminoffice.bioeng@mcgill.ca* Website: *www.mcgill.ca/bioengineering* 

#### 12.3.2 About the Department of Bioengineering

The Department of Bioengineering, established in 2012, is the newest department to join McGill University's renowned Faculty of Engineering. McGill researchers from nearly all faculty units, including seven Canada Research Chairs and many colleagues in the Faculties of Medicine, Science, and Agricultural and Environmental Sciences, are actively involved in various areas of bioengineering. Within our Department, the faculty are focusing on three major directions:

- Biological materials and mechanics
- Biomolecular and cellular engineering
- Biomedical, diagnostics, and high throughput screening

#### 12.3.3 Courses in Bioengineering

The following courses are offered by the Department of Bioengineering:

- BIEN 210
- BIEN 310

- BIEN 320
- BIEN 330
- BIEN 340
- BIEN 350
- BIEN 462
- BIEN 510
- BIEN 520
- BIEN 530
- BIEN 550
- BIEN 570

#### 12.3.4 Bioengineering Faculty

#### Chair

Dan V. Nicolau

#### Professors

Dan V. Nicolau; B.Eng., M.Eng. (Poly. Univ. Bucharest), M.S. (Acad. Economic Studies, Bucharest), Ph.D. (Poly. Univ. Bucharest)

Amine Kamen; Ph.D.(Mines ParisTech), Ph.D.(École Poly., Montr.)

#### Associate Professor

Yu (Brandon) Xia; B.Sc.(Peking), Ph.D.(Stan.)

#### Assistant Professors

Allen Ehrlicher; B.Sc., B.A.(Texas-Austin), M.Sc., Ph.D.(Leipzig)

Adam Hendricks; B.S., M.S.(Virg. Poly. Inst. & State Univ.), Ph.D.(Mich.)

J. Matt Kinsella; B.Sc.(SXU, Chicago), M.S., Ph.D.(Purd.)

Georgios Mitsis; Dipl.(Nat. Tech., Athens), M.S.(Elect. Eng.), M.S.(Biomed. Eng.), Ph.D.(USC)

# 12.4 Department of Chemical Engineering

#### 12.4.1 Location

M.H. Wong Building, Room 3060 3610 University Street Montreal QC H3A 0C5

Telephone: 514-398-4494 Fax: 514-398-6678 Email: *info.chemeng@mcgill.ca* Website: *www.mcgill.ca/chemeng* 

#### 12.4.2 About the Department of Chemical Engineering

The central purpose of engineering is to pursue solutions to technological problems in order to satisfy the needs and desires of society. Chemical engineers are trained to solve the kinds of problems that are typically found in the "**chemical process industries**," which include:

- chemical manufacturing;
- plastics;
- water treatment;
- pulp and paper;
- petroleum refining;

- ceramics; and
- paint industries;

as well as substantial portions of the:

- food processing;
- textile;
- nuclear energy;
- alternative energy;
- biochemical;
- biomedical; and
- pharmaceutical industries.

The technological problems and opportunities in these industries are often closely linked to social, economic, and environmental concerns. For this reason, chemical engineers often deal with these questions while working in management, pollution abatement, product development, marketing, and equipment design.

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, management, materials engineering, computer science, environmental engineering, chemistry, or another minor (see *section 12.11: Minor Programs* for minors available to engineering students).

The solution to many environmental problems requires an understanding of technological principles; a Chemical Engineering degree provides an ideal background. In addition to relevant material learned in the core program, a selection of environmental complementary courses and minor programs is available. The involvement of many Chemical Engineering faculty members in environmental research provides the opportunity for undergraduate students to carry out research projects in this area.

The **B.Eng.** curriculum also provides the preparation necessary to undertake postgraduate studies leading to the **M.Eng.** or **Ph.D.** degrees in Chemical Engineering. Students completing this curriculum acquire a broad, balanced education in the natural sciences with the accent on application. Thus, for those who do not continue in Chemical Engineering, it provides an exceptionally balanced education in applied science. For others, it will form the basis of an educational program that may continue with a variety of studies such as business administration, medicine, or law. Versatility is, therefore, one of the most valuable characteristics of Chemical Engineering program graduates.

#### 12.4.3 Academic Program

The Chemical Engineering program comprises 142 credits (116 credits for those who completed the Quebec CEGEP program in Pure and Applied Sciences). Certain students who take advantage of Summer session courses can complete the program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

#### 12.4.4 Canadian Society for Chemical Engineering

The *Chemical Engineering Student Society* has for many years been affiliated both with the CSChE (Canadian Society for Chemical Engineering) and with the AIChE (American Institute of Chemical Engineers). For a nominal fee, students receive *Canadian Chemical News*, a monthly publication, and the *AIChE Student Members Bulletin*, as well as other privileges of student membership in the two societies. The student chapter also organizes a series of local social, educational, and sporting events. Recent events have included student-professor banquets and Christmas parties, dances, speakers, broomball games, and joint meetings with the Montreal Section of the CSChE which gives students a chance to mix with practising chemical engineers.

#### 12.4.5 Chemical Engineering Faculty

| Chair                                                    |  |
|----------------------------------------------------------|--|
| Sylvain Coulombe                                         |  |
| Emeritus Professors                                      |  |
| John M. Dealy; B.S.(Kansas), M.S.E., Ph.D.(Mich.), Eng.  |  |
| Musa R. Kamal; B.S.(III.), M.S., Ph.D.(Carn. Mell), Eng. |  |
| Richard J. Munz; B.A.Sc.(Wat.), Ph.D.(McG.), Eng.        |  |
|                                                          |  |

Professors

Sylvain Coulombe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), Eng.

#### Professors

Sasha Omanovic; Dipl.Ing., Ph.D.(Zagreb), P.Eng.

Alejandro D. Rey; B.Ch.E.(CCNY), Ph.D.(Calif.), F.R.S.C. (James McGill Professor)

#### Associate Professors

Dimitrios Berk; B.Sc.(Bosphorus), M.E.Sc.(W. Ont.), Ph.D.(Calg.), P.Eng.

Reghan James Hill; B.E.(Auck.), Ph.D.(Cornell)

Richard L. Leask; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(Tor.), P.Eng. (William Dawson Scholar)

Milan Maric; B.Eng.Mgt.(McM.), Ph.D.(Minn.), P.Eng.

Jean-Luc Meunier; D.Ing.(E.P.F.L.), M.Sc., Ph.D.(I.N.R.S.), Eng.

Phillip Servio; B.A.Sc., Ph.D.(Br. Col.)

Nathalie Tufenkji; B.Eng.(McG.), M.Sc., Ph.D.(Yale), ing. (CRC-Tier II)

Viviane Yargeau; B.Ch.E., M.Sc.A., Ph.D.(Sher.), Eng.

#### Assistant Professors

P.-Luc Girard-Lauriault; B.Sc.(Montr.), Ph.D.(École Poly., Montr.)

Jeff Gostick; B.Eng.(Ryerson), M.A.Sc., Ph.D.(Wat.)

Corinne Hoesli; B.Sc., B.A.Sc.(Ott.), Ph.D.(Br. Col.), ing. jr.

Anne-Marie Kietzig; Dipl.Ing.(TU Berlin), Ph.D.(Br. Col.)

Jan Kopyscinski; Dipl.Ing.(BTU Cottbus), Dr.Sc.(ETH Zurich)

Christopher Moraes; B.A.Sc., Ph.D.(Tor.)

#### **Post-Retirement**

W.J. Murray Douglas; B.Sc.(Qu.), M.S.E., Ph.D.(Mich.)

#### 12.4.6 Bachelor of Engineering (B.Eng.) - Chemical Engineering (142 credits)

#### Revision, July 2015. Start of revision.

Program credit weight: 142-145 credits

Program credit weight for Quebec CEGEP students: 116 credits

Program credit weight for out-of-province students: 142 credits

The discipline of chemical engineering is distinctive in being based equally on physics, mathematics, and chemistry. Application of these three fundamental sciences is basic to a quantitative understanding of the process industries. Those with an interest in the fourth fundamental science, biology, will find several courses in the chemical engineering curriculum that integrate aspects of the biological sciences relevant to process industries such as food processing, fermentation, biomedical, and water pollution control. Courses on the technical operations and economics of the process industries are added to this foundation. The core curriculum concludes with process design courses taught by practising design engineers. Problem-solving, experimenting, planning, and communication skills are emphasized in courses throughout the core curriculum.

Certain students who take advantage of Summer session courses can complete the departmental program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

#### Note to CEGEP students

If you have successfully completed a course at CEGEP that is equivalent to CHEM 212 or CHEM 234, you may obtain transfer credits for either or both courses by passing the McGill Science Placement Exam for the course(s). You must complete an application form available on the Science Placement Exam website and an application fee will be charged to your student account. Science placement exams take place in August and September before classes begin. If you pass the exam(s), transfer credits for the course(s) will be reflected on your transcript and your program credit requirements will be decreased to reflect these transfer credits. For information on Science Placement Exams, including application deadlines, the application form, application fee, dates, times, and location of the exams, see http://www.mcgill.ca/students/exams/science. If you do not pass the placement exams, you must register for CHEM 212 and CHEM 234 during your studies at McGill as outlined in your program requirements.

#### Required Year 0 (Freshman) Courses

#### 29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 116-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

24 credits

**7** 4 1.

| CHEM 212  | (4) | Introductory Organic Chemistry 1              |
|-----------|-----|-----------------------------------------------|
| CHEM 234  | (3) | Topics in Organic Chemistry                   |
| COMP 208  | (3) | Computers in Engineering                      |
| FACC 100* | (1) | Introduction to the Engineering Profession    |
| FACC 300  | (3) | Engineering Economy                           |
| FACC 400  | (1) | Engineering Professional Practice             |
| MATH 262  | (3) | Intermediate Calculus                         |
| MATH 263  | (3) | Ordinary Differential Equations for Engineers |
| MATH 264  | (3) | Advanced Calculus for Engineers               |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Chemical Engineering Courses**

| /4 credits |     |                                         |
|------------|-----|-----------------------------------------|
| CHEE 200   | (3) | Chemical Engineering Principles 1       |
| CHEE 204   | (3) | Chemical Engineering Principles 2       |
| CHEE 220   | (3) | Chemical Engineering Thermodynamics     |
| CHEE 231   | (3) | Data Analysis and Design of Experiments |
| CHEE 291   | (4) | Instrumentation and Measurement 1       |
| CHEE 310   | (3) | Physical Chemistry for Engineers        |
| CHEE 314   | (3) | Fluid Mechanics                         |
| CHEE 315   | (3) | Heat and Mass Transfer                  |
| CHEE 351   | (3) | Separation Processes                    |
| CHEE 360   | (1) | Technical Paper                         |
| CHEE 370   | (3) | Elements of Biotechnology               |
| CHEE 380   | (3) | Materials Science                       |

| CHEE 390 | (3) | Computational Methods in Chemical Engineering |
|----------|-----|-----------------------------------------------|
| CHEE 400 | (3) | Principles of Energy Conversion               |
| CHEE 401 | (3) | Energy Systems Engineering                    |
| CHEE 423 | (3) | Chemical Reaction Engineering                 |
| CHEE 440 | (3) | Process Modelling                             |
| CHEE 453 | (4) | Process Design                                |
| CHEE 455 | (3) | Process Control                               |
| CHEE 456 | (2) | Design Project 1                              |
| CHEE 457 | (5) | Design Project 2                              |
| CHEE 474 | (3) | Biochemical Engineering                       |
| CHEE 484 | (3) | Materials Engineering                         |
| CHEE 491 | (4) | Instrumentation and Measurement 2             |

#### **Technical Complementaries**

#### 9 credits

The purpose of this requirement is to provide students with an area of specialization within the broad field of chemical engineering. Alternatively, students use the technical complementaries to increase the breadth of their chemical engineering training.

List A

3-9 credits from the following:

| CHEE 452  | (3) | Particulate Systems                               |
|-----------|-----|---------------------------------------------------|
| CHEE 510  | (3) | Advanced Separation Processes                     |
| CHEE 515+ | (3) | Material Surfaces: A Biomimetic Approach          |
| CHEE 521+ | (3) | Nanomaterials and the Aquatic Environment         |
| CHEE 541  | (3) | Electrochemical Engineering                       |
| CHEE 543  | (3) | Plasma Engineering                                |
| CHEE 561  | (3) | Introduction to Soft Tissue Biophysics            |
| CHEE 563+ | (3) | Biofluids and Cardiovascular Mechanics            |
| CHEE 571  | (3) | Small Computer Applications: Chemical Engineering |
| CHEE 582  | (3) | Polymer Science & Engineering                     |
| CHEE 584  | (3) | Polymer Processing                                |
| CHEE 585  | (3) | Foundations of Soft Matter                        |
| CHEE 587  | (3) | Chemical Processing: Electronics Industry         |
| CHEE 591  | (3) | Environmental Bioremediation                      |
| CHEE 593+ | (3) | Industrial Water Pollution Control                |
| CIVE 430+ | (3) | Water Treatment and Pollution Control             |
| CIVE 521+ | (3) | Nanomaterials and the Aquatic Environment         |
| MECH 534+ | (3) | Air Pollution Engineering                         |
| MECH 563+ | (3) | Biofluids and Cardiovascular Mechanics            |
| MIME 515+ | (3) | Material Surfaces: A Biomimetic Approach          |

+ Students may choose only one course in each of the following sets:

- CHEE 515 or MIME 515

- CHEE 521 or CIVE 521

- CHEE 563 or MECH 563

#### - CHEE 593 or CIVE 430

List B 0-6 credits from the following:

| BIEN 320   | (3) | Molecular, Cellular and Tissue Biomechanics     |
|------------|-----|-------------------------------------------------|
| BIEN 330   | (3) | Introduction to Tissue Engineering              |
| BIEN 340   | (3) | Transport Processes in Biological Systems       |
| BIEN 350   | (3) | Biosystems and Control                          |
| BIEN 462   | (3) | Engineering Principles in Physiological Systems |
| BIEN 510   | (3) | Nanoparticles in the Medical Sciences           |
| BIEN 520   | (3) | High Throughput Bioanalytical Devices           |
| BIEN 550   | (3) | Biomolecular Devices                            |
| BIEN 570   | (3) | Active Mechanics in Biology                     |
| BIOT 505*  | (3) | Selected Topics in Biotechnology                |
| BREE 325   | (3) | Food Process Engineering                        |
| CHEE 363** | (2) | Projects Chemical Engineering 1                 |
| CHEE 494** | (3) | Research Project and Seminar 1                  |
| CHEE 495** | (4) | Research Project and Seminar 2                  |
| CHEE 496** | (3) | Environmental Research Project                  |
| CIVE 557   | (3) | Microbiology for Environmental Engineering      |
| MIME 470   | (3) | Engineering Biomaterials                        |
| MIME 558   | (3) | Engineering Nanomaterials                       |

\* BIOT 505 can only be chosen by students taking the Minor in Biotechnology.

\*\* Students may choose only one project course: CHEE 363, CHEE 494, CHEE 495, or CHEE 496.

#### List C

0-3 credits

The remaining credits, up to a maximum of 3 credits, may be taken from other suitable undergraduate courses in the Faculty of Engineering, with departmental permission.

#### **Complementary Studies**

6 credits (9 credits for students from Quebec CEGEPs)

#### Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212 | (3) | Anthropology of Development                             |
|----------|-----|---------------------------------------------------------|
| BTEC 502 | (3) | Biotechnology Ethics and Society                        |
| CIVE 469 | (3) | Infrastructure and Society                              |
| ECON 225 | (3) | Economics of the Environment                            |
| ECON 347 | (3) | Economics of Climate Change                             |
| ENVR 201 | (3) | Society, Environment and Sustainability                 |
| GEOG 200 | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203 | (3) | Environmental Systems                                   |
| GEOG 205 | (3) | Global Change: Past, Present and Future                 |
| GEOG 302 | (3) | Environmental Management 1                              |

| MECH 526  | (3) | Manufacturing and the Environment    |
|-----------|-----|--------------------------------------|
| MGPO 440* | (3) | Strategies for Sustainability        |
| MIME 308  | (3) | Social Impact of Technology          |
| PHIL 343  | (3) | Biomedical Ethics                    |
| RELG 270  | (3) | Religious Ethics and the Environment |
| SOCI 235  | (3) | Technology and Society               |
| SOCI 312  | (3) | Sociology of Work and Industry       |
| URBP 201  | (3) | Planning the 21st Century City       |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Group B - Humanities and Social Sciences, Management Studies and Law

| 3 credits (6 credits for students from Quebec CEGEPs) at the 200 level or higher from the following departments: |                                                                          |                                             |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|--|--|
| Anthropology (ANTH)                                                                                              |                                                                          |                                             |  |  |
| Economics (any 200-                                                                                              | Economics (any 200- or 300-level course excluding ECON 227 and ECON 337) |                                             |  |  |
| History (HIST)                                                                                                   |                                                                          |                                             |  |  |
| Philosophy (excluding                                                                                            | g PHIL 210 and PH                                                        | IIL 310)                                    |  |  |
| Political Science (POI                                                                                           | LI)                                                                      |                                             |  |  |
| Psychology (excluding                                                                                            | g PSYC 204 and P                                                         | SYC 305, but including PSYC 100)            |  |  |
| Religious Studies (RE                                                                                            | LG)                                                                      |                                             |  |  |
| School of Social Work                                                                                            | k (SWRK)                                                                 |                                             |  |  |
| Sociology (excluding                                                                                             | SOCI 350)                                                                |                                             |  |  |
| OR 3 credits from the                                                                                            | following:                                                               |                                             |  |  |
| ARCH 528                                                                                                         | (3)                                                                      | History of Housing                          |  |  |
| BUSA 465*                                                                                                        | (3)                                                                      | Technological Entrepreneurship              |  |  |
| ENVR 203                                                                                                         | (3)                                                                      | Knowledge, Ethics and Environment           |  |  |
| ENVR 400                                                                                                         | (3)                                                                      | Environmental Thought                       |  |  |
| FACC 220                                                                                                         | (3)                                                                      | Law for Architects and Engineers            |  |  |
| FACC 500                                                                                                         | (3)                                                                      | Technology Business Plan Design             |  |  |
| FACC 501                                                                                                         | (3)                                                                      | Technology Business Plan Project            |  |  |
| INDR 294*                                                                                                        | (3)                                                                      | Introduction to Labour-Management Relations |  |  |
| MATH 338                                                                                                         | (3)                                                                      | History and Philosophy of Mathematics       |  |  |
| MGCR 222*                                                                                                        | (3)                                                                      | Introduction to Organizational Behaviour    |  |  |
| MGCR 352*                                                                                                        | (3)                                                                      | Marketing Management 1                      |  |  |
| ORGB 321*                                                                                                        | (3)                                                                      | Leadership                                  |  |  |
| ORGB 423*                                                                                                        | (3)                                                                      | Human Resources Management                  |  |  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

#### Revision, July 2015. End of revision.

#### 12.4.6.1 More about the B.Eng. Degree in Chemical Engineering

Courses CHEE 582 and CHEE 584 comprise a **Polymeric Materials** sequence. Additional courses in this area are available in the Chemistry Department (e.g., CHEM 574) or at the graduate level (CHEE 681). The Department has considerable expertise in the polymer area.

Courses CHEE 370 and CHEE 474 make up a sequence in **Biochemical Engineering-Biotechnology**. Students interested in this area may take additional courses, particularly those offered by the Department of Food Science and Agricultural Chemistry; Faculty of Agricultural and Environmental Sciences; and courses in biochemistry and microbiology. The food, beverage, and pharmaceutical industries are large industries in the Montreal area, and these courses are relevant to these industries and to the new high-technology applications of biotechnology.

The third area in which there is a sequence of courses is **Pollution Control**. The Department offers three courses in this area: CHEE 591, CHEE 592, and CHEE 593. As some water pollution control problems are solved by microbial processes, course CHEE 474 is also relevant to the pollution control area. Additional courses in this area are listed in the *section 12.11.9: Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)*.

A Minor in Biotechnology is also offered by the Faculties of Engineering and Science with emphasis on molecular biology and chemical engineering processes. A full description of the program appears in the *section 12.11.3: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits).* 



**Note:** Many of the technical complementaries are offered only in alternate years. Students should, therefore, plan their complementaries as far ahead as possible. With the approval of the instructor and Academic Adviser, students may take graduate (500-level) CHEE courses as technical complementaries.

#### 12.5 Department of Civil Engineering and Applied Mechanics

#### 12.5.1 Location

Macdonald Engineering Building, Room 492 817 Sherbrooke Street West Montreal QC H3A 0C3

Telephone: 514-398-6860 Fax: 514-398-7361 Email: *ugradinfo.civil@mcgill.ca* Website: *www.mcgill.ca/civil* 

#### 12.5.2 About the Department of Civil Engineering and Applied Mechanics

Civil engineers have traditionally applied scientific and engineering knowledge to the task of providing the built environment, from its conception and planning to its design, construction, maintenance, rehabilitation, and sustainability. Examples include buildings; bridges; roads; railways; dams; facilities for water supply and treatment; waste disposal; and transportation system.

With the aging and deterioration of an already vast infrastructure, its maintenance and rehabilitation has become an increasingly important role of the civil engineering profession. Also, with worldwide concern about the detrimental impact of human activities on the environment, civil engineers are now in the forefront of developing and providing the means for both prevention and remediation of many aspects of environmental pollution.

Students who wish to extend their knowledge in certain areas beyond the range that the program complementary courses allow can also take a **minor**. Minors are available in fields such as:

- Arts;
- Economics;
- Management;
- Environmental Engineering;
- Construction Engineering and Management;
- and others.

These require additional credits to be taken from a specified list of topics relating to the chosen field. Further information on the various minors may be found in *section 12.11: Minor Programs*. Details on how minors can be accommodated within the Civil Engineering program will be made available during preregistration counselling.

#### 12.5.3 Academic Programs

Considerable freedom exists for students to influence the nature of the program of study which they follow in the Department of Civil Engineering and Applied Mechanics. A variety of advanced **complementary courses** is offered in five main groupings:

- Environmental Engineering;
- Geotechnical and Geoenvironmental Engineering;
- Water Resources and Hydraulic Engineering;
- Structural Engineering;
- Transportation Engineering.

Guidance on the sequence in which required core courses should be taken is provided for students in the form of a sample program which covers the entire period of study. The technical complementary courses selected, usually in the last two terms of the program, will depend upon the student's interests. All students must meet with their *adviser* each term to confirm the courses for which they are registered.

Courses taken in Term 3 or later will depend on a student's interests and ability. Information and advice concerning different possibilities are made available in the Department prior to registration. All programs require the approval of a staff adviser. Programs for students transferring into the Department with advanced standing will be dependent upon the academic credit previously achieved, and such a program will be established only after consultation with a staff adviser.

#### 12.5.4 Civil Engineering and Applied Mechanics Faculty

| Chair                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Van-Thanh-Van Nguyen                                                                                                                                                                                 |
| Associate Chair                                                                                                                                                                                      |
| Yixin Shao                                                                                                                                                                                           |
| Chair of Graduate Program                                                                                                                                                                            |
| Luc Chouinard                                                                                                                                                                                        |
| Emeritus Professors                                                                                                                                                                                  |
| Philip J. Harris; B.Sc.(Manit.), M.Eng., Ph.D.(McG.), F.E.I.C., F.C.S.C.E., Eng.                                                                                                                     |
| M. Saeed Mirza; M.S., B.Eng.(Karachi), M.Eng., Ph.D.(McG.), F.E.I.C., F.C.S.C.E., F.A.C.I., Hon. F.I.E.P., Eng.                                                                                      |
| Stuart B. Savage; B.Eng.(McG.), M.S.Eng.(Cal. Tech.), Ph.D.(McG.), F.R.S.C.                                                                                                                          |
| Professors                                                                                                                                                                                           |
| Vincent H. Chu; B.S.Eng.(Taiwan), M.A.Sc.(Tor.), Ph.D.(MIT), Eng.                                                                                                                                    |
| Ghyslaine McClure; B.Ing.(Montr.), S.M.(MIT), Ph.D.(Montr.), Eng.                                                                                                                                    |
| Denis Mitchell; B.A.Sc., M.A.Sc., Ph.D.(Tor.), F.A.C.I., Eng. (James McGill Professor)                                                                                                               |
| Van-Thanh-Van Nguyen; B.M.E.(Vietnam), M.C.E.(A.I.T.), D.A.Sc.(Montr.), Eng.                                                                                                                         |
| ames Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng.; Dean, Faculty of Engineering                                                                                                                  |
| A. Patrick S. Selvadurai; M.S.(Stan.), D.I.C., Ph.D., D.Sc.(Nott.), F.R.S.C., F.E.I.C., F.I.M.A., F.C.S.C.E., P.Eng., C.Math. (William Scott Professor of Civil Engineering, James McGill Professor) |
| Suresh C. Shrivastava; B.Sc.(Eng.)(Vikram), M.C.E.(Del.), Sc.D.(Col.), Eng.                                                                                                                          |
| Associate Professors                                                                                                                                                                                 |

Andrew J. Boyd; B.Sc.Eng.(New Br.), M.A.Sc.(Tor.), Ph.D.(Br. Col.), P.Eng., F.A.C.I.

Luc E. Chouinard; B.Ing., M.Ing.(Montr.), B.C.L.(McG.), Sc.D.(MIT), Eng.

Dominic Frigon; B.Sc., M.Sc.(McG.), Ph.D.(Ill.-Urbana-Champaign), L.L.E.

Susan J. Gaskin; B.Sc.(Eng.)(Qu.), Ph.D.(Cant.), Eng.

Ronald Gehr; B.Sc.(Eng.)(Witw.), M.A.Sc., Ph.D.(Tor.), P.Eng., F.C.S.C.E.

Subhasis Ghoshal; B.C.E.(Jadavpur), M.S.(Missouri), Ph.D.(Carn. Mell), P.Eng.

Dimitrios G. Lignos; B.Sc.(Nat. Tech., Athens), M.Sc., Ph.D.(Stan.) (William Dawson Scholar)

Mohamed A. Meguid; B.Sc.(Cairo), M.Sc., Ph.D.(W. Ont.), P.Eng; Associate Dean, Undergraduate Education

Luis Miranda-Moreno; B.Sc., M.Eng.(Mexico), Ph.D.(Wat.)

Colin Rogers; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(Syd.), P.Eng.

#### Associate Professors

Yixin Shao; B.Sc., M.S.(Tongji), Ph.D.(N'western), P.Eng., F.A.C.I.; Undergraduate Program Director

#### Assistant Professor

Jinxia Liu; BE/ME(Tianjin), ME(Rensselaer Poly.), Ph.D.(Purd.)

#### **Adjunct Professors**

Sofia Babarutsi, Richard Edwards, John Hadjinicolaou, Charles Manatakos, Paul Rodrigue, Sandro Scola, William Taylor, Marc Villeneuve

#### 12.5.5 Bachelor of Engineering (B.Eng.) - Civil Engineering (139 credits)

Program credit weight: 139 credits

Program credit weight for Quebec CEGEP students: 110 credits

The Civil Engineering program is comprehensive in providing the fundamentals in mechanics and engineering associated with the diverse fields of the profession, in offering choices of specialization, and in fully reflecting the advances in science, mathematics, engineering, and computing that have transformed all fields of engineering in recent years. The resulting knowledge and training enables graduates to not only enter the profession thoroughly well prepared, but also to adapt to further change.

The required courses ensure a sound scientific and analytical basis for professional studies through courses in solid mechanics, fluid mechanics, soil mechanics, environmental engineering, water resources management, structural analysis, systems analysis, and mathematics. Fundamental concepts are applied to various fields of practice in both required and complementary courses.

By a suitable choice of complementary courses, students can attain advanced levels of technical knowledge in the specialized areas mentioned above. Alternatively, students may choose to develop their interests in a more general way by combining complementary courses within the Department with several from other departments or faculties.

#### **Required Year 0 (Freshman) Courses**

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 110-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

28 credits

| CCOM 206  | (3) | Communication in Engineering               |
|-----------|-----|--------------------------------------------|
| COMP 208  | (3) | Computers in Engineering                   |
| EPSC 221  | (3) | General Geology                            |
| FACC 100* | (1) | Introduction to the Engineering Profession |
| FACC 300  | (3) | Engineering Economy                        |
| FACC 400  | (1) | Engineering Professional Practice          |

#### FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

| MATH 262 | (3) | Intermediate Calculus                         |
|----------|-----|-----------------------------------------------|
| MATH 263 | (3) | Ordinary Differential Equations for Engineers |
| MATH 264 | (3) | Advanced Calculus for Engineers               |
| MECH 261 | (2) | Measurement Laboratory                        |
| MECH 289 | (3) | Design Graphics                               |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

# **Required Civil Engineering Courses**

| 61 credits |     |                                   |
|------------|-----|-----------------------------------|
| CIVE 202   | (4) | Construction Materials            |
| CIVE 205   | (3) | Statics                           |
| CIVE 206   | (3) | Dynamics                          |
| CIVE 207   | (4) | Solid Mechanics                   |
| CIVE 208   | (3) | Civil Engineering System Analysis |
| CIVE 210   | (2) | Surveying                         |
| CIVE 225   | (4) | Environmental Engineering         |
| CIVE 290   | (3) | Thermodynamics and Heat Transfer  |
| CIVE 302   | (3) | Probabilistic Systems             |
| CIVE 311   | (4) | Geotechnical Mechanics            |
| CIVE 317   | (3) | Structural Engineering 1          |
| CIVE 318   | (3) | Structural Engineering 2          |
| CIVE 319   | (3) | Transportation Engineering        |
| CIVE 320   | (4) | Numerical Methods                 |
| CIVE 323   | (3) | Hydrology and Water Resources     |
| CIVE 324   | (3) | Sustainable Project Management    |
| CIVE 327   | (4) | Fluid Mechanics and Hydraulics    |
| CIVE 418   | (4) | Design Project                    |
| CIVE 432   | (1) | Technical Paper                   |

#### **Complementary Courses**

21 credits

# List A - Design Technical Complementaries

6-15 credits from the following:

| CIVE 416 | (3) | Geotechnical Engineering                  |
|----------|-----|-------------------------------------------|
| CIVE 421 | (3) | Municipal Systems                         |
| CIVE 428 | (3) | Water Resources and Hydraulic Engineering |
| CIVE 430 | (3) | Water Treatment and Pollution Control     |
| CIVE 440 | (3) | Traffic Engineering and Simulation        |
| CIVE 462 | (3) | Design of Steel Structures                |
| CIVE 463 | (3) | Design of Concrete Structures             |

#### List B - General Technical Complementaries

| CHEE 521* | (3) | Nanomaterials and the Aquatic Environment             |
|-----------|-----|-------------------------------------------------------|
| CIVE 433  | (3) | Urban Planning                                        |
| CIVE 446  | (3) | Construction Engineering                              |
| CIVE 451  | (3) | Geoenvironmental Engineering                          |
| CIVE 460  | (3) | Matrix Structural Analysis                            |
| CIVE 470  | (3) | Undergraduate Research Project                        |
| CIVE 512  | (3) | Advanced Civil Engineering Materials                  |
| CIVE 514  | (3) | Structural Mechanics                                  |
| CIVE 520  | (3) | Groundwater Hydrology                                 |
| CIVE 521* | (3) | Nanomaterials and the Aquatic Environment             |
| CIVE 527  | (3) | Renovation and Preservation: Infrastructure           |
| CIVE 540  | (3) | Urban Transportation Planning                         |
| CIVE 542  | (3) | Transportation Network Analysis                       |
| CIVE 546  | (3) | Selected Topics in Civil Engineering 1                |
| CIVE 550  | (3) | Water Resources Management                            |
| CIVE 551  | (3) | Environmental Transport Processes                     |
| CIVE 555  | (3) | Environmental Data Analysis                           |
| CIVE 557  | (3) | Microbiology for Environmental Engineering            |
| CIVE 558  | (3) | Biomolecular Techniques for Environmental Engineering |
| CIVE 560  | (3) | Transportation Safety and Design                      |
| CIVE 561  | (3) | Urban Activity, Air Pollution, and Health             |
| CIVE 572  | (3) | Computational Hydraulics                              |
| CIVE 573  | (3) | Hydraulic Structures                                  |
| CIVE 574  | (3) | Fluid Mechanics of Water Pollution                    |
| CIVE 577  | (3) | River Engineering                                     |
| CIVE 584  | (3) | Groundwater Engineering                               |

0-9 credits from the following, or from other suitable undergraduate or 500-level courses:

 $\ast$  Students may choose only one of CHEE 521 or CIVE 521.

#### **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212 | (3) | Anthropology of Development                             |
|----------|-----|---------------------------------------------------------|
| BTEC 502 | (3) | Biotechnology Ethics and Society                        |
| CIVE 469 | (3) | Infrastructure and Society                              |
| ECON 225 | (3) | Economics of the Environment                            |
| ECON 347 | (3) | Economics of Climate Change                             |
| ENVR 201 | (3) | Society, Environment and Sustainability                 |
| GEOG 200 | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203 | (3) | Environmental Systems                                   |
| GEOG 205 | (3) | Global Change: Past, Present and Future                 |

| GEOG 302  | (3) | Environmental Management 1           |
|-----------|-----|--------------------------------------|
| MECH 526  | (3) | Manufacturing and the Environment    |
| MGPO 440* | (3) | Strategies for Sustainability        |
| MIME 308  | (3) | Social Impact of Technology          |
| PHIL 343  | (3) | Biomedical Ethics                    |
| RELG 270  | (3) | Religious Ethics and the Environment |
| SOCI 235  | (3) | Technology and Society               |
| SOCI 312  | (3) | Sociology of Work and Industry       |
| URBP 201  | (3) | Planning the 21st Century City       |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments: Anthropology (ANTH) Economics (any 200- or 300-level course excluding ECON 227 and ECON 337) History (HIST) Philosophy (excluding PHIL 210 and PHIL 310) Political Science (POLI) Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR one of the following:

| ARCH 528  | (3) | History of Housing                          |
|-----------|-----|---------------------------------------------|
| BUSA 465* | (3) | Technological Entrepreneurship              |
| ENVR 203  | (3) | Knowledge, Ethics and Environment           |
| ENVR 400  | (3) | Environmental Thought                       |
| FACC 220  | (3) | Law for Architects and Engineers            |
| FACC 500  | (3) | Technology Business Plan Design             |
| FACC 501  | (3) | Technology Business Plan Project            |
| INDR 294* | (3) | Introduction to Labour-Management Relations |
| MATH 338  | (3) | History and Philosophy of Mathematics       |
| MGCR 222* | (3) | Introduction to Organizational Behaviour    |
| MGCR 352* | (3) | Marketing Management 1                      |
| ORGB 321* | (3) | Leadership                                  |
| ORGB 423* | (3) | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# 12.6 Department of Electrical and Computer Engineering

#### 12.6.1 Location

Department of Electrical and Computer Engineering Undergraduate Programs Office Lorne Trottier Building, Room 2060 3630 University Street Montreal QC H3A 0C6

Telephone: 514-398-3943 Fax: 514-398-4653 Email: *reception.ece@mcgill.ca* Website: *www.mcgill.ca/ece* 

#### 12.6.2 About the Department of Electrical and Computer Engineering

The Department of Electrical and Computer Engineering offers undergraduate degree programs in:

- Electrical Engineering
- Electrical Engineering (Honours)
- Computer Engineering
- Software Engineering

All programs provide students with a strong background in mathematics, natural sciences, engineering science, engineering design, and complementary studies, in conformity with the requirements of the Canadian Engineering Accreditation Board (CEAB).

In addition to technical complementary courses, students in all three programs take general complementary courses in humanities and social sciences and/or management studies and law. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

#### 12.6.3 Electrical and Computer Engineering Faculty

| Chair                                                                     |
|---------------------------------------------------------------------------|
| Andrew G. Kirk                                                            |
| Associate Chair, Academic                                                 |
| Roni Khazaka                                                              |
| Associate Chair, Undergraduate Studies                                    |
| Jonathan P. Webb                                                          |
| Associate Chair, Graduate Programs                                        |
| Milica Popovich                                                           |
| Emeritus Professors                                                       |
| Eric L. Adler; B.Sc.(Lond.), M.A.Sc.(Tor.), Ph.D.(McG.), F.I.E.E.E., Eng. |
| Pierre R. Bélanger; B.Eng.(McG.), S.M., Ph.D.(MIT), F.I.E.E.E., Eng.      |
| Maier L. Blostein; B.Eng., M.Eng. (McG.), Ph.D. (III.), F.I.E.E.E., Eng.  |
| Clifford H. Champness; M.Sc.(Lond.), Ph.D.(McG.)                          |
| Francisco D. Galiana; B.Eng.(McG.), S.M., Ph.D.(MIT), F.I.E.E.E., Eng.    |
| Peter Kabal; B.A.Sc., M.A.Sc., Ph.D.(Tor.)                                |
| Lorne Mason; M.Eng., Ph.D.(Sask.)                                         |
|                                                                           |

#### **Emeritus Professors**

Tomas J.F. Pavlasek; B.Eng., M.Eng., Ph.D.(McG.), Eng.

Nicholas C. Rumin; B.Eng., M.Sc., Ph.D.(McG.), Eng.

#### Professors

Peter E. Caines; B.A.(Oxf.), D.I.C., Ph.D.(Lond.), F.R.S.C., F.I.E.E.E., F.C.I.A.R. (James McGill Professor and Macdonald Professor)

Benoit Champagne; B.Eng., M.Eng.(Montr.), Ph.D.(Tor.)

Lawrence Chen; B.Eng.(McG.), M.A.Sc., Ph.D.(Tor.)

James Clark; B.Sc., Ph.D.(Br. Col.)

Frank Ferrie; B.Eng., Ph.D.(McG.)

Geza Joos; B.Sc.(C'dia), M.Eng., Ph.D.(McG.) (CRC Chair)

Andrew G. Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (James McGill Professor)

Harry Leib; B.Sc.(Technion), Ph.D.(Tor.) (on sabbatical 2015–2016)

Tho Le-Ngoc; M.Eng.(McG.), Ph.D.(Ott.), F.I.E.E.E.

Martin D. Levine; B.Eng., M.Eng.(McG.), Ph.D.(Lond.), F.C.I.A.R., F.I.E.E.E., Eng.

David A. Lowther; B.Sc.(Lond.), Ph.D.(C.N.A.A.), F.C.A.E., Eng. (James McGill Professor)

David V. Plant; M.S., Ph.D.(Brown), F.I.E.E.E., F.O.S.A., F.E.I.C., F.C.A.E., P.Eng. (James McGill Professor) (on sabbatical 2015-2016)

Gordon Roberts; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.), F.I.E.E.E., Eng. (James McGill Professor)

Jonathan P. Webb; B.A., Ph.D.(Cant.)

#### Associate Professors

Tal Arbel; M.Eng., Ph.D.(McG.)

Jan Bajcsy; B.Sc.(Harv.), M.Eng., Ph.D.(Princ.)

Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (William Dawson Scholar) (Associate Dean, Research & Innovation)

Vamsy Chodavarapu; B.Eng.(Osmania), M.S., Ph.D.(NYU)

Mark Coates; B.Eng.(Adel.), Ph.D.(Camb.)

Jeremy R. Cooperstock; A.Sc.(Br. Col.), M.Sc., Ph.D.(Tor.)

Mourad El-Gamal; B.Sc.(Cairo), M.Sc.(Nashville), Ph.D.(McG.) (William Dawson Scholar)

Dennis Giannacopoulos; M.Eng., Ph.D.(McG.)

Warren Gross; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.)

Roni Khazaka; M.Eng., Ph.D.(Car.)

Fabrice Labeau; M.S., Ph.D.(Louvain) (Associate Dean, Faculty Affairs)

Steve McFee; B.Eng., Ph.D.(McG.)

Zetian Mi; B.A.Sc.(Beijing), M.Sc.(Iowa), Ph.D.(Mich.)

Hannah Michalska; B.Sc., M.Sc.(Warsaw), Ph.D.(Lond.)

Sam Musallam; B.Sc., M.Sc., Ph.D.(Tor.)

Milica Popovich; B.Sc.(Colo.), M.Sc., Ph.D.(N'western)

Ioannis Psaromiligkos; B.Sc.(Patras), M.Sc., Ph.D.(Buffalo)

Michael Rabbat; B.S.(Ill.), M.S.(Rice), Ph.D.(Wisc.)

Martin Rochette; B.A., M.Eng., Ph.D.(Laval)

Ishiang Shih; M.Eng., Ph.D.(McG.)

Thomas Szkopek; B.A.Sc., M.A.Sc.(Tor.), Ph.D.(Calif.-LA)

Zeljko Zilic; B.Eng.(Zagreb), M.Sc., Ph.D.(Tor.)
Assistant Professors

François Bouffard; B.Eng., Ph.D.(McG.)

Odile Liboiron-Ladouceur; B.Eng.(McG.), M.Sc., Ph.D.(Col.) (on sabbatical 2015-2016)

Aditya Mahajan, B.Tech.(Indian IT), M.S., Ph.D.(Mich.)

Shane McIntosh; B.A.(Comp.)(Guelph), M.Sc., Ph.D.(Qu.)

Brett Meyer; B.S.(Wisc.), M.S., Ph.D.(Carn. Mell)

Gunter Mussbacher; Ph.D.(Ott.)

#### **Associate Members**

Matthew Adam Dobbs; Ph.D.(Vic., BC)

Gregory Dudek; B.Sc.(Qu.), M.Sc., Ph.D.(Tor.)

Alan C. Evans; M.Sc.(Surrey), Ph.D.(Leeds)

William R. Funnell; M.Eng., Ph.D.(McG.)

Henrietta L. Galiana; M.Eng., Ph.D.(McG.)

David Juncker; Ph.D.(Neuchatel)

Robert E. Kearney; M.Eng., Ph.D.(McG.)

Muthucumaru Maheswaran; B.Sc.(Peradeniya), M.S.E.E., Ph.D.(Purd.)

Nathaniel J. Quitoriano; B.S.(Calif.), Ph.D.(MIT)

#### **Adjunct Professors**

Rys Allan Adams, Tiago H. Falk, Danny Grant, Vincent Hayward, Ricardo Izquierdo, Cheng K. Jen, Innocent Kamwa, George Kesidis, Irene Leszkowicz, Martin Maier, Frederic Nabki, Douglas O'Shaughnessy, Katarzyna Radecka, Robert Sabourin, Joshua David Schwartz, Andraws Swidan, Leszek Szczecinski, Claude Thibeault, Kenneth D. Wagner, Qunbi Zhuge

# 12.6.4 Bachelor of Engineering (B.Eng.) - Electrical Engineering (138 credits)

Program credit weight: 138-139 credits

Program credit weight for Quebec CEGEP students: 109-110 credits

This program gives students a broad understanding of the key principles that are responsible for the extraordinary advances in the technology of computers, micro-electronics, automation and robotics, telecommunications, and power systems. These areas are critical to the development of our industries and, more generally, to our economy. A graduate of this program is exposed to all basic elements of electrical engineering and can function in any of our client industries. This breadth is what distinguishes an engineer from, for example, a computer scientist or physicist.

In addition to technical complementary courses, students in the Electrical Engineering program take general complementary courses in social sciences, administrative studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

#### Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 109- to 110-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

| CCOM 206   | (3) | Communication in Engineering                      |
|------------|-----|---------------------------------------------------|
| CIVE 281   | (3) | Analytical Mechanics                              |
| COMP 202*  | (3) | Foundations of Programming                        |
| FACC 100** | (1) | Introduction to the Engineering Profession        |
| FACC 300   | (3) | Engineering Economy                               |
| FACC 400   | (1) | Engineering Professional Practice                 |
| MATH 262   | (3) | Intermediate Calculus                             |
| MATH 263   | (3) | Ordinary Differential Equations for Engineers     |
| MATH 264   | (3) | Advanced Calculus for Engineers                   |
| MATH 270   | (3) | Applied Linear Algebra                            |
| MATH 381   | (3) | Complex Variables and Transforms                  |
| MIME 262   | (3) | Properties of Materials in Electrical Engineering |
| PHYS 271   | (3) | Introduction to Quantum Physics                   |

\* Students with prior programming experience can replace COMP 202 with COMP 250 upon receiving permission from the department.

\*\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

## **Required Electrical Engineering Courses**

57 credits

| ECSE 200 | (3) | Electric Circuits 1                                         |
|----------|-----|-------------------------------------------------------------|
| ECSE 210 | (3) | Electric Circuits 2                                         |
| ECSE 211 | (3) | Design Principles and Methods                               |
| ECSE 221 | (3) | Introduction to Computer Engineering                        |
| ECSE 291 | (2) | Electrical Measurements Laboratory                          |
| ECSE 303 | (3) | Signals and Systems 1                                       |
| ECSE 304 | (3) | Signals and Systems 2                                       |
| ECSE 305 | (3) | Probability and Random Signals 1                            |
| ECSE 322 | (3) | Computer Engineering                                        |
| ECSE 323 | (5) | Digital System Design                                       |
| ECSE 330 | (3) | Introduction to Electronics                                 |
| ECSE 334 | (3) | Introduction to Microelectronics                            |
| ECSE 351 | (3) | Electromagnetic Fields                                      |
| ECSE 352 | (3) | Electromagnetic Waves                                       |
| ECSE 361 | (3) | Power Engineering                                           |
| ECSE 434 | (2) | Microelectronics Laboratory                                 |
| ECSE 443 | (3) | Introduction to Numerical Methods in Electrical Engineering |
| ECSE 456 | (3) | ECSE Design Project 1                                       |
| ECSE 457 | (3) | ECSE Design Project 2                                       |

# **Complementary Courses**

17-18 credits

# **Technical Complementaries**

9 credits from the following:

| ECSE 404  | (3) | Control Systems                                      |
|-----------|-----|------------------------------------------------------|
| ECSE 405  | (3) | Antennas                                             |
| ECSE 411  | (3) | Communications Systems 1                             |
| ECSE 412  | (3) | Discrete Time Signal Processing                      |
| ECSE 413  | (3) | Communications Systems 2                             |
| ECSE 414  | (3) | Introduction to Telecommunication Networks           |
| ECSE 415  | (3) | Intro to Computer Vision                             |
| ECSE 420  | (3) | Parallel Computing                                   |
| ECSE 421  | (3) | Embedded Systems                                     |
| ECSE 422  | (3) | Fault Tolerant Computing                             |
| ECSE 423  | (3) | Fundamentals of Photonics                            |
| ECSE 424  | (3) | Human-Computer Interaction                           |
| ECSE 425  | (3) | Computer Organization and Architecture               |
| ECSE 426  | (3) | Microprocessor Systems                               |
| ECSE 427  | (3) | Operating Systems                                    |
| ECSE 430  | (3) | Photonic Devices and Systems                         |
| ECSE 431  | (3) | Introduction to VLSI CAD                             |
| ECSE 432  | (3) | Physical Basis: Transistor Devices                   |
| ECSE 435  | (3) | Mixed-Signal Test Techniques                         |
| ECSE 436  | (3) | Signal Processing Hardware                           |
| ECSE 450  | (3) | Electromagnetic Compatibility                        |
| ECSE 451  | (3) | EM Transmission and Radiation                        |
| ECSE 460* | (3) | Appareillage électrique (Electrical Power Equipment) |
| ECSE 462  | (3) | Electromechanical Energy Conversion                  |
| ECSE 463  | (3) | Electric Power Generation                            |
| ECSE 464  | (3) | Power Systems Analysis                               |
| ECSE 465  | (3) | Power Electronic Systems                             |
| ECSE 466* | (3) | Réseaux de distribution                              |
| ECSE 467* | (3) | Comportement des réseaux électriques                 |
| ECSE 468* | (3) | Electricité industrielle (Industrial Power Systems)  |
| ECSE 469* | (3) | Protection des réseaux électriques                   |
|           |     |                                                      |

\* Courses taught in French.

# Laboratory Complementaries

| 2-3 credits from the following: |     |                              |  |
|---------------------------------|-----|------------------------------|--|
| ECSE 426                        | (3) | Microprocessor Systems       |  |
| ECSE 431                        | (3) | Introduction to VLSI CAD     |  |
| ECSE 435                        | (3) | Mixed-Signal Test Techniques |  |

# FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

| ECSE 436 | (3) | Signal Processing Hardware           |
|----------|-----|--------------------------------------|
| ECSE 450 | (3) | Electromagnetic Compatibility        |
| ECSE 485 | (2) | IC Fabrication Laboratory            |
| ECSE 486 | (2) | Power Laboratory                     |
| ECSE 487 | (2) | Computer Architecture Laboratory     |
| ECSE 488 | (2) | High Frequency Laboratory            |
| ECSE 489 | (2) | Telecommunication Network Laboratory |
| ECSE 490 | (2) | Digital Signal Processing Laboratory |
| ECSE 491 | (2) | Communication Systems Laboratory     |
| ECSE 492 | (2) | Optical Communications Laboratory    |
| ECSE 493 | (2) | Control and Robotics Laboratory      |

## **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212  | (3) | Anthropology of Development                             |
|-----------|-----|---------------------------------------------------------|
| BTEC 502  | (3) | Biotechnology Ethics and Society                        |
| CIVE 469  | (3) | Infrastructure and Society                              |
| ECON 225  | (3) | Economics of the Environment                            |
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |
| SOCI 312  | (3) | Sociology of Work and Industry                          |
| URBP 201  | (3) | Planning the 21st Century City                          |

\*Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments: Anthropology (ANTH) Economics (any 200- or 300-level course excluding ECON 227 and ECON 337) History (HIST) Philosophy (excluding PHIL 210 and PHIL 310) Political Science (POLI) Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

OR one of the following:

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

| ARCH 528  | (3) | History of Housing                          |
|-----------|-----|---------------------------------------------|
| BUSA 465* | (3) | Technological Entrepreneurship              |
| ENVR 203  | (3) | Knowledge, Ethics and Environment           |
| ENVR 400  | (3) | Environmental Thought                       |
| FACC 220  | (3) | Law for Architects and Engineers            |
| FACC 500  | (3) | Technology Business Plan Design             |
| FACC 501  | (3) | Technology Business Plan Project            |
| INDR 294* | (3) | Introduction to Labour-Management Relations |
| MATH 338  | (3) | History and Philosophy of Mathematics       |
| MGCR 222* | (3) | Introduction to Organizational Behaviour    |
| MGCR 352* | (3) | Marketing Management 1                      |
| ORGB 321* | (3) | Leadership                                  |
| ORGB 423* | (3) | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# **Enhanced Power Concentration**

Students following this program must complete 15 credits of technical complementary courses.

The Institute for Electrical Power Engineering was recently established as a province-wide centre for electrical power engineering education. It is funded by industry, mostly Hydro-Québec, and provides a comprehensive program, state-of-the-art laboratory facilities, and a point of contact between industry and universities involved in power engineering.

Note: This program is open to students in the regular Electrical Engineering program only.

Here are some benefits of the concentration:

A complete and up-to-date final-year program in electrical power engineering, with industry-sponsored and supported courses

Access to industry-sponsored projects, internships, and new employment opportunities

## ELIGIBILITY CRITERIA

To be considered in September 2015, the applicant must:

- be registered in the B.Eng. program (regular Electrical Engineering);
- have a cumulative GPA of at least 2.5;
- have completed or be registered in ECSE 361 (Power Engineering);
- be able to complete the degree requirements by December 2016;
- agree to follow the curriculum requirements set out below.

# SELECTION CRITERIA

The number of students selected, expected to be between five and ten, will be subject to a specific agreement between the University and the Institute. Selection criteria for admission to the Institute will be based on the CGPA and on the curriculum vitae. The selection process for the scholarship may involve an interview with the committee presided by Hydro-Québec and the industrial partners. There is a possibility of an internship with Hydro-Québec.

CURRICULUM REQUIREMENTS FOR SELECTED STUDENTS

Generally, unless the University has authorized specific substitutions, students must complete the degree requirements set out in this eCalendar with the following specifications:

## Technical Complementaries and Laboratories (15 credits)

All students must take (or have taken) five courses from the following:

#### **Required Courses**

9 credits

| ECSE 462 | (3) | Electromechanical Energy Conversion |
|----------|-----|-------------------------------------|
| ECSE 464 | (3) | Power Systems Analysis              |
| ECSE 465 | (3) | Power Electronic Systems            |

Students must also complete ECSE 456 and 457 (Electrical Engineering Design Projects 1 and 2) on a practical project in power engineering, preferably at the Institute or with a company sponsoring the Institute.

#### **Complementary Courses**

6 credits from the following:

| ECSE 404  | (3) | Control Systems                                      |
|-----------|-----|------------------------------------------------------|
| ECSE 460* | (3) | Appareillage électrique (Electrical Power Equipment) |
| ECSE 463  | (3) | Electric Power Generation                            |
| ECSE 466* | (3) | Réseaux de distribution                              |
| ECSE 467* | (3) | Comportement des réseaux électriques                 |
| ECSE 468* | (3) | Electricité industrielle (Industrial Power Systems)  |
| ECSE 469* | (3) | Protection des réseaux électriques                   |

\* Courses taught in French.

Note: ECSE 460, ECSE 464 (Fall semester), ECSE 465, ECSE 467, ECSE 468, and ECSE 469 are courses sponsored by the Institute and taught at École Polytechnique de Montréal.

# 12.6.5 Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering (138 credits)

Program credit weight: 138-139 credits

Program credit weight for Quebec CEGEP students: 109-110 credits

#### Entry into the Electrical Engineering Honours Program

The Honours program is a limited enrolment program and entry is highly competitive. There is no direct entry to the Honours program in the first year. Students may enter the Honours program in the following ways:

- Students from CEGEP will be admitted, on the basis of their grades, at the start of the third term.

- Students from outside Quebec will be admitted, on the basis of their grades, at the start of the fifth term.

To remain in the Honours program and to be awarded the Honours degree, a student must have completed at least 14 credits in each term since entering Electrical and Computer Engineering, except for the final two terms of their degree, and maintained a CGPA of at least 3.30 since entering Electrical and Computer Engineering. In either of their final two full terms (i.e., Fall and Winter, or Winter and Fall) students may drop below 14 credits, provided the combined load for the two terms is at least 16 credits. For more information, please contact the Departmental office at 514-398-3943.

#### Required Year 0 (Freshman) Courses (29 credits)

Note: Students in the Honours Electrical Engineering program complete the Year 0 (Freshman) courses before entering the Honours program, as explained above.

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 109- to 110-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110 (4) General Chemistry 1

| CHEM 120 | (4) | General Chemistry 2         |
|----------|-----|-----------------------------|
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

# **Required Non-Departmental Courses**

35 credits

| CCOM 206   | (3) | Communication in Engineering                      |
|------------|-----|---------------------------------------------------|
| CIVE 281   | (3) | Analytical Mechanics                              |
| COMP 202*  | (3) | Foundations of Programming                        |
| FACC 100** | (1) | Introduction to the Engineering Profession        |
| FACC 300   | (3) | Engineering Economy                               |
| FACC 400   | (1) | Engineering Professional Practice                 |
| MATH 262   | (3) | Intermediate Calculus                             |
| MATH 263   | (3) | Ordinary Differential Equations for Engineers     |
| MATH 264   | (3) | Advanced Calculus for Engineers                   |
| MATH 270   | (3) | Applied Linear Algebra                            |
| MATH 381   | (3) | Complex Variables and Transforms                  |
| MIME 262   | (3) | Properties of Materials in Electrical Engineering |
| PHYS 271   | (3) | Introduction to Quantum Physics                   |
|            |     |                                                   |

\* Students with prior programming experience can replace COMP 202 with COMP 250 upon receiving permission from the department.

\*\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

## **Required Electrical Engineering Courses**

| 57 credits |     |                                      |
|------------|-----|--------------------------------------|
| ECSE 200   | (3) | Electric Circuits 1                  |
| ECSE 210   | (3) | Electric Circuits 2                  |
| ECSE 211   | (3) | Design Principles and Methods        |
| ECSE 221   | (3) | Introduction to Computer Engineering |
| ECSE 291   | (2) | Electrical Measurements Laboratory   |
| ECSE 303   | (3) | Signals and Systems 1                |
| ECSE 304   | (3) | Signals and Systems 2                |
| ECSE 305   | (3) | Probability and Random Signals 1     |
| ECSE 322   | (3) | Computer Engineering                 |
| ECSE 323   | (5) | Digital System Design                |
| ECSE 330   | (3) | Introduction to Electronics          |
| ECSE 334   | (3) | Introduction to Microelectronics     |
| ECSE 351   | (3) | Electromagnetic Fields               |

# FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

| ECSE 352 | (3) | Electromagnetic Waves                       |
|----------|-----|---------------------------------------------|
| ECSE 361 | (3) | Power Engineering                           |
| ECSE 434 | (2) | Microelectronics Laboratory                 |
| ECSE 498 | (3) | Honours Thesis 1                            |
| ECSE 499 | (3) | Honours Thesis 2                            |
| ECSE 543 | (3) | Numerical Methods in Electrical Engineering |

# **Complementary Courses**

17-18 credits

## **Technical Complementaries**

9 credits chosen from 500-level ECSE courses OR 6 credits chosen from 500-level ECSE courses and 3 credits chosen from the following list of 400-level courses (no more than one 400-level course can be chosen as a technical complementary):

| ECSE 425 | (3) | Computer Organization and Architecture |
|----------|-----|----------------------------------------|
| ECSE 427 | (3) | Operating Systems                      |
| ECSE 451 | (3) | EM Transmission and Radiation          |

# Laboratory Complementaries

2-3 credits from the following:

| ECSE 426 | (3) | Microprocessor Systems               |
|----------|-----|--------------------------------------|
| ECSE 431 | (3) | Introduction to VLSI CAD             |
| ECSE 435 | (3) | Mixed-Signal Test Techniques         |
| ECSE 436 | (3) | Signal Processing Hardware           |
| ECSE 450 | (3) | Electromagnetic Compatibility        |
| ECSE 485 | (2) | IC Fabrication Laboratory            |
| ECSE 486 | (2) | Power Laboratory                     |
| ECSE 487 | (2) | Computer Architecture Laboratory     |
| ECSE 488 | (2) | High Frequency Laboratory            |
| ECSE 489 | (2) | Telecommunication Network Laboratory |
| ECSE 490 | (2) | Digital Signal Processing Laboratory |
| ECSE 491 | (2) | Communication Systems Laboratory     |
| ECSE 492 | (2) | Optical Communications Laboratory    |
| ECSE 493 | (2) | Control and Robotics Laboratory      |

# **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212 | (3) | Anthropology of Development      |
|----------|-----|----------------------------------|
| BTEC 502 | (3) | Biotechnology Ethics and Society |
| CIVE 469 | (3) | Infrastructure and Society       |
| ECON 225 | (3) | Economics of the Environment     |
| ECON 347 | (3) | Economics of Climate Change      |

| ENVR 201  | (3) | Society, Environment and Sustainability                 |
|-----------|-----|---------------------------------------------------------|
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |
| SOCI 312  | (3) | Sociology of Work and Industry                          |
| URBP 201  | (3) | Planning the 21st Century City                          |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

# Group B - Humanities and Social Sciences, Management Studies, and Law

| 3 credits at the 200 level or higher from the following departments: |                     |                                             |  |  |
|----------------------------------------------------------------------|---------------------|---------------------------------------------|--|--|
| Anthropology (ANTH)                                                  | Anthropology (ANTH) |                                             |  |  |
| Economics (any 200- or 300-                                          | level course exclu  | uding ECON 227 and ECON 337)                |  |  |
| History (HIST)                                                       |                     |                                             |  |  |
| Philosophy (excluding PHIL                                           | 210 and PHIL 31     | 0)                                          |  |  |
| Political Science (POLI)                                             |                     |                                             |  |  |
| Psychology (excluding PSYC                                           | C 204 and PSYC 3    | 305, but including PSYC 100)                |  |  |
| Religious Studies (RELG)                                             |                     |                                             |  |  |
| School of Social Work (SWR                                           | K)                  |                                             |  |  |
| Sociology (excluding SOCI 3                                          | 350)                |                                             |  |  |
| OR one of the following:                                             |                     |                                             |  |  |
| ARCH 528                                                             | (3)                 | History of Housing                          |  |  |
| BUSA 465*                                                            | (3)                 | Technological Entrepreneurship              |  |  |
| ENVR 203                                                             | (3)                 | Knowledge, Ethics and Environment           |  |  |
| ENVR 400                                                             | (3)                 | Environmental Thought                       |  |  |
| FACC 220                                                             | (3)                 | Law for Architects and Engineers            |  |  |
| FACC 500                                                             | (3)                 | Technology Business Plan Design             |  |  |
| FACC 501                                                             | (3)                 | Technology Business Plan Project            |  |  |
| INDR 294*                                                            | (3)                 | Introduction to Labour-Management Relations |  |  |
| MATH 338                                                             | (3)                 | History and Philosophy of Mathematics       |  |  |
| MGCR 222*                                                            | (3)                 | Introduction to Organizational Behaviour    |  |  |
| MGCR 352*                                                            | (3)                 | Marketing Management 1                      |  |  |
| ORGB 321*                                                            | (3)                 | Leadership                                  |  |  |
| ORGB 423*                                                            | (3)                 | Human Resources Management                  |  |  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

# Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirements.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# 12.6.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (139 credits)

Program credit weight: 139-143 credits

Program credit weight for Quebec CEGEP students: 113-114 credits

Program credit weight for out-of-province students: 139-140 credits

The Computer Engineering program provides students with greater depth and breadth of knowledge in the hardware and software aspects of computers. Students are exposed to both theoretical and practical issues of both hardware and software in well-equipped laboratories. Although the program is designed to meet the growing demands by industry for engineers with a strong background in modern computer technology, it also provides the underlying depth for graduate studies in all fields of Computer Engineering.

In addition to technical complementary courses, students in the program take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

#### Required Year 0 (Freshman) Courses

29 credits

35 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 113- to 114-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Administrative Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

| CCOM 206   | (3) | Communication in Engineering                  |
|------------|-----|-----------------------------------------------|
| CIVE 281   | (3) | Analytical Mechanics                          |
| COMP 202*  | (3) | Foundations of Programming                    |
| COMP 250   | (3) | Introduction to Computer Science              |
| COMP 251   | (3) | Algorithms and Data Structures                |
| FACC 100** | (1) | Introduction to the Engineering Profession    |
| FACC 300   | (3) | Engineering Economy                           |
| FACC 400   | (1) | Engineering Professional Practice             |
| MATH 262   | (3) | Intermediate Calculus                         |
| MATH 263   | (3) | Ordinary Differential Equations for Engineers |
| MATH 264   | (3) | Advanced Calculus for Engineers               |
| MATH 270   | (3) | Applied Linear Algebra                        |
| MATH 363   | (3) | Discrete Mathematics                          |

\* Students with prior programming experience can replace COMP 202 with an additional technical complementary upon receiving permission from the department.

\*\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

## **Required Computer Engineering Courses**

58 credits

| ECSE 200 | (3) | Electric Circuits 1                        |
|----------|-----|--------------------------------------------|
| ECSE 210 | (3) | Electric Circuits 2                        |
| ECSE 211 | (3) | Design Principles and Methods              |
| ECSE 221 | (3) | Introduction to Computer Engineering       |
| ECSE 291 | (2) | Electrical Measurements Laboratory         |
| ECSE 305 | (3) | Probability and Random Signals 1           |
| ECSE 306 | (3) | Fundamentals of Signals and Systems        |
| ECSE 321 | (3) | Introduction to Software Engineering       |
| ECSE 322 | (3) | Computer Engineering                       |
| ECSE 323 | (5) | Digital System Design                      |
| ECSE 330 | (3) | Introduction to Electronics                |
| ECSE 334 | (3) | Introduction to Microelectronics           |
| ECSE 353 | (3) | Electromagnetic Fields and Waves           |
| ECSE 414 | (3) | Introduction to Telecommunication Networks |
| ECSE 425 | (3) | Computer Organization and Architecture     |
| ECSE 426 | (3) | Microprocessor Systems                     |
| ECSE 427 | (3) | Operating Systems                          |
| ECSE 456 | (3) | ECSE Design Project 1                      |
| ECSE 457 | (3) | ECSE Design Project 2                      |

#### **Complementary Courses**

17-21 credits

#### Natural Science Complementary Courses (for CEGEP students only)

0-3 credits

Students from CEGEP are required to complete one 3-credit course at the 200 level or higher, chosen from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering:

Atmospheric and Oceanic Sciences (ATOC)

Biology (BIOL)

Chemistry (CHEM)

Earth and Planetary Sciences (EPSC)

Earth System Science (ESYS)

Physics (PHYS)

# **Technical Complementaries**

9 credits from the following:

500-level ECSE courses are restricted to students with a minimum CGPA of 3.0 and B+ or better in prerequisite courses.

| COMP 424 | (3) | Artificial Intelligence  |
|----------|-----|--------------------------|
| ECSE 404 | (3) | Control Systems          |
| ECSE 411 | (3) | Communications Systems 1 |

| ECSE 412 | (3) | Discrete Time Signal Processing                             |
|----------|-----|-------------------------------------------------------------|
| ECSE 415 | (3) | Intro to Computer Vision                                    |
| ECSE 420 | (3) | Parallel Computing                                          |
| ECSE 421 | (3) | Embedded Systems                                            |
| ECSE 422 | (3) | Fault Tolerant Computing                                    |
| ECSE 424 | (3) | Human-Computer Interaction                                  |
| ECSE 428 | (3) | Software Engineering Practice                               |
| ECSE 429 | (3) | Software Validation                                         |
| ECSE 431 | (3) | Introduction to VLSI CAD                                    |
| ECSE 436 | (3) | Signal Processing Hardware                                  |
| ECSE 443 | (3) | Introduction to Numerical Methods in Electrical Engineering |
| ECSE 450 | (3) | Electromagnetic Compatibility                               |
| ECSE 530 | (3) | Logic Synthesis                                             |
| ECSE 532 | (3) | Computer Graphics                                           |
| ECSE 537 | (3) | Advanced Digital Integrated Circuits                        |
| ECSE 548 | (3) | Introduction to VLSI Systems                                |

# Laboratory Complementaries

| 2-3 credits from the f | following: |                                      |
|------------------------|------------|--------------------------------------|
| ECSE 434               | (2)        | Microelectronics Laboratory          |
| ECSE 436               | (3)        | Signal Processing Hardware           |
| ECSE 487               | (2)        | Computer Architecture Laboratory     |
| ECSE 489               | (2)        | Telecommunication Network Laboratory |
| ECSE 490               | (2)        | Digital Signal Processing Laboratory |
| ECSE 491               | (2)        | Communication Systems Laboratory     |
| ECSE 493               | (2)        | Control and Robotics Laboratory      |

# **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212 | (3) | Anthropology of Development                             |
|----------|-----|---------------------------------------------------------|
| BTEC 502 | (3) | Biotechnology Ethics and Society                        |
| CIVE 469 | (3) | Infrastructure and Society                              |
| ECON 225 | (3) | Economics of the Environment                            |
| ECON 347 | (3) | Economics of Climate Change                             |
| ENVR 201 | (3) | Society, Environment and Sustainability                 |
| GEOG 200 | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203 | (3) | Environmental Systems                                   |
| GEOG 205 | (3) | Global Change: Past, Present and Future                 |
| GEOG 302 | (3) | Environmental Management 1                              |
| MECH 526 | (3) | Manufacturing and the Environment                       |
|          |     |                                                         |

| MGPO 440* | (3) | Strategies for Sustainability        |
|-----------|-----|--------------------------------------|
| MIME 308  | (3) | Social Impact of Technology          |
| PHIL 343  | (3) | Biomedical Ethics                    |
| RELG 270  | (3) | Religious Ethics and the Environment |
| SOCI 235  | (3) | Technology and Society               |
| SOCI 312  | (3) | Sociology of Work and Industry       |
| URBP 201  | (3) | Planning the 21st Century City       |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

# Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments: Anthropology (ANTH) Economics (any 200- or 300-level course excluding ECON 227 and ECON 337) History (HIST) Philosophy (excluding PHIL 210 and PHIL 310) Political Science (POLI) Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100) Religious Studies (RELG) School of Social Work (SWRK) Sociology (excluding SOCI 350) OR one of the following: ARCH 528 History of Housing (3) BUSA 465\* Technological Entrepreneurship (3) ENVR 203 Knowledge, Ethics and Environment (3) ENVR 400 Environmental Thought (3) FACC 220 Law for Architects and Engineers (3) FACC 500 (3) Technology Business Plan Design Technology Business Plan Project FACC 501 (3)

| TACC 301  | (3) | rechnology Busiless Flan Floject            |
|-----------|-----|---------------------------------------------|
| INDR 294* | (3) | Introduction to Labour-Management Relations |
| MATH 338  | (3) | History and Philosophy of Mathematics       |
| MGCR 222* | (3) | Introduction to Organizational Behaviour    |
| MGCR 352* | (3) | Marketing Management 1                      |
| ORGB 321* | (3) | Leadership                                  |
| ORGB 423* | (3) | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# 12.6.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits)

Program credit weight: 137-144 credits

Program credit weight for Quebec CEGEP students: 114-115 credits

Program credit weight for out-of-province students: 137-140 credits

This program offers students the opportunity to focus their studies on the skills needed to design and develop complex software systems. This emerging field of engineering is a major component of the growing Information Technology (IT) sector of the economy, in which the demand for qualified personnel continues to outstrip supply. Graduates of this program will have a solid foundation for careers in the software industry.

In addition to technical complementary courses, students take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

#### **Required Year 0 (Freshman) Courses**

## 29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 112- to 115-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Courses**

76 credits

| COMP 202*  | (3) | Foundations of Programming                 |
|------------|-----|--------------------------------------------|
| COMP 206   | (3) | Introduction to Software Systems           |
| COMP 250   | (3) | Introduction to Computer Science           |
| COMP 251   | (3) | Algorithms and Data Structures             |
| COMP 302   | (3) | Programming Languages and Paradigms        |
| COMP 360   | (3) | Algorithm Design                           |
| COMP 421   | (3) | Database Systems                           |
| ECSE 211   | (3) | Design Principles and Methods              |
| ECSE 221   | (3) | Introduction to Computer Engineering       |
| ECSE 321   | (3) | Introduction to Software Engineering       |
| ECSE 322   | (3) | Computer Engineering                       |
| ECSE 323   | (5) | Digital System Design                      |
| ECSE 414   | (3) | Introduction to Telecommunication Networks |
| ECSE 420   | (3) | Parallel Computing                         |
| ECSE 427   | (3) | Operating Systems                          |
| ECSE 428   | (3) | Software Engineering Practice              |
| ECSE 429   | (3) | Software Validation                        |
| ECSE 456   | (3) | ECSE Design Project 1                      |
| ECSE 457   | (3) | ECSE Design Project 2                      |
| FACC 100** | (1) | Introduction to the Engineering Profession |

| FACC 400 | (1) | Engineering Professional Practice             |
|----------|-----|-----------------------------------------------|
| MATH 262 | (3) | Intermediate Calculus                         |
| MATH 263 | (3) | Ordinary Differential Equations for Engineers |
| MATH 264 | (3) | Advanced Calculus for Engineers               |
| MATH 270 | (3) | Applied Linear Algebra                        |
| MATH 363 | (3) | Discrete Mathematics                          |

\* Students with prior programming experience can replace COMP 202 with an additional technical complementary course upon receiving permission from the department.

\*\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

# **Engineering Breadth Required Courses**

| 20 credits |
|------------|
|------------|

| CCOM 206 | (3) | Communication in Engineering        |
|----------|-----|-------------------------------------|
| ECSE 200 | (3) | Electric Circuits 1                 |
| ECSE 210 | (3) | Electric Circuits 2                 |
| ECSE 291 | (2) | Electrical Measurements Laboratory  |
| ECSE 305 | (3) | Probability and Random Signals 1    |
| ECSE 306 | (3) | Fundamentals of Signals and Systems |
| FACC 300 | (3) | Engineering Economy                 |

#### **Complementary Courses**

12-19 credits

#### Natural Science Complementary Courses (for CEGEP students only)

0-6 credits

Students from CEGEP are required to complete two 3-credit courses at the 200 level or higher, chosen from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering:

Atmospheric and Oceanic Sciences (ATOC)

Biology (BIOL)

Chemistry (CHEM)

Earth and Planetary Sciences (EPSC)

Earth System Science (ESYS)

Physics (PHYS)

#### **Technical Complementaries**

6-7 credits from the following:

500-level ECSE courses are restricted to students with a minimum CGPA of 3.0 and B+ or better in prerequisite courses.

Not all courses listed are offered in a given year. See the "Courses" section of this eCalendar to know if a course is offered.

| COMP 330  | (3) | Theory of Computation             |
|-----------|-----|-----------------------------------|
| COMP 350  | (3) | Numerical Computing               |
| COMP 409  | (3) | Concurrent Programming            |
| COMP 424  | (3) | Artificial Intelligence           |
| COMP 520  | (4) | Compiler Design                   |
| COMP 557* | (3) | Fundamentals of Computer Graphics |

| COMP 566  | (3) | Discrete Optimization 1                |
|-----------|-----|----------------------------------------|
| COMP 575  | (3) | Fundamentals of Distributed Algorithms |
| ECSE 404  | (3) | Control Systems                        |
| ECSE 411  | (3) | Communications Systems 1               |
| ECSE 412  | (3) | Discrete Time Signal Processing        |
| ECSE 413  | (3) | Communications Systems 2               |
| ECSE 415  | (3) | Intro to Computer Vision               |
| ECSE 421  | (3) | Embedded Systems                       |
| ECSE 422  | (3) | Fault Tolerant Computing               |
| ECSE 424  | (3) | Human-Computer Interaction             |
| ECSE 425  | (3) | Computer Organization and Architecture |
| ECSE 426  | (3) | Microprocessor Systems                 |
| ECSE 504  | (3) | Sampled Data Control                   |
| ECSE 507  | (3) | Optimization and Optimal Control       |
| ECSE 523  | (3) | Speech Communications                  |
| ECSE 529  | (3) | Computer and Biological Vision         |
| ECSE 530  | (3) | Logic Synthesis                        |
| ECSE 532* | (3) | Computer Graphics                      |
| ECSE 539  | (3) | Software Language Engineering          |
| ECSE 570  | (3) | Automatic Speech Recognition           |

\* Students choose either COMP 557 or ECSE 532.

# **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212  | (3) | Anthropology of Development                             |
|-----------|-----|---------------------------------------------------------|
| BTEC 502  | (3) | Biotechnology Ethics and Society                        |
| CIVE 469  | (3) | Infrastructure and Society                              |
| ECON 225  | (3) | Economics of the Environment                            |
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |

| SOCI 312                 | (3)                                                                                                                                   | Sociology of Work and Industry              |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| URBP 201                 | (3)                                                                                                                                   | Planning the 21st Century City              |  |  |  |  |
| * Note: Management of    | * Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates. |                                             |  |  |  |  |
| Group B - Humanit        | ties and Social                                                                                                                       | Sciences, Management Studies, and Law       |  |  |  |  |
| 3 credits at the 200 lev | vel or higher from                                                                                                                    | the following departments:                  |  |  |  |  |
| Anthropology (ANTH)      |                                                                                                                                       |                                             |  |  |  |  |
| Economics (any 200-      | or 300-level course                                                                                                                   | e excluding ECON 227 and ECON 337)          |  |  |  |  |
| History (HIST)           |                                                                                                                                       |                                             |  |  |  |  |
| Philosophy (excluding    | PHIL 210 and PH                                                                                                                       | IIL 310)                                    |  |  |  |  |
| Political Science (POI   | LI)                                                                                                                                   |                                             |  |  |  |  |
| Psychology (excluding    | g PSYC 204 and P                                                                                                                      | SYC 305, but including PSYC 100)            |  |  |  |  |
| Religious Studies (RE    | LG)                                                                                                                                   |                                             |  |  |  |  |
| School of Social Work    | (SWRK)                                                                                                                                |                                             |  |  |  |  |
| Sociology (excluding     | SOCI 350)                                                                                                                             |                                             |  |  |  |  |
| OR one of the following  | ng:                                                                                                                                   |                                             |  |  |  |  |
| ARCH 528                 | (3)                                                                                                                                   | History of Housing                          |  |  |  |  |
| BUSA 465*                | (3)                                                                                                                                   | Technological Entrepreneurship              |  |  |  |  |
| ENVR 203                 | (3)                                                                                                                                   | Knowledge, Ethics and Environment           |  |  |  |  |
| ENVR 400                 | (3)                                                                                                                                   | Environmental Thought                       |  |  |  |  |
| FACC 220                 | (3)                                                                                                                                   | Law for Architects and Engineers            |  |  |  |  |
| FACC 500                 | (3)                                                                                                                                   | Technology Business Plan Design             |  |  |  |  |
| FACC 501                 | (3)                                                                                                                                   | Technology Business Plan Project            |  |  |  |  |
| INDR 294*                | (3)                                                                                                                                   | Introduction to Labour-Management Relations |  |  |  |  |
| MATH 338                 | (3)                                                                                                                                   | History and Philosophy of Mathematics       |  |  |  |  |
| MGCR 222*                | (3)                                                                                                                                   | Introduction to Organizational Behaviour    |  |  |  |  |
| MGCR 352*                | (3)                                                                                                                                   | Marketing Management 1                      |  |  |  |  |
| ORGB 321*                | (3)                                                                                                                                   | Leadership                                  |  |  |  |  |
| ORGB 423*                | (3)                                                                                                                                   | Human Resources Management                  |  |  |  |  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# 12.7 Department of Mechanical Engineering

### 12.7.1 Location

Macdonald Engineering Building, Room 270 817 Sherbrooke Street West Montreal QC H3A 0C3

Telephone: 514-398-6296

Fax: 514-398-7365 Email: *ugrad.mecheng@mcgill.ca* Website: *www.mcgill.ca/mecheng* 

#### 12.7.2 About the Department of Mechanical Engineering

Mechanical engineers are involved in the conception, design, implementation, and operation of mechanical systems. Typical application areas include aerospace, energy, manufacturing, machinery, and transportation. Because of the very broad nature of the discipline, there is a high demand for mechanical engineers.

Many mechanical engineers follow other career paths. Graduate studies are useful for the specialists working in research establishments, consulting firms, or in corporate research and development.

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Concentrations in Aeronautical Engineering, Mechatronics\*, and Design are available for students in either the regular or Honours program who wish to specialize in these areas.

While the program is demanding, there is time for many extracurricular activities. Students are active in such professional societies as CASI (Canadian Aeronautics and Space Institute), SAE (Society of Automotive Engineers), and ASME (American Society of Mechanical Engineers), and in various campus organizations.

Relations between faculty and students are extremely close. Social functions, at which students and professors meet to exchange views and get to know each other, are organized frequently.



## 12.7.3 Mechanical Engineering Faculty

| Chair                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------|
| Luc Mongeau                                                                                                                     |
| Associate Chair (Academic Affairs)                                                                                              |
| David L. Frost                                                                                                                  |
| Associate Chair (Undergraduate Student Affairs)                                                                                 |
| Tim Lee                                                                                                                         |
| Associate Chair (Graduate Student Affairs)                                                                                      |
| Meyer Nahon                                                                                                                     |
| Graduate Aerospace Director                                                                                                     |
| Mathias Legrand                                                                                                                 |
| Emeritus Professors                                                                                                             |
| Abdul M. Ahmed; B.Sc.(Dhaka), Ph.D.(McG.), ing. (Thomas Workman Emeritus Professor of Mechanical Engineering)                   |
| Romuald Knystautas; B.Eng., M.Eng., Ph.D.(McG.), ing.                                                                           |
| Dan F. Mateescu; M.Eng.(Poli. U. Buch.), Ph.D.(Rom. Acad. Sci.), Doctor Honoris Causa(Poli. U. Buch.), A.F.A.I.A.A., F.C.A.S.I. |

Michael P. Païdoussis; B.Eng. (McG.), Ph.D. (Camb.), ing., F.I. Mech.E., F.A.S.M.E., F.A.A.M., F.C.S.M.E., F.R.S.C., F.C.A.E. (*Thomas Workman Emeritus Professor of Mechanical Engineering*)

Stuart J. Price; B.Sc., Ph.D.(Brist.), P.Eng.

#### **Post-Retirement**

Vince Thomson; B.Sc.(Windsor), Ph.D.(McM.)

Paul J. Zsombor-Murray; B.Eng., M.Eng., Ph.D.(McG.), ing., F.C.S.M.E.

#### Professors

Marco Amabili; M.Sc.(Ancona), Ph.D.(Bologna), F.A.S.M.E. (Canada Research Chair)

Jorge Angeles; B.Sc., M.Sc.(UNAM Mexico), Ph.D.(Stan.), Eng., F.A.S.M.E., F.C.S.M.E., F.C.A.E., F.R.S.C. (James McGill Professor)

Bantwal R. Baliga; B.Tech.(I.I.T. Kanpur), M.Sc.(Case West.), Ph.D.(Minn.)

Wagdi G. Habashi; B.Eng., M.Eng.(McG.), Ph.D.(Cornell), ing., F.A.S.M.E., F.A.I.A.A., F.C.A.E., F.R.S.C. (NSERC; Lockheed Martin; Bell Helicopter Industrial Research Chair)

Pascal Hubert; B.Eng., M.A.Sc.(École Poly., Montr.), Ph.D.(Br. Col.), ing. (Warner Graupe Professor)

John H.S. Lee; B.Eng.(McG.), M.Sc.(MIT), Ph.D.(McG.), ing., F.R.S.C., F.C.A.E.

Larry B. Lessard; B.Eng.(McG.), M.Sc., Ph.D.(Stan.), ing.

Arun K. Misra; B.Tech.(I.I.T., Kgp.), Ph.D.(Br. Col.), P.Eng., F.A.A.S., F.A.I.A.A., F.C.A.E. (Thomas Workman Professor of Mechanical Engineering)

Luc Mongeau; B.Sc., M.Sc.(École Poly., Montr.), Ph.D.(Penn St.), ing. (Canada Research Chair)

Meyer Nahon; B.Sc.(Qu.), M.Sc.(Tor.), Ph.D.(McG.), ing., A.F.A.I.A.A.

I. Sharf; B.A.Sc., Ph.D.(Tor.)

#### Associate Professors

Francois Barthelat; M.Sc.(Roch.), Ph.D.(N'western)

Jeffrey M. Bergthorson; B.Sc.(Manit.), M.Sc., Ph.D.(Calif. Tech.), P.Eng.

Luca Cortelezzi; M.Sc., Ph.D.(Calif. Tech.)

David L. Frost; B.A.Sc.(Br. Col.), M.S., Ph.D.(Calif. Tech.), P.Eng.

Andrew J. Higgins; B.Sc.(Ill.), M.S., Ph.D.(Wash.)

Michael Kokkolaras; Dipl.Ing.(TUM), Ph.D.(Rice)

Jozsef Kövecses; M.Sc.(U. Miskolc), Ph.D.(Hung. Acad. Sci.), ing.

Tim Lee; M.S.(Portland St.), Ph.D.(Idaho)

Rosaire Mongrain; B.Sc., M.Sc.(Montr.), Ph.D.(École Poly., Montr.), ing. (William Dawson Scholar)

Laurent Mydlarski; B.Sc.(Wat.), Ph.D.(Cornell)

Siva Nadarajah; B.Sc.(Kansas), M.S., Ph.D.(Stan.)

Damiano Pasini; M.Sc.(Pavia), Ph.D.(Brist.), ing.

Evgeny V. Timofeev; M.Sc., Ph.D.(S.T.U. St. Petersburg), Eng., A.F.A.I.A.A.

Srikar T. Vengallatore; B.Tech.(B.H.U), Ph.D.(MIT) (Canada Research Chair)

#### **Assistant Professors**

James R. Forbes; Ph.D.(Tor), B.Eng.(Wat.) Mathias Legrand; M.Sc., Ph.D.(École Centrale, Nantes) Xinyu Liu; B.Eng., M.Eng.(Harbin), Ph.D.(Tor.) Yaoyao Fiona Zhao; B.Eng.(B.I.T.), M.Eng., Ph.D.(Auck.)

#### **Adjunct Professors**

Helmi Attia

Olivier Bertrand

Farhang Daneshmand

Eliot Fried

Peter Radziszewski

#### **Non-Tenure-Track Faculty**

Renzo Ceccere Youki Elizabeth K. Cropas

| Non-Tenure-Track Faculty |
|--------------------------|
| Allen Ehrlicher          |
| Marwan Kanaan            |
| Richard Klopp            |
| Dan Nicolau              |
| Amar Sabih               |

Josef Slanik

# 12.7.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits

Program credit weight for Quebec CEGEP students: 119 credits

Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

#### **Required Year 0 (Freshman) Courses**

29 credits

33 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 118-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

| CCOM 206 | (3) | Communication in Engineering                  |
|----------|-----|-----------------------------------------------|
| CIVE 207 | (4) | Solid Mechanics                               |
| COMP 208 | (3) | Computers in Engineering                      |
| ECSE 461 | (3) | Electric Machinery                            |
| FACC 100 | (1) | Introduction to the Engineering Profession    |
| FACC 300 | (3) | Engineering Economy                           |
| FACC 400 | (1) | Engineering Professional Practice             |
| MATH 262 | (3) | Intermediate Calculus                         |
| MATH 263 | (3) | Ordinary Differential Equations for Engineers |
|          |     |                                               |

| MATH 264 | (3) | Advanced Calculus for Engineers                   |
|----------|-----|---------------------------------------------------|
| MATH 271 | (3) | Linear Algebra and Partial Differential Equations |
| MIME 260 | (3) | Materials Science and Engineering                 |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

# **Required Mechanical Engineering Courses**

| 65 credits |     |                                             |
|------------|-----|---------------------------------------------|
| MECH 201   | (2) | Introduction to Mechanical Engineering      |
| MECH 210   | (2) | Mechanics 1                                 |
| MECH 220   | (4) | Mechanics 2                                 |
| MECH 240   | (3) | Thermodynamics 1                            |
| MECH 262   | (3) | Statistics and Measurement Laboratory       |
| MECH 290   | (3) | Design Graphics for Mechanical Engineering  |
| MECH 292   | (3) | Design 1: Conceptual Design                 |
| MECH 309   | (3) | Numerical Methods in Mechanical Engineering |
| MECH 314   | (3) | Dynamics of Mechanisms                      |
| MECH 315   | (4) | Mechanics 3                                 |
| MECH 321   | (3) | Mechanics of Deformable Solids              |
| MECH 331   | (3) | Fluid Mechanics 1                           |
| MECH 341   | (3) | Thermodynamics 2                            |
| MECH 346   | (3) | Heat Transfer                               |
| MECH 360   | (3) | Principles of Manufacturing                 |
| MECH 362   | (2) | Mechanical Laboratory 1                     |
| MECH 383   | (3) | Applied Electronics and Instrumentation     |
| MECH 393   | (3) | Design 2: Machine Element Design            |
| MECH 412   | (3) | System Dynamics and Control                 |
| MECH 430   | (3) | Fluid Mechanics 2                           |
| MECH 463D1 | (3) | Design 3: Mechanical Engineering Project    |
| MECH 463D2 | (3) | Design 3: Mechanical Engineering Project    |

## **Technical Complementary Courses**

9 credits

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

| CHEE 563* | (3) | Biofluids and Cardiovascular Mechanics      |
|-----------|-----|---------------------------------------------|
| MECH 497  | (3) | Value Engineering                           |
| MECH 498  | (3) | Interdisciplinary Design Project 1          |
| MECH 499  | (3) | Interdisciplinary Design Project 2          |
| MECH 513  | (3) | Control Systems                             |
| MECH 529  | (3) | Discrete Manufacturing Systems              |
| MECH 530  | (3) | Mechanics of Composite Materials            |
| MECH 532  | (3) | Aircraft Performance, Stability and Control |

| MECH 535  | (3) | Turbomachinery and Propulsion          |
|-----------|-----|----------------------------------------|
| MECH 536  | (3) | Aircraft Structures                    |
| MECH 541  | (3) | Kinematic Synthesis                    |
| MECH 543  | (3) | Design with Composite Materials        |
| MECH 544  | (3) | Processing of Composite Materials      |
| MECH 553  | (3) | Design and Manufacture of Microdevices |
| MECH 557  | (3) | Mechatronic Design                     |
| MECH 563* | (3) | Biofluids and Cardiovascular Mechanics |
| MECH 565  | (3) | Fluid Flow and Heat Transfer Equipment |
| MECH 573  | (3) | Mechanics of Robotic Systems           |
| MECH 577  | (3) | Optimum Design                         |

\* Students select either CHEE 563 or MECH 563.

3 credits chosen from courses at the 300 level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from courses in the Faculty of Science, including MATH courses.

## **Complementary Studies**

6 credits

# Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212  | (3) | Anthropology of Development                             |
|-----------|-----|---------------------------------------------------------|
| BTEC 502  | (3) | Biotechnology Ethics and Society                        |
| CIVE 469  | (3) | Infrastructure and Society                              |
| ECON 225  | (3) | Economics of the Environment                            |
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |
| SOCI 312  | (3) | Sociology of Work and Industry                          |
| URBP 201  | (3) | Planning the 21st Century City                          |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

## Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227, and ECON 337)

History (HIST) Philosophy (excluding PHIL 210 and PHIL 310) Political Science (POLI) Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100) Religious Studies (RELG) School of Social Work (SWRK) Sociology (excluding SOCI 350) OR one of the following: ARCH 528 (3)History of Housing BUSA 465\* Technological Entrepreneurship (3)**ENVR 203** Knowledge, Ethics and Environment (3)ENVR 400 (3)Environmental Thought FACC 220 (3)Law for Architects and Engineers FACC 500 (3)Technology Business Plan Design FACC 501 (3)Technology Business Plan Project INDR 294\* (3)Introduction to Labour-Management Relations **MATH 338** (3)History and Philosophy of Mathematics MGCR 222\* Introduction to Organizational Behaviour (3)MGCR 352\* Marketing Management 1 (3)ORGB 321\* (3)Leadership ORGB 423\* (3)Human Resources Management

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

#### **Elective Courses**

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

Desautels Faculty of Management

Faculty of Agricultural and Environmental Sciences

Faculty of Arts

Faculty of Engineering

Faculty of Religious Studies

Faculty of Science

Schulich School of Music

#### **Typical Program of Study**

Students entering the program from Quebec CEGEPs follow a different curriculum from those entering from outside the province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, please see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

# 12.7.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits

Program credit weight for Quebec CEGEP students: 119 credits

Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design Engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

The Honours program is particularly suitable for those with a high aptitude in mathematics and physics and gives a thorough grounding in the basic engineering sciences.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

#### Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

27 credits

| CCOM 206  | (3) | Communication in Engineering                      |
|-----------|-----|---------------------------------------------------|
| CIVE 207  | (4) | Solid Mechanics                                   |
| COMP 208  | (3) | Computers in Engineering                          |
| FACC 100* | (1) | Introduction to the Engineering Profession        |
| FACC 300  | (3) | Engineering Economy                               |
| FACC 400  | (1) | Engineering Professional Practice                 |
| MATH 262  | (3) | Intermediate Calculus                             |
| MATH 263  | (3) | Ordinary Differential Equations for Engineers     |
| MATH 264  | (3) | Advanced Calculus for Engineers                   |
| MATH 271  | (3) | Linear Algebra and Partial Differential Equations |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Mechanical Engineering Courses**

62 credits

MECH 201 (2) Introduction to Mechanical Engineering

| MECH 210   | (2) | Mechanics 1                                 |
|------------|-----|---------------------------------------------|
| MECH 220   | (4) | Mechanics 2                                 |
| MECH 240   | (3) | Thermodynamics 1                            |
| MECH 262   | (3) | Statistics and Measurement Laboratory       |
| MECH 290   | (3) | Design Graphics for Mechanical Engineering  |
| MECH 292   | (3) | Design 1: Conceptual Design                 |
| MECH 309   | (3) | Numerical Methods in Mechanical Engineering |
| MECH 321   | (3) | Mechanics of Deformable Solids              |
| MECH 331   | (3) | Fluid Mechanics 1                           |
| MECH 341   | (3) | Thermodynamics 2                            |
| MECH 346   | (3) | Heat Transfer                               |
| MECH 360   | (3) | Principles of Manufacturing                 |
| MECH 362   | (2) | Mechanical Laboratory 1                     |
| MECH 383   | (3) | Applied Electronics and Instrumentation     |
| MECH 403D1 | (3) | Thesis (Honours)                            |
| MECH 403D2 | (3) | Thesis (Honours)                            |
| MECH 404   | (3) | Honours Thesis 2                            |
| MECH 419   | (4) | Advanced Mechanics of Systems               |
| MECH 430   | (3) | Fluid Mechanics 2                           |
| MECH 494   | (3) | Honours Design Project                      |

# **Technical Complementary Courses**

#### 18 credits

3 credits from the following, chosen with the approval of either the thesis supervisor or the coordinator of the Honours program, when a thesis supervisor has not yet been secured:

| MATH 323 | (3) | Probability                      |
|----------|-----|----------------------------------|
| MATH 326 | (3) | Nonlinear Dynamics and Chaos     |
| MATH 327 | (3) | Matrix Numerical Analysis        |
| MATH 363 | (3) | Discrete Mathematics             |
| MATH 381 | (3) | Complex Variables and Transforms |
| MATH 407 | (3) | Dynamic Programming              |
| MATH 417 | (3) | Mathematical Programming         |

# 6 credits from the following:

| MECH 513  | (3) | Control Systems                           |
|-----------|-----|-------------------------------------------|
| MECH 546  | (3) | Finite Element Methods in Solid Mechanics |
| MECH 562  | (3) | Advanced Fluid Mechanics                  |
| MECH 577  | (3) | Optimum Design                            |
| MECH 578  | (3) | Advanced Thermodynamics                   |
| MECH 579* | (3) | Multidisciplinary Design Optimization     |

\* Note: Students select either MECH 577 or MECH 579

| CHEE 563* | (3) | Biofluids and Cardiovascular Mechanics      |
|-----------|-----|---------------------------------------------|
| MECH 497  | (3) | Value Engineering                           |
| MECH 498  | (3) | Interdisciplinary Design Project 1          |
| MECH 499  | (3) | Interdisciplinary Design Project 2          |
| MECH 513  | (3) | Control Systems                             |
| MECH 529  | (3) | Discrete Manufacturing Systems              |
| MECH 530  | (3) | Mechanics of Composite Materials            |
| MECH 532  | (3) | Aircraft Performance, Stability and Control |
| MECH 535  | (3) | Turbomachinery and Propulsion               |
| MECH 536  | (3) | Aircraft Structures                         |
| MECH 541  | (3) | Kinematic Synthesis                         |
| MECH 543  | (3) | Design with Composite Materials             |
| MECH 544  | (3) | Processing of Composite Materials           |
| MECH 553  | (3) | Design and Manufacture of Microdevices      |
| MECH 557  | (3) | Mechatronic Design                          |
| MECH 563* | (3) | Biofluids and Cardiovascular Mechanics      |
| MECH 565  | (3) | Fluid Flow and Heat Transfer Equipment      |
| MECH 573  | (3) | Mechanics of Robotic Systems                |
| MECH 577  | (3) | Optimum Design                              |
| MECH 593  | 0   |                                             |

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

\*Students choose either CHEE 563 or MECH 563

3 credits chosen from courses at the 300-level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from MIME 260 or from courses at the 300 level or higher in the Faculty of Science, including MATH courses.

#### **Complementary Studies**

6 credits

### Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212  | (3) | Anthropology of Development                             |
|-----------|-----|---------------------------------------------------------|
| BTEC 502  | (3) | Biotechnology Ethics and Society                        |
| CIVE 469  | (3) | Infrastructure and Society                              |
| ECON 225  | (3) | Economics of the Environment                            |
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
|           |     |                                                         |

| MIME 308 | (3) | Social Impact of Technology          |
|----------|-----|--------------------------------------|
| PHIL 343 | (3) | Biomedical Ethics                    |
| RELG 270 | (3) | Religious Ethics and the Environment |
| SOCI 235 | (3) | Technology and Society               |
| SOCI 312 | (3) | Sociology of Work and Industry       |
| URBP 201 | (3) | Planning the 21st Century City       |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

## Group B: Humanities and Social Sciences, Management Studies and Law

| 3 credits at the 200 level | l or higher from | the following departments:                  |
|----------------------------|------------------|---------------------------------------------|
| Anthropology (ANTH)        |                  |                                             |
| Economics (any 200- or     | 300-level cours  | e excluding ECON 227 and ECON 337)          |
| History (HIST)             |                  |                                             |
| Philosophy (excluding F    | PHIL 210 and Pl  | HIL 310)                                    |
| Political Science (POLI    | )                |                                             |
| Psychology (excluding 1    | PSYC 204 and H   | PSYC 305, but including PSYC 100)           |
| Religious Studies (REL     | G)               |                                             |
| School of Social Work (    | SWRK)            |                                             |
| Sociology (excluding So    | OCI 350)         |                                             |
| OR one of the following    |                  |                                             |
| ARCH 528                   | (3)              | History of Housing                          |
| BUSA 465*                  | (3)              | Technological Entrepreneurship              |
| ENVR 203                   | (3)              | Knowledge, Ethics and Environment           |
| ENVR 400                   | (3)              | Environmental Thought                       |
| FACC 220                   | (3)              | Law for Architects and Engineers            |
| FACC 500                   | (3)              | Technology Business Plan Design             |
| FACC 501                   | (3)              | Technology Business Plan Project            |
| INDR 294*                  | (3)              | Introduction to Labour-Management Relations |
| MATH 338                   | (3)              | History and Philosophy of Mathematics       |
| MGCR 222*                  | (3)              | Introduction to Organizational Behaviour    |
| MGCR 352*                  | (3)              | Marketing Management 1                      |
| ORGB 321*                  | (3)              | Leadership                                  |
| ORGB 423*                  | (3)              | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

# Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

# **Elective Courses**

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

Desautels Faculty of Management

Faculty of Agricultural and Environmental Sciences

Faculty of Arts

Faculty of Engineering

Faculty of Religious Studies

Faculty of Science

Schulich School of Music

# Typical Program of Study

Students entering the program from CEGEP follow a different curriculum from those entering from out of province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

#### Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits) 12.7.6

Students in this concentration take five courses in the area of Aeronautical Engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

## **Required Courses**

| 6 credits |     |                                             |
|-----------|-----|---------------------------------------------|
| MECH 532  | (3) | Aircraft Performance, Stability and Control |
| MECH 533  | (3) | Subsonic Aerodynamics                       |
|           |     |                                             |

# **Complementary Courses**

| 9 credits              |           |                               |
|------------------------|-----------|-------------------------------|
| 3-6 credits from the f | ollowing: |                               |
| MECH 535               | (3)       | Turbomachinery and Propulsion |
| MECH 536               | (3)       | Aircraft Structures           |
|                        |           |                               |

| 3-6 credits from the fe | ollowing: |                                        |
|-------------------------|-----------|----------------------------------------|
| MECH 537                | (3)       | High-Speed Aerodynamics                |
| MECH 538                | (3)       | Unsteady Aerodynamics                  |
| MECH 539                | (3)       | Computational Aerodynamics             |
| MECH 565                | (3)       | Fluid Flow and Heat Transfer Equipment |
| MECH 566                | (3)       | Fluid-Structure Interactions           |

#### 12.7.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of aeronautical engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

# **Required Courses**

6 credits

# ACADEMIC PROGRAMS

| MECH 532               | (3)        | Aircraft Performance, Stability and Control |
|------------------------|------------|---------------------------------------------|
| MECH 533               | (3)        | Subsonic Aerodynamics                       |
|                        |            |                                             |
| Complementary C        | Courses    |                                             |
| 9 credits              |            |                                             |
| 3-6 credits from the f | ollowing:  |                                             |
| MECH 535               | (3)        | Turbomachinery and Propulsion               |
| MECH 536               | (3)        | Aircraft Structures                         |
|                        |            |                                             |
| 3-6 credits from the f | following: |                                             |
| MECH 537               | (3)        | High-Speed Aerodynamics                     |
| MECH 538               | (3)        | Unsteady Aerodynamics                       |
| MECH 539               | (3)        | Computational Aerodynamics                  |
| MECH 565               | (3)        | Fluid Flow and Heat Transfer Equipment      |
| MECH 566               | (3)        | Fluid-Structure Interactions                |

# 12.7.8 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

#### **Required Courses**

| 6 credits |     |                                    |
|-----------|-----|------------------------------------|
| MECH 498  | (3) | Interdisciplinary Design Project 1 |
| MECH 499  | (3) | Interdisciplinary Design Project 2 |

# **Complementary Courses**

9-10 credits from the following:

| ARCH 515 | (3) | Sustainable Design                     |
|----------|-----|----------------------------------------|
| CHEE 453 | (4) | Process Design                         |
| MECH 497 | (3) | Value Engineering                      |
| MECH 526 | (3) | Manufacturing and the Environment      |
| MECH 528 | (3) | Product Design                         |
| MECH 530 | (3) | Mechanics of Composite Materials       |
| MECH 541 | (3) | Kinematic Synthesis                    |
| MECH 543 | (3) | Design with Composite Materials        |
| MECH 557 | (3) | Mechatronic Design                     |
| MECH 565 | (3) | Fluid Flow and Heat Transfer Equipment |
| MECH 577 | (3) | Optimum Design                         |
| MECH 579 | (3) | Multidisciplinary Design Optimization  |

### 12.7.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration. Total concentration credit weight: 15-16 credits

# **Required Courses**

| 6 credits |     |                                    |
|-----------|-----|------------------------------------|
| MECH 498  | (3) | Interdisciplinary Design Project 1 |
| MECH 499  | (3) | Interdisciplinary Design Project 2 |

# **Complementary Courses** 9-10 credits from the following:

| ARCH 515 | (3) | Sustainable Design                     |
|----------|-----|----------------------------------------|
| CHEE 453 | (4) | Process Design                         |
| MECH 497 | (3) | Value Engineering                      |
| MECH 526 | (3) | Manufacturing and the Environment      |
| MECH 528 | (3) | Product Design                         |
| MECH 530 | (3) | Mechanics of Composite Materials       |
| MECH 541 | (3) | Kinematic Synthesis                    |
| MECH 543 | (3) | Design with Composite Materials        |
| MECH 557 | (3) | Mechatronic Design                     |
| MECH 565 | (3) | Fluid Flow and Heat Transfer Equipment |
| MECH 577 | (3) | Optimum Design                         |
| MECH 579 | (3) | Multidisciplinary Design Optimization  |
|          |     |                                        |

#### 12.7.10 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Mechatronics (18 credits)

\*\*Not offered until further notice.\*\*

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

#### **Required Courses**

| 12 credits |     |                                        |
|------------|-----|----------------------------------------|
| MECH 513   | (3) | Control Systems                        |
| MECH 554   | (3) | Microprocessors for Mechanical Systems |
| MECH 557   | (3) | Mechatronic Design                     |
| MECH 572   | (3) | Introduction to Robotics               |

# **Complementary Courses**

| 5 credits from the following: |     |                     |  |
|-------------------------------|-----|---------------------|--|
| MECH 528                      | (3) | Product Design      |  |
| MECH 541                      | (3) | Kinematic Synthesis |  |

MECH 573 (3) Mechanics of Robotic Systems

#### 12.7.11 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Mechatronics (18 credits)

\*\*Not offered until further notice\*\*

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the Student Affairs Office (Engineering Student Centre) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

#### **Required Courses**

| 12 c | redits |
|------|--------|
|------|--------|

| MECH 513 | (3) | Control Systems                        |
|----------|-----|----------------------------------------|
| MECH 554 | (3) | Microprocessors for Mechanical Systems |
| MECH 557 | (3) | Mechatronic Design                     |
| MECH 572 | (3) | Introduction to Robotics               |

## **Complementary Courses**

6 credits from the following:

| MECH 528 | (3) | Product Design               |
|----------|-----|------------------------------|
| MECH 541 | (3) | Kinematic Synthesis          |
| MECH 573 | (3) | Mechanics of Robotic Systems |

# 12.8 Department of Mining and Materials Engineering

## 12.8.1 Location

#### General Office:

Wong Building, Room 2140 3610 University Street Montreal QC H3A 0C5

#### Website: www.mcgill.ca/minmat

#### Materials:

Wong Building, Room 2140 3610 University Street Montreal QC H3A 0C5 Telephone: 514-398-1040 Fax: 514-398-4492 Email: coordinator.minmat@mcgill.ca

#### Mining:

Frank Dawson Adams Building, Room 125 3450 University Street Montreal QC H3A 0E8 Telephone: 514-398-2215 Fax: 514-398-7099 Email: *admin.mining@mcgill.ca* 

#### 12.8.2 About the Department of Mining and Materials Engineering

The Department of Mining and Materials Engineering offers programs leading to the Bachelor of Engineering degree in Materials Engineering or Mining Engineering. In addition to regular courses and laboratories, the curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

For more information, refer to:

- Materials Engineering section 12.8.4.3: Bachelor of Engineering (B.Eng.) Materials Engineering CO-OP (148 credits)
- Mining Engineering section 12.8.5.3: Bachelor of Engineering (B.Eng.) Mining Engineering CO-OP (150 credits)

#### 12.8.2.1 Scholarships

The Department offers renewable Entrance Scholarships every year. A substantial number of other scholarships and bursaries are also awarded by the Department as well as by the Canadian Mineral Industry Education Foundation.

Please refer to the Faculty of Engineering website's Scholarships and Financial Aid section for more information.

#### 12.8.3 Mining and Materials Engineering Faculty

| Department Chair                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|
| George P. Demopoulos                                                                                                                |
| Associate Chair, Student Affairs                                                                                                    |
| Richard Chromik                                                                                                                     |
| Graduate Program Director                                                                                                           |
| Mathieu Brochu                                                                                                                      |
| Graduate Program Coordinator                                                                                                        |
| Barbara Hanley                                                                                                                      |
| Director, Mining Engineering Program                                                                                                |
| Hani S. Mitri                                                                                                                       |
| Emeritus Professors                                                                                                                 |
| John E. Gruzleski; B.Sc., M.Sc.(Qu.), Ph.D.(Tor.), Eng., F.C.I.M., F.A.S.M. (Gerald G. Hatch Emeritus Professor)                    |
| John J. Jonas; B.Eng.(McG.), Ph.D.(Cant.), Eng., F.A.S.M., F.R.S.C. (Henry Birks Emeritus Professor)                                |
| Gordon W. Smith; B.Eng., M.Eng., Ph.D.(McG.), Eng.                                                                                  |
| Professors                                                                                                                          |
| George P. Demopoulos; Dipl.Eng.(NTU Athens), M.Sc., Ph.D.(McG.), Eng., F.C.I.M.                                                     |
| Roussos Dimitrakopoulos; B.Sc.(Thessaloniki), M.Sc.(Alta.), Ph.D.(École Poly., Montr.) (Canada Research Chair I)                    |
| Raynald Gauvin; B.Ing., Ph.D.(Montr.), Eng.                                                                                         |
| Roderick I.L. Guthrie; B.Sc., Ph.D.(Lond.), D.I.C., Eng., A.R.S.M., F.C.I.M., R.R.S.C. (William C. Macdonald Professor)             |
| Faramarz (Ferri) P. Hassani; B.Sc., Ph.D.(Nott.), C.Eng.(U.K. Reg.) (George Boyd Webster Professor) (on sabbatical)                 |
| Hani S. Mitri; B.Sc.(Cairo), M.Eng., Ph.D.(McM.), Eng.                                                                              |
| Stephen Yue; B.Sc., Ph.D.(Leeds) (James McGill Professor) (Lorne Trottier Chair in Aerospace Engineering) (on sabbatical 2015–2016) |

#### Associate Professors

Mathieu Brochu; B.Eng.(Laval), Ph.D.(McG.) (Canada Research Chair II)

Marta Cerruti; B.Sc., Ph.D., Laurea in Chemistry(Torino) (on sabbatical 2015-2016)

Richard Chromik; B.Sc.(Penn. St.), M.Sc., Ph.D.(SUNY/Binghamton)

Mainul Hasan; B.Eng.(Dhaka), M.Eng.(Dhahran), Ph.D.(McG.)

#### Associate Professors

In-Ho Jung; B.Sc.(POSTECH ), Ph.D.(École Poly., Montr.) (William Dawson Scholar)

Mustafa Kumral; B.Eng.(Hacettepe), M.Eng.(Cukurova), Ph.D.(Leeds)

Frank Mucciardi; B.Eng., M.Eng., Ph.D.(McG.), Eng.

Showan Nazhat; B.Eng., M.Sc., Ph.D.(Lond.)

Mihriban Pekguleryuz; B.Sc., M.Eng.(Flor.), Ph.D.(McG.)

Nathaniel Quitoriano; B.S.(Calif., Berk.), Ph.D.(MIT) (on sabbatical 2015-2016)

Kristian Waters; M.Eng., M.Sc.(UMIST), Ph.D.(Birm.)

#### Assistant Professors

Kirk Bevan; Ph.D.(Purd.)

Agus Pulung Sasmito; B.Eng.(Univ. Gadjah Mada), Ph.D.(NUS), Mech. Eng.

Jun Song; M.Sc., Ph.D.(Princ.)

# **Post-Retirement Professor**

James A. Finch; B.Sc.(Birm.), M.Eng., Ph.D.(McG.), Eng., F.C.I.M., F.R.S.C. (Gerald G. Hatch Professor)

#### **Adjunct Professors**

Bruno Benedetti, Mostafa Benzaazoua, Marc Bétournay, Robin A.L. Drew, Michel Gamache, Abdelbaset Guerfi, Bryn Harris, Robert Harrison, Ahmad Hemami, Jan Nesset, Marco Quirion, Denis Thibodeau, Karim Zaghib

#### **Faculty Lecturer**

Florence Paray; B.Eng.(CSP), M.Eng., Ph.D.(McG.)

| Course Lecturers               |
|--------------------------------|
| Bruno Benedetti                |
| Yves Buro                      |
| Marco Quirion                  |
| Co-op Program Liaison Officers |
| Feresa Barrett (Mining)        |

Genevieve Snider (Materials)

#### 12.8.4 About Materials Engineering

#### 12.8.4.1 Materials Engineering (Co-op)

The Materials Engineering degree is a cooperative program leading to a **B.Eng.** and includes formal industrial work periods. It is built on a strong background of mathematics, basic sciences, computer skills and applications, and specific engineering and design courses to provide up-to-date training in materials engineering. Students take core courses covering processing, fabrication, applications, and performance of materials, namely:

- metals;
- ceramics;
- polymers; and
- composites.

The program is fully accredited by the Canadian Engineering Accreditation Board (CEAB) and is designed to offer students exceptional training for employment in the field.

The core courses are supplemented by complementary courses, which provide a diverse selection of specialties for the graduating engineer. The course structure is reinforced with laboratory exercises. Graduates find employment in a wide range of industries, including the resource and manufacturing sectors. Students in the Co-op program benefit from practical learning experience gained from work-term employment in meaningful engineering jobs, as well as non-tangible learning experiences arising from the responsibilities required to obtain and successfully complete the work terms.

Regarding the Co-op **program fees**, an amount of \$200 will be billed during ten consecutive terms for a total amount of \$2,000 before graduation. These fees cover expenses directly related to the operation of the Co-op program. Students must register for each of their industrial training courses within the

university registration period for returning students or late fees will apply. Before registering for any work term course, students must contact the Materials Co-op Liaison Officer for approval.

#### 12.8.4.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers. Appointments may be obtained by contacting the Administrative and Student Affairs Coordinator.

For more information, please refer to the Academic Advising section of our website.

### 12.8.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits)

Program credit weight: 148 credits

Program credit weight for Quebec CEGEP students: 119 credits

In addition to regular courses and laboratories, the B.Eng. Materials Engineering curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

## **Required Year 0 (Freshman) Courses**

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

#### **Required Non-Departmental Courses**

33 credits

| CCOM 206  | (3) | Communication in Engineering                  |
|-----------|-----|-----------------------------------------------|
| CHEM 233  | (3) | Topics in Physical Chemistry                  |
| CIVE 205  | (3) | Statics                                       |
| CIVE 207  | (4) | Solid Mechanics                               |
| COMP 208  | (3) | Computers in Engineering                      |
| FACC 100* | (1) | Introduction to the Engineering Profession    |
| FACC 300  | (3) | Engineering Economy                           |
| FACC 400  | (1) | Engineering Professional Practice             |
| MATH 262  | (3) | Intermediate Calculus                         |
| MATH 263  | (3) | Ordinary Differential Equations for Engineers |
| MATH 264  | (3) | Advanced Calculus for Engineers               |
| MECH 289  | (3) | Design Graphics                               |
|           |     |                                               |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

# **Required Materials Engineering Courses**

71 credits

| ECSE 461 | (3) | Electric Machinery                                         |
|----------|-----|------------------------------------------------------------|
| MIME 209 | (3) | Mathematical Applications                                  |
| MIME 212 | (3) | Engineering Thermodynamics                                 |
| MIME 250 | (3) | Introduction to Extractive Metallurgy                      |
| MIME 261 | (3) | Structure of Materials                                     |
| MIME 280 | (2) | Industrial Training 1                                      |
| MIME 311 | (3) | Modelling and Automatic Control                            |
| MIME 317 | (3) | Analytical and Characterization Techniques                 |
| MIME 341 | (3) | Introduction to Mineral Processing                         |
| MIME 345 | (3) | Applications of Polymers                                   |
| MIME 350 | (3) | Extractive Metallurgical Engineering                       |
| MIME 352 | (3) | Hydrochemical Processing                                   |
| MIME 356 | (4) | Heat, Mass and Fluid Flow                                  |
| MIME 360 | (3) | Phase Transformations: Solids                              |
| MIME 362 | (3) | Mechanical Properties                                      |
| MIME 380 | (2) | Industrial Training 2                                      |
| MIME 442 | (3) | Analysis, Modelling and Optimization in Mineral Processing |
| MIME 452 | (4) | Process and Materials Design                               |
| MIME 455 | (3) | Advanced Process Engineering                               |
| MIME 456 | (3) | Steelmaking and Steel Processing                           |
| MIME 465 | (3) | Metallic and Ceramic Powders Processing                    |
| MIME 467 | (3) | Electronic Properties of Materials                         |
| MIME 473 | (3) | Introduction to Computational Materials Design             |
| MIME 480 | (2) | Industrial Training 3                                      |

# **Complementary Courses**

15 credits

# **Technical Complementaries**

9 credits

6-9 credits from the following:

| CHEE 515* | (3) | Material Surfaces: A Biomimetic Approach |
|-----------|-----|------------------------------------------|
| CIVE 512  | (3) | Advanced Civil Engineering Materials     |
| MECH 530  | (3) | Mechanics of Composite Materials         |
| MIME 410  | (3) | Research Project                         |
| MIME 470  | (3) | Engineering Biomaterials                 |
| MIME 512  | (3) | Corrosion and Degradation of Materials   |
| MIME 515* | (3) | Material Surfaces: A Biomimetic Approach |
| MIME 526  | (3) | Mineral Economics                        |
| MIME 542  | (3) | Transmission Electron Microscopy         |
| MIME 544  | (3) | Analysis: Mineral Processing Systems 1   |

| MIME 545 | (3) | Analysis: Mineral Processing Systems 2                   |
|----------|-----|----------------------------------------------------------|
| MIME 551 | (3) | Electrochemical Processing                               |
| MIME 556 | (3) | Sustainable Materials Processing                         |
| MIME 558 | (3) | Engineering Nanomaterials                                |
| MIME 559 | (3) | Aluminum Physical Metallurgy                             |
| MIME 560 | (3) | Joining Processes                                        |
| MIME 561 | (3) | Advanced Materials Design                                |
| MIME 563 | (3) | Hot Deformation of Metals                                |
| MIME 565 | (3) | Aerospace Metallic-Materials and Manufacturing Processes |
| MIME 568 | (3) | Topics in Advanced Materials                             |
| MIME 569 | (3) | Electron Beam Analysis of Materials                      |
| MIME 570 | (3) | Micro- and Nano-Fabrication Fundamentals                 |
| MIME 571 | (3) | Surface Engineering                                      |
| MIME 572 | (3) | Computational Thermodynamics                             |

\* Students choose either CHEE 515 or MIME 515

0-3 credits from the following:

| BMDE 504 | (3) | Biomaterials and Bioperformance |
|----------|-----|---------------------------------|
| CHEM 574 | (3) | Introductory Polymer Chemistry  |
| CHEM 585 | (3) | Colloid Chemistry               |
| PHYS 558 | (3) | Solid State Physics             |

## **Complementary Studies**

6 credits

## Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212  | (3) | Anthropology of Development                             |
|-----------|-----|---------------------------------------------------------|
| BTEC 502  | (3) | Biotechnology Ethics and Society                        |
| CIVE 469  | (3) | Infrastructure and Society                              |
| ECON 225  | (3) | Economics of the Environment                            |
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |
| SOCI 312                                                                 | (3)                 | Sociology of Work and Industry                                                             |  |  |  |
|--------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------|--|--|--|
| URBP 201                                                                 | (3)                 | Planning the 21st Century City                                                             |  |  |  |
| * Management courses                                                     | s have limited enro | olment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates. |  |  |  |
| Group B - Humanit                                                        | ies and Social      | Sciences, Management Studies, and Law                                                      |  |  |  |
| 3 credits at the 200 lev                                                 | el or higher from   | the following departments:                                                                 |  |  |  |
| Anthropology (ANTH)                                                      |                     |                                                                                            |  |  |  |
| Economics (any 200- or 300-level course excluding ECON 227 and ECON 337) |                     |                                                                                            |  |  |  |
| History (HIST)                                                           |                     |                                                                                            |  |  |  |
| Philosophy (excluding                                                    | PHIL 210 and PH     | IIL 310)                                                                                   |  |  |  |
| Political Science (POL                                                   | .I)                 |                                                                                            |  |  |  |
| Psychology (excluding                                                    | g PSYC 204 and P    | SYC 305, but including PSYC 100)                                                           |  |  |  |
| Religious Studies (RE                                                    | LG)                 |                                                                                            |  |  |  |
| School of Social Work                                                    | (SWRK)              |                                                                                            |  |  |  |
| Sociology (excluding S                                                   | SOCI 350)           |                                                                                            |  |  |  |
| OR one of the followin                                                   | ng:                 |                                                                                            |  |  |  |
| ARCH 528                                                                 | (3)                 | History of Housing                                                                         |  |  |  |
| BUSA 465*                                                                | (3)                 | Technological Entrepreneurship                                                             |  |  |  |
| ENVR 203                                                                 | (3)                 | Knowledge, Ethics and Environment                                                          |  |  |  |
| ENVR 400                                                                 | (3)                 | Environmental Thought                                                                      |  |  |  |
| FACC 220                                                                 | (3)                 | Law for Architects and Engineers                                                           |  |  |  |
| FACC 500                                                                 | (3)                 | Technology Business Plan Design                                                            |  |  |  |
| FACC 501                                                                 | (3)                 | Technology Business Plan Project                                                           |  |  |  |
| INDR 294*                                                                | (3)                 | Introduction to Labour-Management Relations                                                |  |  |  |
| MATH 338                                                                 | (3)                 | History and Philosophy of Mathematics                                                      |  |  |  |
| MGCR 222*                                                                | (3)                 | Introduction to Organizational Behaviour                                                   |  |  |  |
| MGCR 352*                                                                | (3)                 | Marketing Management 1                                                                     |  |  |  |
| ORGB 321*                                                                | (3)                 | Leadership                                                                                 |  |  |  |
| ORGB 423*                                                                | (3)                 | Human Resources Management                                                                 |  |  |  |

\* Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

#### 12.8.5 About Mining Engineering

#### 12.8.5.1 Mining Engineering (Co-op)

McGill is proud to be the host of the oldest mining engineering program in Canada, which started in 1870. The program is known for the excellence of its courses as well as the training it provides in mining technology, mineral economics, and mine design. Excellent career opportunities are available in Canada and around the world. There have been rapid technical developments in recent years, presenting a challenge to the creative student with a strong interest in engineering and a taste for innovative solutions.

The Department offers a co-operative program leading to an accredited **B.Eng.** degree in Mining Engineering. It includes three paid industrial work terms. The Co-op program is offered in one of two streams: English Stream for non-CEGEP students and Bilingual Stream (six courses in French) for CEGEP students, in collaboration with the mining engineering program at *École Polytechnique* in Montreal. Students in the Bilingual Stream are required to take six mining courses, designated by subject code MPMC, at *École Polytechnique* in the latter part of the program.

Students must register for each work term:

- MIME 290
- MIME 291
- MIME 392

and pay associated fees by the Course Change (add/drop) registration deadline. Before registering for any work term course, students must contact the Mining Co-op Liaison Officer for approval.

#### 12.8.5.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers: Professor Mustafa Kumral or Professor Agus Sasmito.

For more information, please refer to the Academic Advising section of our website.

#### 12.8.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 credits)

#### Revision, April 2015. Start of revision.

Program credit weight: 150-152 credits

Program credit weight for Quebec CEGEP students: 121-123 credits

In addition to regular courses and laboratories, the curriculum of the B.Eng. Mining Engineering Co-op program includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

### Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 121- to 123-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

| CHEM 110 | (4) | General Chemistry 1         |
|----------|-----|-----------------------------|
| CHEM 120 | (4) | General Chemistry 2         |
| MATH 133 | (3) | Linear Algebra and Geometry |
| MATH 140 | (3) | Calculus 1                  |
| MATH 141 | (4) | Calculus 2                  |
| PHYS 131 | (4) | Mechanics and Waves         |
| PHYS 142 | (4) | Electromagnetism and Optics |

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

### **Required Non-Departmental Courses**

34 credits

| CCOM 206  | (3) | Communication in Engineering               |
|-----------|-----|--------------------------------------------|
| CIVE 205  | (3) | Statics                                    |
| CIVE 207  | (4) | Solid Mechanics                            |
| COMP 208  | (3) | Computers in Engineering                   |
| EPSC 221  | (3) | General Geology                            |
| EPSC 225  | (1) | Properties of Minerals                     |
| FACC 100* | (1) | Introduction to the Engineering Profession |
| FACC 300  | (3) | Engineering Economy                        |
|           |     |                                            |

| FACC 400 | (1) | Engineering Professional Practice             |
|----------|-----|-----------------------------------------------|
| MATH 262 | (3) | Intermediate Calculus                         |
| MATH 263 | (3) | Ordinary Differential Equations for Engineers |
| MATH 264 | (3) | Advanced Calculus for Engineers               |
| MECH 289 | (3) | Design Graphics                               |

\* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

## **Required Mining Engineering Courses**

| 59 credits |     |                                             |
|------------|-----|---------------------------------------------|
| ECSE 461   | (3) | Electric Machinery                          |
| MIME 200   | (3) | Introduction to the Minerals Industry       |
| MIME 203   | (2) | Mine Surveying                              |
| MIME 209   | (3) | Mathematical Applications                   |
| MIME 260   | (3) | Materials Science and Engineering           |
| MIME 290   | (2) | Industrial Work Period 1                    |
| MIME 291   | (2) | Industrial Work Period 2                    |
| MIME 322   | (3) | Rock Fragmentation                          |
| MIME 323   | (3) | Rock and Soil Mass Characterization         |
| MIME 325   | (3) | Mineral Industry Economics                  |
| MIME 333   | (3) | Materials Handling                          |
| MIME 340   | (3) | Applied Fluid Dynamics                      |
| MIME 341   | (3) | Introduction to Mineral Processing          |
| MIME 392   | (2) | Industrial Work Period 3                    |
| MIME 413   | (3) | Strategic Mine Planning With Uncertainty    |
| MIME 419   | (3) | Surface Mining                              |
| MIME 422   | (3) | Mine Ventilation                            |
| MIME 425   | (3) | Applied Stochastic Orebody Modelling        |
| MIME 426   | (6) | Mine Design and Feasibility Study Project   |
| MPMC 328*  | (3) | Environnement et gestion des rejets miniers |

\* Mining courses taken at École Polytechnique

### **Complementary Courses**

28-30 credits 14-15 credits from either Stream A or Stream B

## Stream A - CEGEP Students

14 credits

CEGEP students must take the following courses:

| MPMC 321* | (3) | Mécanique des roches et contrôle des terrains |
|-----------|-----|-----------------------------------------------|
| MPMC 326* | (3) | Recherche opérationnelle I                    |
| MPMC 329* | (2) | Géologie minière                              |
| MPMC 330* | (3) | Géotechnique minière                          |
| MPMC 421* | (3) | Exploitation en souterrain                    |

\* Mining courses taken at École Polytechnique

Stream B - Non-CEGEP Students

| 15 credits                                          |     |                                   |  |  |
|-----------------------------------------------------|-----|-----------------------------------|--|--|
| Non-CEGEP students must take the following courses: |     |                                   |  |  |
| CIVE 208                                            | (3) | Civil Engineering System Analysis |  |  |
| CIVE 311                                            | (4) | Geotechnical Mechanics            |  |  |
| MIME 329                                            | (2) | Mining Geology                    |  |  |
| MIME 421                                            | (3) | Rock Mechanics                    |  |  |
| MIME 424                                            | (3) | Underground Mining Methods        |  |  |

## **Technical Complementaries**

8-9 credits

Courses can be chosen from the following or from any other approved technical courses in Engineering, Management, or Science (including mathematics courses).

Note: Not all courses are given annually; see the "Courses" section of this eCalendar to know if a course is offered.

| CFIN 410  | (3) | Investment and Portfolio Management                        |
|-----------|-----|------------------------------------------------------------|
| CIVE 416  | (3) | Geotechnical Engineering                                   |
| CIVE 421  | (3) | Municipal Systems                                          |
| CIVE 514  | (3) | Structural Mechanics                                       |
| CIVE 584  | (3) | Groundwater Engineering                                    |
| EPSC 320  | (3) | Elementary Earth Physics                                   |
| EPSC 549  | (3) | Hydrogeology                                               |
| FINE 482  | (3) | International Finance 1                                    |
| MIME 320  | (3) | Extraction of Energy Resources                             |
| MIME 442  | (3) | Analysis, Modelling and Optimization in Mineral Processing |
| MIME 484  | (3) | Mining Project                                             |
| MIME 494  | (2) | Industrial Work Period 4                                   |
| MIME 520  | (3) | Stability of Rock Slopes                                   |
| MIME 527  | (3) | Selected Topics in Mineral Resource Engineering            |
| MIME 544  | (3) | Analysis: Mineral Processing Systems 1                     |
| MIME 545  | (3) | Analysis: Mineral Processing Systems 2                     |
| MIME 588  | (3) | Reliability Analysis of Mining Systems                     |
| MPMC 320* | (3) | CAO et informatique pour les mines                         |

\* Mining course taken at École Polytechnique

# **Complementary Studies**

6 credits

### Group A - Impact of Technology on Society

3 credits from the following:

| ANTH 212 | (3) | Anthropology of Development      |
|----------|-----|----------------------------------|
| BTEC 502 | (3) | Biotechnology Ethics and Society |
| CIVE 469 | (3) | Infrastructure and Society       |

| ECON 225  | (3) | Economics of the Environment                            |
|-----------|-----|---------------------------------------------------------|
| ECON 347  | (3) | Economics of Climate Change                             |
| ENVR 201  | (3) | Society, Environment and Sustainability                 |
| GEOG 200  | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 203  | (3) | Environmental Systems                                   |
| GEOG 205  | (3) | Global Change: Past, Present and Future                 |
| GEOG 302  | (3) | Environmental Management 1                              |
| MECH 526  | (3) | Manufacturing and the Environment                       |
| MGPO 440* | (3) | Strategies for Sustainability                           |
| MIME 308  | (3) | Social Impact of Technology                             |
| PHIL 343  | (3) | Biomedical Ethics                                       |
| RELG 270  | (3) | Religious Ethics and the Environment                    |
| SOCI 235  | (3) | Technology and Society                                  |
| SOCI 312  | (3) | Sociology of Work and Industry                          |
| URBP 201  | (3) | Planning the 21st Century City                          |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

### Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR one of the following:

| ARCH 528  | (3) | History of Housing                          |
|-----------|-----|---------------------------------------------|
| BUSA 465* | (3) | Technological Entrepreneurship              |
| ENVR 203  | (3) | Knowledge, Ethics and Environment           |
| ENVR 400  | (3) | Environmental Thought                       |
| FACC 220  | (3) | Law for Architects and Engineers            |
| FACC 500  | (3) | Technology Business Plan Design             |
| FACC 501  | (3) | Technology Business Plan Project            |
| INDR 294* | (3) | Introduction to Labour-Management Relations |
| MATH 338  | (3) | History and Philosophy of Mathematics       |
| MGCR 222* | (3) | Introduction to Organizational Behaviour    |
| MGCR 352* | (3) | Marketing Management 1                      |
| ORGB 321* | (3) | Leadership                                  |
| ORGB 423* | (3) | Human Resources Management                  |

\* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

#### Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Revision, April 2015. End of revision.

## 12.9 School of Urban Planning

## 12.9.1 Location

Macdonald-Harrington Building, Room 400 815 Sherbrooke Street West Montreal QC H3A 0C2

Telephone: 514-398-4075 Fax: 514-398-8376 Email: *admissions.planning@mcgill.ca* Website: *www.mcgill.ca/urbanplanning* 

# 12.9.2 About the School of Urban Planning

Urban planning can be described as the collective management of urban development. It is concerned with the welfare of communities, control of the use of land, design of the built environment, including transportation and communication networks, and protection and enhancement of the natural environment. It is at once a technical and a political process that brings together actors from the public, private, and community spheres. Planners participate in that process in a variety of ways, as designers and analysts, advocates and mediators, facilitating the search for equitable and efficient solutions to problems of urban change and development.

Modern urban planning developed into a profession largely as a response to the appalling sanitary, social, and economic conditions of rapidly developing industrial cities. Initially, the disciplines of architecture, landscape architecture, civil engineering, and public health provided the nucleus of concerned professionals; beautification schemes and infrastructure works marked the early stages of public intervention in the 19th century. Architects, engineers, and public health specialists were joined by economists, sociologists, lawyers, and geographers as the complexities of the city's problems came to be more fully understood and public pressure mounted for their solution. Contemporary urban and regional planning techniques for survey, analysis, design, and implementation developed from an interdisciplinary synthesis of these various fields. This multidisciplinarity is still a hallmark of planning practice and of planning education.

McGill was the first university in Canada to offer a planning degree, starting in 1947. The School of Urban Planning itself was established as an independent unit in 1972. Today, it brings together students from various fields (such as those mentioned above) and different parts of the world in a professional **master's** program and an *ad hoc* **Ph.D.** program. Key features of the work done at the school are the use of real-world projects for learning, a focus on policy-relevant research, and strong engagement with the community, both in Canada and abroad.

The School has a long track record of research, capacity-building and consulting in developing regions as well as in Montreal and other Canadian cities. Faculty and students collaborate actively with members of other McGill departments, notably Architecture, Geography, Civil Engineering, and Law, and with colleagues at other institutions in Canada and abroad. Alumni of the School work as planners and designers at various levels of government, in non-profit organizations, and with private consulting firms. Their expertise ranges from urban design to transportation planning, from housing policy to computer modelling. They devote their efforts in increasing numbers to environmental planning and sustainable development.

The objective of the School is to enable young urban planners to exercise leadership in the public, private, and community sectors. Training is provided at the postgraduate level. The main degree offered is the **Master of Urban Planning** (**M.U.P.**). Many specializations are possible within the program; one of them, in Transportation Planning, is formally recognized as a concentration. M.U.P. students in the core program may also opt to spend a semester in Barbados as part of the Barbados Field Study Semester, which focuses on global environmental issues. Details concerning each of these concentrations can be found at *www.mcgill.ca/urbanplanning/programs/mup-transportation-planning* (see also *www.tram.mcgill.ca*), and at *www.mcgill.ca/bfss*, respectively. Upon completion of the two-year program of studies, graduates are expected to have acquired basic planning skills, a broad understanding of urban issues, and specialized knowledge in a field of their own choice. The School also welcomes a small number of students into its *ad hoc* **Ph.D. in Urban Planning**, **Policy**, **and Design**. That program aims to prepare students for careers in high-level research and teaching.

The professional program of study offered by the School is fully recognized by the *Ordre des Urbanistes du Québec* (O.U.Q.) and the Canadian Institute of Planners (C.I.P.). Graduates may become full members of the O.U.Q. and other provincial planning associations, and therefore of C.I.P., by completing their respective internship and examination requirements. Similar requirements must be met for admission to the American Institute of Certified Planners (A.I.C.P.) and other such organizations. For details of the M.U.P. admission requirements and curriculum, consult the School's *website*, as well as *Faculties & Schools > Faculty of Engineering > Graduate > Academic Programs > Urban Planning*.

Although the M.U.P. program is primarily a professional degree program, it has a very important research component. The work done on the Supervised Research Project in the course of the second year of study qualifies for funding by federal and provincial funding agencies such as SSHRC. Some students enter the M.U.P. program with fellowships from these agencies; others obtain them after joining the School, for their second year of study.

The School of Urban Planning hosts a number of *events* that are open to undergraduate students and to the public: the Brenda and Samuel Gewurz Lectures in Urban Design bring speakers of international calibre to McGill; the Transportation Research Group at McGill holds seminars on issues pertaining to various aspects of urban and regional transportation; and the "urban.studies@mcgill" seminars bring speakers from academia, the profession and the community to talk about contemporary urban issues.

For details of the M.U.P. admission requirements and curriculum, consult the Faculty of Engineering section for Graduate and Postdoctoral Studies.

### 12.9.3 Undergraduate Courses in Urban Planning

The following courses taught by faculty in the School of Urban Planning are open to undergraduate students:

| Undergraduate Courses in Urban Planning |     |                                    |
|-----------------------------------------|-----|------------------------------------|
| ARCH 520                                | (3) | Montreal: Urban Morphology         |
| ARCH 550                                | (3) | Urban Planning and Development     |
| CIVE 433                                | (3) | Urban Planning                     |
| URBP 201                                | (3) | Planning the 21st Century City     |
| URBP 501                                | (2) | Principles and Practice 1          |
| URBP 504                                | (3) | Planning for Active Transportation |
| URBP 505                                | (3) | Geographic Information Systems     |
| URBP 506                                | (3) | Environmental Policy and Planning  |
| URBP 507                                | (3) | Planning and Infrastructure        |
| URBP 519                                | (6) | Sustainable Development Plans      |
| URBP 520                                | (3) | Globalization: Planning and Change |
| URBP 530                                | (3) | Urban Environmental Planning       |
| URBP 536                                | (1) | Transportation Seminar 1           |
| URBP 537                                | (1) | Transportation Seminar 2           |
| URBP 538                                | (1) | Transportation Seminar 3           |
| URBP 551                                | (3) | Understanding Urban Change         |
|                                         |     |                                    |

## 12.9.4 Urban Planning Faculty

| Director                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|
| Raphaël Fischler                                                                                                              |
| Emeritus Professors                                                                                                           |
| David Farley; B.Arch.(McG.), M.Arch., M.C.P.(Harv.)                                                                           |
| Jane Matthews-Glenn; B.A., LL.B.(Qu.), D. en droit(Stras.)                                                                    |
| Post-Retirement Professor                                                                                                     |
| David Brown; B.A.(Bishop's), M.U.P.(McG.), Ph.D.(Sheff.)                                                                      |
| Professor                                                                                                                     |
| Richard Shearmur; B.A.(Camb.), M.U.P.(McG.), Ph.D.(Montr.)                                                                    |
| Associate Professors                                                                                                          |
| Madhav G. Badami; B.Tech., M.S.(IIT, Madras) M.E.Des.(Calg.), Ph.D.(Br. Col.) (joint appt. with McGill School of Environment) |
| Lisa Bornstein; B.Sc.(Calif., Berk.), M.R.P.(Cornell), Ph.D.(Calif., Berk.)                                                   |
| Ahmed Elgeneidy; B.A.A., M.Arch.(Alexandria), Ph.D.(Port. St.)                                                                |

| Associate Professors                                                                             |
|--------------------------------------------------------------------------------------------------|
| Raphaël Fischler; B.Eng.(Eindhoven), M.Sc., M.C.P.(MIT), Ph.D.(Calif., Berk.)                    |
| Nik Luka; B.A.A.(Ryerson), M.Arch.(Laval), Ph.D.(Tor.) (joint appt. with School of Architecture) |
| Assistant Professor                                                                              |
| David Wachsmuth; B.A.(McG.), M.Sc.(Tor.), Ph.D.(NYU)                                             |
| Adjunct Professors                                                                               |
| Cameron Charlebois; B.Sc.(Arch.), B.Arch., M.B.A.(McG.)                                          |
| Murtaza Haider; B.Sc.(NWFP UET-Pesh.), M.A.Sc., Ph.D.(Tor.)                                      |
| Marc-André Lechasseur; LL.B.(Sher.), LL.M.(Montr.)                                               |
| Mario Polèse; B.A.(CUNY), M.A., Ph.D.(Penn.)                                                     |
| Ray Tomalty; B.A., M.P.A.(Qu.), Ph.D.(Wat.)                                                      |
| Instructors                                                                                      |

Malaka Ackaoui, Luc Danielse, Suzanne Doucet, Paul LeCavalier, Denis Lévesque, James McGregor, Pierre Morissette, Damaris Rose, Martin Wexler

### 12.10 Other Engineering Related Programs

### 12.10.1 Bioresource Engineering

The Faculty of Engineering cooperates with the Faculty of Agricultural and Environmental Sciences in providing courses of instruction for a curriculum in agricultural and biosystems engineering to meet requirements for a professional degree awarded in the Faculty of Agricultural and Environmental Sciences. For details, refer to the B.Eng.(Bioresource) program requirements in *Faculty of Agricultural and Environmental Sciences > Undergraduate > Academic Programs > : Bachelor of Engineering (Bioresource) – B.Eng.(Bioresource).* 

Some of the courses offered by the Department of Bioresource Engineering (subject code BREE) may be of interest to students in the Faculty of Engineering.

The Department of Bioresource Engineering is located in the Faculty of Agricultural and Environmental Sciences on the Macdonald campus:

Department of Bioresource Engineering Macdonald-Stewart Building, Room MS1-028 21,111 Lakeshore Road Sainte-Anne-de-Bellevue QC H9X 3V9 Telephone: 514-398-7773 Fax: 514-398-7990 Website: www.mcgill.ca/bioeng

#### 12.10.2 Biomedical Engineering

Lyman Duff Medical Sciences Building 3775 University Street Montreal QC H3A 2B4 Telephone: 514-398-6736 Website: www.mcgill.ca/bme

Some of the courses offered by the Department of Biomedical Engineering (subject code BMDE) may be of interest to Engineering students, and may be approved as complementary courses. The Faculty of Engineering also offers a Minor in Biomedical Engineering; for more information, see *section 12.11.2: Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits).* 

## 12.11 Minor Programs

This section includes general information concerning minors that are designed for students in the Faculty of Engineering.

Minors are coherent sequences of courses taken in addition to the courses required for the B.Eng., B.S.E., or B.Sc.(Arch.) degree. Minors normally consist of 18–24 credits, allowing 9–12 credits of overlap with the degree program. The real credit cost to the student is typically 9–15 credits, representing one term beyond the B.Eng., B.S.E., or B.Sc.(Arch.) degree program. All courses in a minor must be passed with a grade of C or better.

Engineering students choose from a considerable variety of complementary courses under the categories of technical and complementary studies. Students should refer to their department for information concerning selection of complementary courses, and should see their department adviser. Departments also publish information regarding the choice of courses in this publication and in separate documents.



Note: Students are also permitted to register for minor concentrations offered by departments in the Faculty of Arts. Students must obtain approval from both the department in the Faculty of Arts and from the *McGill Engineering Student Centre* (Student Affairs Office) (Frank Dawson Adams Building, Room 22), before registering in one of these minors.

#### **Minor Programs:**

- section 12.11.1: Bachelor of Engineering (B.Eng.) Minor Arts (24 credits)
- section 12.11.2: Bachelor of Engineering (B.Eng.) Minor Biomedical Engineering (21 credits)
- section 12.11.3: Bachelor of Engineering (B.Eng.) Minor Biotechnology (for Engineering Students) (24 credits)
- section 12.11.4: Bachelor of Engineering (B.Eng.) Minor Chemistry (25 credits)
- section 12.11.5: Computer Science Courses and Minor Program
- section 12.11.6: Bachelor of Engineering (B.Eng.) Minor Construction Engineering and Management (24 credits)
- section 12.11.7: Bachelor of Engineering (B.Eng.) Minor Economics (18 credits)
- section 12.11.8: Minor in Environment
- section 12.11.9: Bachelor of Engineering (B.Eng.) Minor Environmental Engineering (21 credits)
- section 12.11.10: Minor Programs in Finance, Management, Marketing, and Operations Management
- section 12.11.11: Bachelor of Engineering (B.Eng.) Minor Materials Engineering (24 credits)
- section 12.11.12: Bachelor of Engineering (B.Eng.) Minor Mathematics (24 credits)
- section 12.11.13: Bachelor of Engineering (B.Eng.) Minor Mining Engineering (23 credits)
- section 12.11.14: Minor in Musical Science and Technology
- section 12.11.15: Bachelor of Engineering (B.Eng.) Minor Physics (18 credits)
- section 12.11.16: Bachelor of Engineering (B.Eng.) Minor Software Engineering (24 credits)
- section 12.11.17: Bachelor of Engineering (B.Eng.) Minor Technological Entrepreneurship (18 credits)

## 12.11.1 Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits)

Minor Adviser: Faculty Student Adviser in the Engineering Student Centre (Frank Dawson Adams Building, Room 22) OR Donald Sedgwick (Senior Faculty Adviser, Faculty of Arts)

B.Sc.(Arch.), B.Eng., and B.S.E. students may obtain the Arts Minor as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing 24 credits, as described below.

Students must select courses for this Minor in consultation with one of the Advisers indicated above.

All courses in the Minor must be passed with a grade of C or better.

#### Requirements

24 credits as follows:

a) At least two areas of concentration in the Faculty of Arts must be chosen, with a minimum of 6 credits in any one area.

b) At least 12 credits must be at the 300 level or higher.

In general, B.Eng. and B.S.E. students may use courses from the Complementary Studies lists (Group A and Group B) in their program that are offered by the Faculty of Arts to satisfy some of these requirements. No more than 9 credits of these courses can be credited toward the Arts Minor.

#### 12.11.2 Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits)

Minor Advisers: Prof. R. Leask (Wong Building, Room 4120) or Prof. R. Mongrain (Macdonald Engineering Building, Room 369)

Note: Open to all students in the Faculty of Engineering (including B.S.E. students).

Minor program credit weight: 21-25 credits

The Biomedical Engineering Minor allows access to courses in basic life sciences and is intended to expose students to the interdisciplinary tools used in biomedicine.

To complete this Minor, students must obtain a grade of C or better in all approved courses and satisfy the requirements of both the Major program and the Minor.

Students considering this Minor should contact the Minor Advisers listed above.

### **Complementary Introductory Courses in Life Sciences**

### 3-7 credits

One or two courses from the following list (equivalents can be approved):

| ANAT 212 | (3) | Molecular Mechanisms of Cell Function |
|----------|-----|---------------------------------------|
| BIOC 212 | (3) | Molecular Mechanisms of Cell Function |
| BIOL 200 | (3) | Molecular Biology                     |
| BIOL 201 | (3) | Cell Biology and Metabolism           |
| CHEM 212 | (4) | Introductory Organic Chemistry 1      |
| PHGY 209 | (3) | Mammalian Physiology 1                |
| PHGY 210 | (3) | Mammalian Physiology 2                |

#### **Specialization Courses**

12-18 credits from the following:

Students must select 6 credits from courses outside their department and at least one BMDE course. These BMDE courses are best taken near the end of the program, when prerequisites have been satisfied.

#### Physiological Systems, Artificial Cells and Organs

| BMDE 505 | (3) | Cell and Tissue Engineering                          |
|----------|-----|------------------------------------------------------|
| PHGY 311 | (3) | Channels, Synapses & Hormones                        |
| PHGY 312 | (3) | Respiratory, Renal, & Cardiovascular Physiology      |
| PHGY 313 | (3) | Blood, Gastrointestinal, & Immune Systems Physiology |
| PHGY 517 | (3) | Artificial Internal Organs                           |
| PHGY 518 | (3) | Artificial Cells                                     |

#### **Bioinformatics, Genomics and Proteomics**

| ANAT 365* | (3) | Cellular Trafficking                                      |
|-----------|-----|-----------------------------------------------------------|
| ANAT 458  | (3) | Membranes and Cellular Signaling                          |
| BIOC 311  | (3) | Metabolic Biochemistry                                    |
| BIOC 312  | (3) | Biochemistry of Macromolecules                            |
| BIOC 458* | (3) | Membranes and Cellular Signaling                          |
| BMDE 506  | (3) | Molecular Biology Techniques                              |
| BMDE 509  | (3) | Quantitative Analysis and Modelling of Cellular Processes |
| COMP 302  | (3) | Programming Languages and Paradigms                       |
| COMP 360  | (3) | Algorithm Design                                          |
| COMP 421  | (3) | Database Systems                                          |
| COMP 424  | (3) | Artificial Intelligence                                   |
| COMP 462  | (3) | Computational Biology Methods                             |
| COMP 526  | (3) | Probabilistic Reasoning and AI                            |

\* Students choose either ANAT 365 or BIOC 458

#### Biomaterials, Biosensors, and Nanotechnology

BMDE 504 (3) Biomaterials and Bioperformance

| BMDE 505 | (3) | Cell and Tissue Engineering                   |
|----------|-----|-----------------------------------------------|
| BMDE 508 | (3) | Introduction to Micro and Nano-Bioengineering |
| CHEE 380 | (3) | Materials Science                             |
| ECSE 424 | (3) | Human-Computer Interaction                    |
| MECH 553 | (3) | Design and Manufacture of Microdevices        |
| MIME 360 | (3) | Phase Transformations: Solids                 |
| MIME 362 | (3) | Mechanical Properties                         |
| MIME 470 | (3) | Engineering Biomaterials                      |
| PHYS 534 | (3) | Nanoscience and Nanotechnology                |

## **Biomechanics and Prosthetics**

| BMDE 503  | (3) | Biomedical Instrumentation              |
|-----------|-----|-----------------------------------------|
| CHEE 561  | (3) | Introduction to Soft Tissue Biophysics  |
| CHEE 563* | (3) | Biofluids and Cardiovascular Mechanics  |
| MECH 315  | (4) | Mechanics 3                             |
| MECH 321  | (3) | Mechanics of Deformable Solids          |
| MECH 530  | (3) | Mechanics of Composite Materials        |
| MECH 561  | (3) | Biomechanics of Musculoskeletal Systems |
| MECH 563* | (3) | Biofluids and Cardiovascular Mechanics  |
| MIME 360  | (3) | Phase Transformations: Solids           |
| MIME 362  | (3) | Mechanical Properties                   |

\* Students choose either CHEE 563 or MECH 563.

# Medical Physics and Imaging

| BMDE 519 | (3) | Biomedical Signals and Systems      |
|----------|-----|-------------------------------------|
| COMP 302 | (3) | Programming Languages and Paradigms |
| COMP 360 | (3) | Algorithm Design                    |
| COMP 424 | (3) | Artificial Intelligence             |
| COMP 558 | (3) | Fundamentals of Computer Vision     |
| ECSE 303 | (3) | Signals and Systems 1               |
| ECSE 304 | (3) | Signals and Systems 2               |
| ECSE 412 | (3) | Discrete Time Signal Processing     |
| PHYS 557 | (3) | Nuclear Physics                     |

# Neural Systems and Biosignal Processing

| BMDE 501 | (3) | Selected Topics in Biomedical Engineering |
|----------|-----|-------------------------------------------|
| BMDE 502 | (3) | BME Modelling and Identification          |
| BMDE 503 | (3) | Biomedical Instrumentation                |
| BMDE 519 | (3) | Biomedical Signals and Systems            |
| ECSE 517 | (3) | Neural Prosthetic Systems                 |
| ECSE 526 | (3) | Artificial Intelligence                   |
| PHYS 413 | (3) | Physical Basis of Physiology              |

#### **Complementary Courses**

#### 0-6 credits

Up to 6 credits in the B.Eng., B.S.E., or B.Sc.(Arch.) program can also be credited to the Minor, with the permission of the Departmental Adviser and approval of the Minor Adviser. In particular, courses at the 200 level or higher that are prerequisites for certain specialization courses would be eligible, with permission of the Minor Adviser. By careful selection of complementary courses, the Minor can be satisfied with 9 additional credits in the student's major program or a maximum of 12 credits of overlap with the major program.

#### 12.11.3 Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22). For advising regarding Science courses, contact Nancy Nelson, Undergraduate Adviser, Department of Biology, Faculty of Science.

This Minor is offered by the Faculty of Engineering and the Faculty of Science for students who wish to take biotechnology courses that are complementary to their area. It has been designed specifically for Chemical Engineering students; other Engineering students who are interested in the Minor should contact a Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

To obtain the Biotechnology Minor, students must complete 24 credits, 18 of which must be exclusively for the Minor. Approved substitutions must be made for any of the required courses that are part of the student's major program.

The Department of Chemical Engineering permits students taking this Minor to complete BIOT 505 (Selected Topics in Biotechnology) as one of their technical complementary courses. Chemical Engineering students complete 15 credits beyond their 141-credit (115-credit for CEGEP students) B.Eng. program to obtain this Minor.

#### **Required Courses**

12 credits

| BIOT 505 | (3) | Selected Topics in Biotechnology  |
|----------|-----|-----------------------------------|
| CHEE 200 | (3) | Chemical Engineering Principles 1 |
| CHEE 204 | (3) | Chemical Engineering Principles 2 |
| CHEE 474 | (3) | Biochemical Engineering           |

OR

#### Alternative Required Courses (for Chemical Engineering students)

A Chemical Engineering student may complete the Biotechnology Minor by taking the courses below plus one course from the list of complementary courses, not including FACC 300.

| BIOL 200 | (3) | Molecular Biology                |  |
|----------|-----|----------------------------------|--|
| BIOL 201 | (3) | Cell Biology and Metabolism      |  |
| BIOL 202 | (3) | Basic Genetics                   |  |
| BIOT 505 | (3) | Selected Topics in Biotechnology |  |
| MIMM 211 | (3) | Introductory Microbiology        |  |

#### **Complementary Courses**

12 credits selected from courses outside the Department of the student's major program and/or from the lists below. If courses are chosen from the lists below, at least three courses must be taken from one area of concentration as grouped.

| Biomedicine |     |                                     |
|-------------|-----|-------------------------------------|
| ANAT 541    | (3) | Cell and Molecular Biology of Aging |
| EXMD 504    | (3) | Biology of Cancer                   |
| PATH 300    | (3) | Human Disease                       |
|             |     |                                     |
| Chemistry   |     |                                     |
| CHEM 482    | 0   |                                     |
| CHEM 502    | (3) | Advanced Bio-Organic Chemistry      |

| CHEM 552   | (3) | Physical Organic Chemistry                    |
|------------|-----|-----------------------------------------------|
| General    |     |                                               |
| FACC 300   | (3) | Engineering Economy                           |
|            |     |                                               |
| Immunology |     |                                               |
| ANAT 261   | (4) | Introduction to Dynamic Histology             |
| BIOC 503   | (3) | Immunochemistry                               |
| MIMM 214   | (3) | Introductory Immunology: Elements of Immunity |
| MIMM 414   | (3) | Advanced Immunology                           |
| PHGY 513   | (3) | Cellular Immunology                           |
|            |     |                                               |

# Management

PSYT 455

(3)

Note: Engineering students may not use these courses to count toward a Management minor, nor toward the Complementary Studies requirement.

| ECON 208          | (3)              | Microeconomic Analysis and Applications |
|-------------------|------------------|-----------------------------------------|
| MGCR 211          | (3)              | Introduction to Financial Accounting    |
| MGCR 341          | (3)              | Introduction to Finance                 |
| MGCR 352          | (3)              | Marketing Management 1                  |
| MGCR 472          | (3)              | Operations Management                   |
|                   |                  |                                         |
| Microbiology      |                  |                                         |
| MIMM 323          | (3)              | Microbial Physiology                    |
| MIMM 324          | (3)              | Fundamental Virology                    |
| MIMM 413          | (3)              | Parasitology                            |
| MIMM 465          | (3)              | Bacterial Pathogenesis                  |
| MIMM 466          | (3)              | Viral Pathogenesis                      |
|                   |                  |                                         |
| Molecular Biology | y (Biology)      |                                         |
| BIOL 300          | (3)              | Molecular Biology of the Gene           |
| BIOL 314          | (3)              | Molecular Biology of Oncogenes          |
| BIOL 520          | (3)              | Gene Activity in Development            |
| BIOL 524          | (3)              | Topics in Molecular Biology             |
| BIOL 551          | (3)              | Principles of Cellular Control          |
|                   |                  |                                         |
| Molecular Biology | y (Biochemistry) |                                         |
| BIOC 311          | (3)              | Metabolic Biochemistry                  |
| BIOC 312          | (3)              | Biochemistry of Macromolecules          |
| BIOC 450          | (3)              | Protein Structure and Function          |
| BIOC 454          | (3)              | Nucleic Acids                           |

McGill University, Faculty of Engineering, including Schools of Architecture and Urban Planning, 2015-2016 (Published August 17, 2015)

Neurochemistry

### Physiology

| EXMD 401 | (3) | Physiology and Biochemistry Endocrine Systems |
|----------|-----|-----------------------------------------------|
| EXMD 502 | (3) | Advanced Endocrinology 01                     |
| EXMD 503 | (3) | Advanced Endocrinology 02                     |
| PHAR 562 | (3) | Neuropharmacology                             |
| PHAR 563 | (3) | Endocrine Pharmacology                        |
| PHGY 517 | (3) | Artificial Internal Organs                    |
| PHGY 518 | (3) | Artificial Cells                              |

#### Pollution

Note: Engineering students may not use these courses to count toward the Environmental Engineering Minor.

| CIVE 225 | (4) | Environmental Engineering                  |
|----------|-----|--------------------------------------------|
| CIVE 430 | (3) | Water Treatment and Pollution Control      |
| CIVE 557 | (3) | Microbiology for Environmental Engineering |

### 12.11.4 Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits)

Minor Adviser (program coordinator): Dr. Samuel Sewall (Director of Undergraduate Studies, Chemistry)

Program credit weight: 25 credits

A passing grade for courses in the Minor is a C.

#### **Required Courses**

10 credits

| CHEE 310*  | (3) | Physical Chemistry for Engineers |
|------------|-----|----------------------------------|
| CHEM 212   | (4) | Introductory Organic Chemistry 1 |
| CHEM 233*  | (3) | Topics in Physical Chemistry     |
| CHEM 234** | (3) | Topics in Organic Chemistry      |

\* Students choose either CHEM 233 or CHEE 310

\*\* or CEGEP equivalent

#### **Complementary Courses**

15 credits from the following lists, two courses of which must be laboratory courses (\* indicates lab).

Note that CHEM 212 is a prerequisite for most of the courses listed below, and CHEM 223 (Introductory Physical Chemistry 1) and CHEM 243 (Introductory Physical Chemistry 2) or their equivalents are prerequisites for the Physical Chemistry courses. If students take CHEM 222 (Introductory Organic Chemistry 2), which includes a lab, instead of CHEM 234, they will receive credit for one of the two required laboratory courses, but they must complete a total of 25 credits in chemistry for the Minor.

#### Inorganic Chemistry

| CHEM 281  | (3) | Inorganic Chemistry 1          |
|-----------|-----|--------------------------------|
| CHEM 371* | (2) | Inorganic Chemistry Laboratory |
| CHEM 381  | (3) | Inorganic Chemistry 2          |
| CHEM 591  | (3) | Bioinorganic Chemistry         |

### Analytical Chemistry

| CHEM 287 (2) | Introductory Analytical Chemistry |
|--------------|-----------------------------------|
|--------------|-----------------------------------|

## ACADEMIC PROGRAMS

| CHEM 297* | (1) | Introductory Analytical Chemistry Laboratory |
|-----------|-----|----------------------------------------------|
| CHEM 367  | (3) | Instrumental Analysis 1                      |
| CHEM 377  | (3) | Instrumental Analysis 2                      |

# **Organic Chemistry**

| CHEM 302  | (3) | Introductory Organic Chemistry 3      |
|-----------|-----|---------------------------------------|
| CHEM 362* | (2) | Advanced Organic Chemistry Laboratory |
| CHEM 482  | 0   |                                       |

## Physical Chemistry

| CHEM 345  | (3) | Introduction to Quantum Chemistry      |
|-----------|-----|----------------------------------------|
| CHEM 355  | (3) | Molecular Properties and Structure 2   |
| CHEM 493* | (2) | Advanced Physical Chemistry Laboratory |
| CHEM 574  | (3) | Introductory Polymer Chemistry         |

### 12.11.5 Computer Science Courses and Minor Program

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. Engineering students may obtain a **Computer Science Minor** as part of their B.Eng., B.S.E., or B.Sc.(Arch.) degree by completing 24 credits of courses, passed with a grade of C or better.

Students interested in this Minor should contact:

Liette Chin Undergraduate Program Coordinator School of Computer Science Lorne Trottier Building, Room 2070 Telephone: 514-398-7071, ext. 00118 Email: *liette.chin@mcgill.ca* 

and the Minor Adviser in the School of Computer Science.

### 12.11.5.1 Computer Science Courses in Engineering Programs

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. The course taken by students in most B.Eng. programs (COMP 208) and other courses included in the core of the various B.Eng. and B.S.E. programs are listed below.

Search under All Courses for other courses offered by the School of Computer Sciences (subject code COMP).

| Computer Science Courses in Engineering Programs |     |                                     |  |
|--------------------------------------------------|-----|-------------------------------------|--|
| COMP 202                                         | (3) | Foundations of Programming          |  |
| COMP 206                                         | (3) | Introduction to Software Systems    |  |
| COMP 208                                         | (3) | Computers in Engineering            |  |
| COMP 250                                         | (3) | Introduction to Computer Science    |  |
| COMP 251                                         | (3) | Algorithms and Data Structures      |  |
| COMP 302                                         | (3) | Programming Languages and Paradigms |  |
| COMP 360                                         | (3) | Algorithm Design                    |  |
| COMP 421                                         | (3) | Database Systems                    |  |
|                                                  |     |                                     |  |

### 12.11.5.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits)

Minor Adviser: Students interested in this Minor should see Liette Chin, Undergraduate Program Coordinator, in the School of Computer Science (Lorne Trottier Building, Room 2060) to obtain the appropriate forms, and should see both the Minor Adviser in Computer Science and their department adviser

for approval of their course selection. Forms must be submitted and approved before the end of the Course Change (drop/add) period of the student's final term.

Note: This Minor is open to B.Eng., B.S.E., and B.Sc.(Arch.) students in Engineering.

Engineering students may obtain the Minor in Computer Science as part of their B.Eng., B.S.E., or B.S.C.(Arch.) degree by completing the 24 credits of courses passed with a grade of C or better. In general, some complementary courses within B.Eng. and B.S.E. programs may be used to satisfy some of these requirements, but the Minor will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. or B.S.E. degree. Students should consult their departments about the use of complementaries, and credits that can be double counted.

Note: COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor in Computer Science.

For more information, see the School of Computer Science website: http://www.cs.mcgill.ca.

#### **Required Courses**

| 6 credits |  |
|-----------|--|
|-----------|--|

| COMP 206 | (3) | Introduction to Software Systems |
|----------|-----|----------------------------------|
| COMP 250 | (3) | Introduction to Computer Science |

#### **Complementary Courses**

18 credits

3 credits from the following:

| COMP 302 | (3) | Programming Languages and Paradigms |
|----------|-----|-------------------------------------|
| COMP 303 | (3) | Software Development                |

3 credits from the following:

| COMP 273 | (3) | Introduction to Computer Systems     |
|----------|-----|--------------------------------------|
| ECSE 221 | (3) | Introduction to Computer Engineering |

#### 3-4 credits from the following:

| CIVE 320 | (4) | Numerical Methods                                           |
|----------|-----|-------------------------------------------------------------|
| COMP 350 | (3) | Numerical Computing                                         |
| ECSE 443 | (3) | Introduction to Numerical Methods in Electrical Engineering |
| MATH 317 | (3) | Numerical Analysis                                          |
| MECH 309 | (3) | Numerical Methods in Mechanical Engineering                 |
|          |     |                                                             |

0-3 credits from the following:

| COMP 251 | (3) | Algorithms and Data Structures |
|----------|-----|--------------------------------|
|----------|-----|--------------------------------|

6-9 credits chosen from other Computer Science courses at the 300 level or higher.

Notes:

A. COMP 208 may be taken before COMP 250; however, it cannot be taken for credit in the same term or afterward.

B. COMP 396 (Undergraduate Research Project) cannot be taken for credit toward this Minor.

Courses that make considerable use of computing from other departments may also be selected, with the approval of the School of Computer Science. Students should consult with their advisers about counting specific courses.

## 12.11.6 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)

Minor Adviser: Prof. L. Chouinard, Macdonald Engineering Building, Room 491 (Telephone: 514-398-6446)

Minor program credit weight: 24-25 credits

Note: This Minor is particularly designed for Civil Engineering students, but is open to all B.Eng., B.S.E., and B.Sc.(Arch.) students. All courses in the Minor must be passed with a grade of C or better.

### Prerequisites

| CIVE 208 | (3) | Civil Engineering System Analysis |
|----------|-----|-----------------------------------|
| CIVE 302 | (3) | Probabilistic Systems             |
| COMP 208 | (3) | Computers in Engineering          |
| FACC 300 | (3) | Engineering Economy               |

#### **Required Courses: Management and Law**

| 15 credits |     |                                             |
|------------|-----|---------------------------------------------|
| CIVE 324   | (3) | Sustainable Project Management              |
| FACC 220   | (3) | Law for Architects and Engineers            |
| INDR 294   | (3) | Introduction to Labour-Management Relations |
| MGCR 211   | (3) | Introduction to Financial Accounting        |
| MGCR 341   | (3) | Introduction to Finance                     |

## **Complementary Courses**

| 3-4 credits (4 credits from L | List A OR 3 credit | s from List B)                  |
|-------------------------------|--------------------|---------------------------------|
| List A - Building Structures  |                    |                                 |
| 4 credits from the following  | ;                  |                                 |
| ARCH 447                      | (2)                | Lighting                        |
| ARCH 451                      | (2)                | Building Regulations and Safety |
| ARCH 554                      | 0                  |                                 |
| CIVE 492                      | (2)                | Structures                      |
| OR                            |                    |                                 |
| List B - Heavy Construction   | 1                  |                                 |
| 3 credits from the following  | ;                  |                                 |
| MIME 322                      | (3)                | Rock Fragmentation              |
| MIME 333                      | (3)                | Materials Handling              |
|                               |                    |                                 |
| Construction-Related C        | Complementary      | y Courses                       |
| 6 credits from the following  | ;:                 |                                 |
| BUSA 462                      | (3)                | Management of New Enterprises   |

| BUSA 462 | (3) | Management of New Enterprises               |
|----------|-----|---------------------------------------------|
| CIVE 446 | (3) | Construction Engineering                    |
| CIVE 527 | (3) | Renovation and Preservation: Infrastructure |
| ECSE 461 | (3) | Electric Machinery                          |
| FINE 445 | (3) | Real Estate Finance                         |
|          |     |                                             |

| MIME 520  | (3) | Stability of Rock Slopes                      |
|-----------|-----|-----------------------------------------------|
| MIME 521  | (3) | Stability of Underground Openings             |
| MPMC 321* | (3) | Mécanique des roches et contrôle des terrains |

\* Course offered in French at École Polytechnique in Montreal

### 12.11.7 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

#### Program credit weight: 18 credits

This Minor consists of 18 credits of required and complementary courses given in the Economics Department. In addition, it is presumed that all Engineering students will have a sufficient background in statistics. Engineering Economy, FACC 300, does not form part of this Minor. Engineering students who want to complete a minor in economics are required to complete the following program rather than one of the minor concentrations offered by the Department of Economics in the Faculty of Arts section of this eCalendar, unless they have obtained permission from the Faculty of Engineering.

All courses in the Minor must be passed with a grade of C or better.

#### **Required Courses**

9 credits

| ECON 209*    | (3) | Macroeconomic Analysis and Applications |
|--------------|-----|-----------------------------------------|
| ECON 230D1** | (3) | Microeconomic Theory                    |
| ECON 230D2** | (3) | Microeconomic Theory                    |

\* This requirement is waived for students who choose ECON 330D1/ECON 330D2 from the list of complementary courses. Students may not take both ECON 209 and ECON 330D1/ ECON 330D2.

\*\* Students may, with consent of the instructor, take ECON 250D1/ECON 250D2 Introduction to Economic Theory: Honours, in place of ECON 230D1/ECON 230D2.

#### **Complementary Courses**

9 credits from:

| ECON 225   | (3) | Economics of the Environment                   |
|------------|-----|------------------------------------------------|
| ECON 303   | (3) | Canadian Economic Policy                       |
| ECON 304   | (3) | Financial Instruments & Institutions           |
| ECON 305   | (3) | Industrial Organization                        |
| ECON 306   | (3) | Labour Markets and Wages                       |
| ECON 308   | (3) | Governmental Policy Towards Business           |
| ECON 313   | (3) | Economic Development 1                         |
| ECON 314   | (3) | Economic Development 2                         |
| ECON 316   | (3) | The Underground Economy                        |
| ECON 326   | (3) | Ecological Economics                           |
| ECON 330D1 | (3) | Macroeconomic Theory                           |
| ECON 330D2 | (3) | Macroeconomic Theory                           |
| ECON 335   | (3) | The Japanese Economy                           |
| ECON 336   | (3) | The Chinese Economy                            |
| ECON 337   | (3) | Introductory Econometrics 1                    |
| ECON 344   | (3) | Industrial Revolution and Economic Development |
| ECON 345   | (3) | The International Economy since 1914           |
| ECON 347   | (3) | Economics of Climate Change                    |
| ECON 405   | (3) | Natural Resource Economics                     |

| ECON 406 | (3) | Topics in Economic Policy          |
|----------|-----|------------------------------------|
| ECON 408 | (3) | Public Sector Economics 1          |
| ECON 409 | (3) | Public Sector Economics 2          |
| ECON 411 | (3) | Economic Development: A World Area |
| ECON 416 | (3) | Topics in Economic Development 2   |
| ECON 420 | (3) | Topics in Economic Theory          |
| ECON 426 | (3) | Labour Economics                   |
| ECON 434 | (3) | Current Economic Problems          |
| ECON 440 | (3) | Health Economics                   |
| ECON 468 | (3) | Econometrics 1 - Honours           |
| ECON 469 | (3) | Econometrics 2 - Honours           |
| ECON 525 | (3) | Project Analysis                   |
| ECON 546 | (3) | Game Theory                        |

Note: Mining Engineering students are permitted to include MIME 526 Mineral Economics among the Complementary Courses.

#### 12.11.8 Minor in Environment

Environmental studies focus on the interactions between humans and their natural and technological environments. Environmental problems are complex, and their satisfactory solutions require the synthesis of social, scientific, and institutional knowledge.

The Minor in Environment is offered and administered by the McGill School of Environment (MSE).

Since the program comprises a total of 18 credits for the Minor, additional credits beyond those needed for the B.Eng. degree are required. Students wishing to complete the Minor should prepare a program and have it approved by both their regular Engineering departmental adviser and the MSE Adviser. For program details, see the *McGill School of Environment* > *Undergraduate* > : *Minor in Environment*.

**Note:** Engineering students interested in this Minor must submit a completed Course Authorization Form to the *McGill Engineering Student Centre* (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Minor Adviser: Students interested in this Minor should contact Kathy Roulet, MSE Program Adviser (email: *kathy.roulet@mcgill.ca*; telephone: 514-398-4306).

## 12.11.9 Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)

Minor Adviser: Prof. S. Ghoshal, Macdonald Engineering Building, Room 569C

Minor program credit weight: 21-22 credits

The Environmental Engineering Minor is administered by the Department of Civil Engineering and Applied Mechanics and is offered for all students in Engineering (including B.S.E. students) and in the Department of Bioresource Engineering wishing to pursue studies in this area.

A maximum of 12 credits of coursework in the student's major may double-count with the Minor.

To complete the Minor in Environmental Engineering, students must obtain a grade of C or better in all approved courses in the Minor, and satisfy the requirements of both the Minor and their major program.

Note: Not all courses listed are offered every year. Students should see the "Courses" section of this eCalendar to know if a course is offered.

#### **Complementary Courses**

21-22 credits

18 credits from Stream A, B, or C below

and

One course (3-4 credits) from the following list:

| BREE 327 | (3) | Bio-Environmental Engineering       |
|----------|-----|-------------------------------------|
| CHEE 230 | (3) | Environmental Aspects of Technology |
| CIVE 225 | (4) | Environmental Engineering           |

#### Stream A

15 credits\* from the Engineering Course List and 3 credits from the Non-Engineering Course List below

\* A minimum of 6 credits must be from outside the student's department. A maximum of 6 credits of research project courses may be counted toward this category, provided the project has sufficient environmental engineering content (project requires approval of project supervisor and coordinator of the Minor).

#### Stream B

15 credits of courses that make up the "Barbados Field Study Semester" below, provided the project for CIVE/AGRI/URBP 519 Sustainable Development Plans has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor);

AND

One course (3-4 credits) chosen from the Engineering Course List below, excluding CHEE 496.

### **Barbados Field Study Courses**

#### **Required Courses**

| 6 credits |     |                                    |
|-----------|-----|------------------------------------|
| URBP 507  | (3) | Planning and Infrastructure        |
| URBP 520  | (3) | Globalization: Planning and Change |

### **Complementary Courses**

| 9 credits            |                      |                             |
|----------------------|----------------------|-----------------------------|
| One of the following | cross-listed courses | s (3 credits):              |
| AGRI 452             | (3)                  | Water Resources in Barbados |
| CIVE 452             | (3)                  | Water Resources in Barbados |

## AND

One of the following cross-listed project courses (6 credits):

| AGRI 519 | (6) | Sustainable Development Plans |
|----------|-----|-------------------------------|
| CIVE 519 | (6) | Sustainable Development Plans |
| URBP 519 | (6) | Sustainable Development Plans |

#### Stream C

9 credits of courses specified from the "Barbados Interdisciplinary Tropical Studies (BITS)" field semester below, provided the project has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor):

| AEBI 425 | (3) | Tropical Energy and Food           |
|----------|-----|------------------------------------|
| AEBI 427 | (6) | Barbados Interdisciplinary Project |

AND

9 credits chosen from the Engineering Course List below, excluding CHEE 496.

## **Engineering Course List**

Courses offered at the Macdonald campus:

| BREE 217* | (3) | Hydrology and Water Resources    |
|-----------|-----|----------------------------------|
| BREE 322  | (3) | Organic Waste Management         |
| BREE 416  | (3) | Engineering for Land Development |
| BREE 518  | (3) | Bio-Treatment of Wastes          |

\* Not open to students who have passed CIVE 323.

Courses offered at the Downtown campus:

| ARCH 377   | (3) | Energy, Environment and Buildings           |
|------------|-----|---------------------------------------------|
| ARCH 515   | (3) | Sustainable Design                          |
| CHEE 351   | (3) | Separation Processes                        |
| CHEE 370   | (3) | Elements of Biotechnology                   |
| CHEE 496   | (3) | Environmental Research Project              |
| CHEE 591   | (3) | Environmental Bioremediation                |
| CHEE 592   | (3) | Industrial Air Pollution Control            |
| CHEE 593   | (3) | Industrial Water Pollution Control          |
| CIVE 225   | (4) | Environmental Engineering                   |
| CIVE 323** | (3) | Hydrology and Water Resources               |
| CIVE 421   | (3) | Municipal Systems                           |
| CIVE 428   | (3) | Water Resources and Hydraulic Engineering   |
| CIVE 430   | (3) | Water Treatment and Pollution Control       |
| CIVE 451   | (3) | Geoenvironmental Engineering                |
| CIVE 550   | (3) | Water Resources Management                  |
| CIVE 555   | (3) | Environmental Data Analysis                 |
| CIVE 557   | (3) | Microbiology for Environmental Engineering  |
| CIVE 572   | (3) | Computational Hydraulics                    |
| CIVE 573   | (3) | Hydraulic Structures                        |
| CIVE 574   | (3) | Fluid Mechanics of Water Pollution          |
| CIVE 577   | (3) | River Engineering                           |
| CIVE 584   | (3) | Groundwater Engineering                     |
| MECH 447   | (3) | Combustion                                  |
| MECH 526   | (3) | Manufacturing and the Environment           |
| MECH 534   | (3) | Air Pollution Engineering                   |
| MECH 535   | (3) | Turbomachinery and Propulsion               |
| MIME 422   | (3) | Mine Ventilation                            |
| MIME 512   | (3) | Corrosion and Degradation of Materials      |
| MPMC 328   | (3) | Environnement et gestion des rejets miniers |
| URBP 506   | (3) | Environmental Policy and Planning           |

\*\* Not open to students who have passed BREE 217.

# Non-Engineering Course List

Courses offered at the Macdonald campus:

| LSCI 230+  | (3) | Introductory Microbiology            |
|------------|-----|--------------------------------------|
| MICR 331+  | (3) | Microbial Ecology                    |
| MICR 341   | (3) | Mechanisms of Pathogenicity          |
| RELG 270   | (3) | Religious Ethics and the Environment |
| SOIL 210++ | (3) | Principles of Soil Science           |
| SOIL 331   | (3) | Environmental Soil Physics           |
| WILD 375   | (3) | Issues: Environmental Sciences       |

### FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

| WILD 415 | (2) | Conservation Law               |
|----------|-----|--------------------------------|
| WOOD 420 | (3) | Environmental Issues: Forestry |

+ Not open to students who have passed CHEE 370.

++ Not part of the Minor for Agricultural Engineering students.

Courses offered at the Downtown campus:

| ANTH 206 | (3) | Environment and Culture                                 |
|----------|-----|---------------------------------------------------------|
| BIOL 205 | (3) | Biology of Organisms                                    |
| BIOL 432 | (3) | Limnology                                               |
| CMPL 580 | (3) | Environment and the Law                                 |
| ECON 225 | (3) | Economics of the Environment                            |
| ECON 326 | (3) | Ecological Economics                                    |
| ECON 347 | (3) | Economics of Climate Change                             |
| EPSC 549 | (3) | Hydrogeology                                            |
| GEOG 200 | (3) | Geographical Perspectives: World Environmental Problems |
| GEOG 201 | (3) | Introductory Geo-Information Science                    |
| GEOG 203 | (3) | Environmental Systems                                   |
| GEOG 205 | (3) | Global Change: Past, Present and Future                 |
| GEOG 302 | (3) | Environmental Management 1                              |
| GEOG 308 | (3) | Principles of Remote Sensing                            |
| GEOG 321 | (3) | Climatic Environments                                   |
| GEOG 404 | (3) | Environmental Management 2                              |
| MIMM 211 | (3) | Introductory Microbiology                               |

### 12.11.10 Minor Programs in Finance, Management, Marketing, and Operations Management

#### Prerequisite: None

Minors for Non-Management Students: Students considering one of these Minor programs should consult a Faculty Student Adviser in the *McGill Engineering* Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) before applying to the Desautels Faculty of Management.

Many engineers begin to assume management functions within a few years of graduation. They can, at this stage, take up the study of economics, behavioural science, and other management subjects. Students wishing to include such studies in their undergraduate program can take suitable courses from Engineering and Management.

Each Minor is comprised of 18 credits of courses available from the core program of the Desautels Faculty of Management (subject to timetable requirements). Some courses from the Management core program have considerable overlap with Engineering courses and thus are not available to Engineering students.

Students embarking on a minor must be prepared to take credits additional to their Engineering program. Students in a **B.Eng.** or **B.S.E.** program may be able to count up to 6 credits of Complementary Studies Group B courses (Humanities and Social Sciences, Management Studies, and Law courses) toward both their Engineering major program and a Management minor where applicable. More information about Complementary Studies is given in each individual academic program listing for the B.Eng. and B.S.E degrees (see *section 12: Academic Programs*).

Students must have a minimum CGPA of 3.0 or better to be considered for one of these Minor programs.

Students planning to take any course with statistics as a prerequisite must have completed MGCR 271 (Business Statistics) or an equivalent course approved by the BCom Student Affairs Office.

Detailed information on these Minor programs can be found in *Desautels Faculty of Management > Undergraduate > Overview of Programs Offered by* the Desautels Faculty of Management > : Minors for Non-Management Students.

Further information can also be found at

www.mcgill.ca/engineering/current-students/undergraduate/advising-programs/academic-program-curriculum/minor-programs.

#### 12.11.10.1 Minor Finance (For Non-Management Students) (18 credits)

The Minor Finance consists of 18 credits of Management courses and is offered to non-Management students in the Faculties of Arts, Engineering, and Science.

The Minor has been designed to provide students with an understanding of the key concepts in corporate finance as well as investment banking.

| Required | Courses | ۹) | credits |
|----------|---------|----|---------|
| requireu | Courses | (J | creans  |

| FINE 342  | (3) | Corporate Finance       |
|-----------|-----|-------------------------|
| FINE 441  | (3) | Investment Management   |
| MGCR 341* | (3) | Introduction to Finance |

### **Complementary Courses (9 credits)**

9 credits selected from:

| FINE 442   | (3)   | Capital Markets and Institutions |
|------------|-------|----------------------------------|
| FINE 443   | (3)   | Applied Corporate Finance        |
| FINE 445   | (3)   | Real Estate Finance              |
| FINE 448   | (3)   | Financial Derivatives            |
| FINE 449   | (3)   | Market Risk Models               |
| FINE 451   | (3)   | Fixed Income Analysis            |
| FINE 480   | (3)   | Global Investments               |
| FINE 482   | (3)   | International Finance 1          |
| FINE 492   | (3)   | International Finance 2          |
| FINE 541N1 | (1.5) | Applied Investments              |
| FINE 541N2 | (1.5) | Applied Investments              |
| FINE 547   | (3)   | Advanced Finance Seminar         |
|            |       |                                  |

or other appropriate 300- or 400-level FINE courses with the approval of the Program Adviser.

\* Prerequisite: MGCR 271, Business Statistics, or another equivalent Statistics course approved by the Program Adviser.

Note: Students should select their Statistics course only after consulting the "Course Overlap" section in the Faculty of Arts, the "Course Overlap" section in the Faculty of Science, and the "Course Overlap" section in the Desautels Faculty of Management to avoid overlapping Statistics courses.

#### 12.11.10.2 Minor Management (For Non-Management Students) (18 credits)

The Minor Management consists of 18 credits of Management courses and is currently offered to non-Management students in the following Faculties: Arts, Engineering, Science, Agricultural & Environmental Sciences, Music, Religious Studies, and Kinesiology.

This Minor is designed to provide non-management students with the opportunity to obtain basic knowledge in various aspects of management.

#### **Complementary Courses (18 credits)**

Selected from categories A, B, and C:

### Category A

| 3 credits selected from: |     |                                      |
|--------------------------|-----|--------------------------------------|
| MGCR 211                 | (3) | Introduction to Financial Accounting |
| MGCR 341*                | (3) | Introduction to Finance              |

## Category B

9 credits selected from:

| MGCR 222    | (3) | Introduction to Organizational Behaviour |
|-------------|-----|------------------------------------------|
| MGCR 271**  | (3) | Business Statistics                      |
| MGCR 293*** | (3) | Managerial Economics                     |
| MGCR 331    | (3) | Information Systems                      |
| MGCR 352    | (3) | Marketing Management 1                   |
| MGCR 382    | (3) | International Business                   |
| MGCR 472*   | (3) | Operations Management                    |
|             |     |                                          |

### Category C

6 credits selected from:

3-6 credits from any 300- or 400-level Management courses for which prerequisites have been met.

0-3 credits may be from a specifically designated course by the student's home faculty.

\* Prerequisite: MGCR 271, Business Statistics, or another equivalent Statistics course approved by the Program Adviser.

\*\* 3 credits of statistics: Students who have taken an equivalent Statistics course in another faculty may not count those credits towards the Minor; an additional 3-credit complementary course must be chosen from the course list above.

\*\*\* Students who have taken an equivalent Economics course in another faculty may not count those credits toward the Minor; an additional 3-credit complementary course must be chosen from the course list above.

Note: Students should select their Statistics course only after consulting the "Course Overlap" section in the Faculty of Arts, the "Course Overlap" section in the Faculty of Science, and the "Course Overlap" section in the Desautels Faculty of Management to avoid overlapping Statistics courses.

#### 12.11.10.3 Minor Marketing (For Non-Management Students) (18 credits)

The Minor Marketing consists of 18 credits of Management courses and is currently offered to non-Management students in the Faculties of Arts, Engineering, Science, and the Schulich School of Music.

This Minor is designed to provide students with an understanding of the fundamental concepts in marketing and a framework for applying marketing in a decision-making context. Students will be introduced to the basic concepts in marketing. The use of marketing theory and concepts for decision making will be covered. Marketing research methods for marketing decisions is introduced. Subsequently, students will be able to specialize by choosing from the list of complementary courses.

#### **Required Courses (9 credits)**

| MGCR 352 | (3) | Marketing Management 1 |
|----------|-----|------------------------|
| MRKT 354 | (3) | Marketing Management 2 |
| MRKT 451 | (3) | Marketing Research     |

#### **Complementary Courses (9 credits)**

3 credits:

| MGCR 271* | (3) | Business Statistics |
|-----------|-----|---------------------|
| MGCR 271* | (3) | Business Statistics |

#### 6 credits selected from:

| MRKT 357 | (3) | Marketing Planning 1               |
|----------|-----|------------------------------------|
| MRKT 365 | (3) | New Products                       |
| MRKT 438 | (3) | Brand Management                   |
| MRKT 452 | (3) | Consumer Behaviour                 |
| MRKT 453 | (3) | Advertising Management             |
| MRKT 455 | (3) | Sales Management                   |
| MRKT 459 | (3) | Retail Management                  |
| MRKT 483 | (3) | International Marketing Management |

or other appropriate 300- or 400-level MRKT courses with the approval of the Program Adviser.

\* Students who have taken an equivalent Statistics course in another faculty may not count those credits toward the Minor; an additional 3-credit complementary course must be chosen from the course list above.

Note: Students should select their Statistics course only after consulting the "Course Overlap" section in the Faculty of Arts, the "Course Overlap" section in the Faculty of Science, and the "Course Overlap" section in the Desautels Faculty of Management to avoid overlapping Statistics courses.

#### 12.11.10.4 Minor Operations Management (For Non-Management Students) (18 credits)

The Minor Operations Management consists of 18 credits of Management courses and is currently offered to non-Management students in the Faculties of Arts, Engineering, Science, and Agricultural & Environmental Sciences.

It provides non-Management students with the opportunity to pursue a career that involves decision making at the operational level. Graduates will be able to find employment in consulting, manufacturing, supply chain, distribution, retail operations, healthcare management and environmental management for profit and non-profit corporations. This Minor has been designed to provide students with an understanding of the key concepts in operations management theory and practice.

#### **Required Courses (6 credits)**

| MGCR 472 | (3) | Operations Management |
|----------|-----|-----------------------|
| MGSC 373 | (3) | Operations Research 1 |

#### **Complementary Courses (12 credits)**

3 credits

#### 9 credits selected from:

| MGSC 372 | (3) | Advanced Business Statistics                        |
|----------|-----|-----------------------------------------------------|
| MGSC 402 | (3) | Operations Strategy                                 |
| MGSC 403 | (3) | Introduction to Logistics Management                |
| MGSC 405 | (3) | Quality Management                                  |
| MGSC 415 | (3) | Supplier Management                                 |
| MGSC 431 | (3) | Operations and Supply Chain Analysis                |
| MGSC 479 | (3) | Applied Optimization                                |
| MGSC 575 | (3) | Applied Time Series Analysis Managerial Forecasting |
| MGSC 578 | (3) | Simulation of Management Systems                    |

or other appropriate 300- or 400-level MGSC courses with the approval of the Program Adviser.

\* 3 credits of Statistics: Students who have taken an equivalent Statistics course in another faculty may not count those credits toward the Minor; an additional 3-credit complementary course must be chosen from the course list above.

Note: Students should select their Statistics course only after consulting the "Course Overlap" section in the Faculty of Arts, the "Course Overlap" section in the Faculty of Science, and the "Course Overlap" section in the Desautels Faculty of Management to avoid overlapping Statistics courses.

#### 12.11.11 Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits)

Minor Adviser: Prof. Nate Quitoriano (Minor Coordinator), Wong Building, Room 2620

Engineering students may obtain a Materials Engineering Minor by completing 24 credits chosen from the required and complementary courses listed below. By a careful selection of complementary courses, Engineering students may obtain this Minor with a minimum of 15 additional credits.

| <b>Required Courses</b> |     |                       |
|-------------------------|-----|-----------------------|
| 15 credits              |     |                       |
| CHEE 380*               | (3) | Materials Science     |
| CHEE 484                | (3) | Materials Engineering |

| MIME 260* | (3) | Materials Science and Engineering       |
|-----------|-----|-----------------------------------------|
| MIME 345  | (3) | Applications of Polymers                |
| MIME 465  | (3) | Metallic and Ceramic Powders Processing |
| MIME 467  | (3) | Electronic Properties of Materials      |

\* Students choose either CHEE 380 or MIME 260.

#### **Complementary Courses**

9 credits from the following:

| CHEE 587 | (3) | Chemical Processing: Electronics Industry |
|----------|-----|-------------------------------------------|
| ECSE 545 | (3) | Microelectronics Technology               |
| MECH 530 | (3) | Mechanics of Composite Materials          |
| MIME 360 | (3) | Phase Transformations: Solids             |
| MIME 512 | (3) | Corrosion and Degradation of Materials    |
| MIME 560 | (3) | Joining Processes                         |
| MIME 561 | (3) | Advanced Materials Design                 |
| MIME 563 | (3) | Hot Deformation of Metals                 |
| MIME 569 | (3) | Electron Beam Analysis of Materials       |

#### 12.11.12 Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) AND an adviser designated by the Department of Mathematics and Statistics, normally beginning in the U2 year (please consult the Department of Mathematics and Statistics for this adviser). Selection of courses must be done in conjunction with the Minor advisers.

Note: The Mathematics Minor is open to all students in the Faculty of Engineering (B.Eng., B.S.E., and B.Sc.(Arch.)).

Engineering students must obtain a grade of C or better in courses approved for this Minor.

#### **Course Selection**

At least 18 credits must be chosen from the Mathematics and Statistics courses approved for the Mathematics Major or Honours program, or from the following courses:

| MATH 249 | (3) | Honours Complex Variables        |
|----------|-----|----------------------------------|
| MATH 363 | (3) | Discrete Mathematics             |
| MATH 381 | (3) | Complex Variables and Transforms |

The remaining credits may be chosen from mathematically-allied courses.

The following courses cannot be used toward the Minor:

| MATH 222 | (3) | Calculus 3                                        |
|----------|-----|---------------------------------------------------|
| MATH 223 | (3) | Linear Algebra                                    |
| MATH 247 | (3) | Honours Applied Linear Algebra                    |
| MATH 248 | (3) | Honours Advanced Calculus                         |
| MATH 262 | (3) | Intermediate Calculus                             |
| MATH 263 | (3) | Ordinary Differential Equations for Engineers     |
| MATH 264 | (3) | Advanced Calculus for Engineers                   |
| MATH 270 | (3) | Applied Linear Algebra                            |
| MATH 271 | (3) | Linear Algebra and Partial Differential Equations |
| MATH 314 | (3) | Advanced Calculus                                 |

| MATH 315 | (3) | Ordinary Differential Equations                |
|----------|-----|------------------------------------------------|
| MATH 319 | (3) | Introduction to Partial Differential Equations |
| MATH 325 | (3) | Honours Ordinary Differential Equations        |

# 12.11.13 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits)

Minor Adviser: Prof. Hani Mitri (Minor Coordinator)

Frank Dawson Adams Building, Room 121

Program credit weight: 23 credits

One of the required courses is a work term for which enrolment may be limited.

# **Required Courses**

| 14 credits |     |                                       |
|------------|-----|---------------------------------------|
| MIME 200   | (3) | Introduction to the Minerals Industry |
| MIME 291   | (2) | Industrial Work Period 2              |
| MIME 322   | (3) | Rock Fragmentation                    |
| MIME 325   | (3) | Mineral Industry Economics            |
| MIME 333   | (3) | Materials Handling                    |

### **Complementary Courses**

9 credits

## List A: Mining Engineering

3-9 credits from the following:

| MIME 320 | (3) | Extraction of Energy Resources         |
|----------|-----|----------------------------------------|
| MIME 323 | (3) | Rock and Soil Mass Characterization    |
| MIME 341 | (3) | Introduction to Mineral Processing     |
| MIME 419 | (3) | Surface Mining                         |
| MIME 422 | (3) | Mine Ventilation                       |
| MIME 520 | (3) | Stability of Rock Slopes               |
| MIME 521 | (3) | Stability of Underground Openings      |
| MIME 526 | (3) | Mineral Economics                      |
| MIME 588 | (3) | Reliability Analysis of Mining Systems |
|          |     |                                        |

# List B: Mechanical Engineering

0-6 credits from the following:

| MECH 497 | (3) | Value Engineering            |
|----------|-----|------------------------------|
| MECH 557 | (3) | Mechatronic Design           |
| MECH 572 | (3) | Introduction to Robotics     |
| MECH 573 | (3) | Mechanics of Robotic Systems |
| MECH 577 | (3) | Optimum Design               |

# List C: Civil Engineering

0-6 credits from the following:

### FACULTY OF ENGINEERING, INCLUDING SCHOOLS OF ARCHITECTURE AND URBAN PLANNING

| CIVE 416 | (3) | Geotechnical Engineering                    |
|----------|-----|---------------------------------------------|
| CIVE 451 | (3) | Geoenvironmental Engineering                |
| CIVE 462 | (3) | Design of Steel Structures                  |
| CIVE 463 | (3) | Design of Concrete Structures               |
| CIVE 527 | (3) | Renovation and Preservation: Infrastructure |

#### List D: Chemical Engineering

0-6 credits from the following:

| CHEE 453 | (4) | Process Design        |
|----------|-----|-----------------------|
| CHEE 455 | (3) | Process Control       |
| CHEE 484 | (3) | Materials Engineering |

### List E: Electrical Engineering

| 0-6 credits from the f | following: |                               |
|------------------------|------------|-------------------------------|
| ECSE 404               | (3)        | Control Systems               |
| ECSE 426               | (3)        | Microprocessor Systems        |
| ECSE 436               | (3)        | Signal Processing Hardware    |
| ECSE 451               | (3)        | EM Transmission and Radiation |
| ECSE 464               | (3)        | Power Systems Analysis        |

#### 12.11.14 Minor in Musical Science and Technology

The Musical Science and Technology Minor focuses on interdisciplinary topics in science and technology applied to music. The goal of the program is to help prepare students for commercial jobs in the audio technology sector and/or for subsequent graduate research study. The MST Minor is designed to serve students who already have a good background in the sciences and prior experience with math and computer science courses.

Engineering students may apply for admission to the **Minor in Musical Science and Technology**. Detailed information on this program can be found in *Schulich School of Music* > Undergraduate > Programs of study > Department of Music Research: Composition; Music Education; Music History; Theory; Faculty Program > : Minor Musical Science and Technology (18 credits). Enrolment in Music Technology programs is highly restricted.

Application forms will be available from the *Department of Music Research (research.music@mcgill.ca*; Room A726C) in the Schulich School of Music from February 1, and must be completed and returned to the Department of Music Research by June 1. Late applications will not be accepted and no students will be admitted to the Minor in January. Successful applicants will be notified by June 20. Registration will be limited to available lab space.

For further information about this Minor, call 514-398-4540 or email *research.music@mcgill.ca*. Further information on this program is also available on the Music Technology website at *www.music.mcgill.ca/musictech/programmes\_and\_admissions*.

Minor Adviser: Prof. Gary Scavone (Area Chair for the Music Technology program); email: gary.scavone@mcgill.ca

#### 12.11.15 Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits)

Minor Adviser: Prof. F. Buchinger, Department of Physics

Students in Honours Electrical Engineering may obtain this Minor as part of their B.Eng. degree by completing 18 credits of Physics courses, as listed below.

#### **Required Courses**

| 9 credits |     |                           |
|-----------|-----|---------------------------|
| PHYS 253  | (3) | Thermal Physics           |
| PHYS 357* | (3) | Honours Quantum Physics 1 |
| PHYS 457* | (3) | Honours Quantum Physics 2 |

\* Students who take PHYS 357 and PHYS 457 can omit PHYS 271 from their normal Electrical Engineering program.

#### **Complementary Courses**

9 credits from the following:

| PHYS 351 | (3) | Honours Classical Mechanics 2  |
|----------|-----|--------------------------------|
| PHYS 362 | (3) | Statistical Mechanics          |
| PHYS 432 | (3) | Physics of Fluids              |
| PHYS 514 | (3) | General Relativity             |
| PHYS 551 | (3) | Quantum Theory                 |
| PHYS 557 | (3) | Nuclear Physics                |
| PHYS 558 | (3) | Solid State Physics            |
| PHYS 559 | (3) | Advanced Statistical Mechanics |
| PHYS 562 | (3) | Electromagnetic Theory         |
| PHYS 567 | (3) | Particle Physics               |

## 12.11.16 Bachelor of Engineering (B.Eng.) - Minor Software Engineering (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

The Software Engineering Minor will prepare engineering students for a career in software engineering. It will provide a foundation in basic computer science, computer programming, and software engineering practice.

This Minor consists of 24 credits (eight courses). Up to four courses (12 credits) may be double-counted for credit toward the B. Eng. degree in Electrical Engineering or Computer Engineering. Students in other programs may double-count up to three courses (9 credits).

Students considering this Minor should consult with the Minor Adviser listed above.

### **Required Courses**

| 1: | 2 | cr | ec | li | ts |
|----|---|----|----|----|----|
|    |   |    |    |    |    |

| COMP 250 | (3) | Introduction to Computer Science     |
|----------|-----|--------------------------------------|
| ECSE 221 | (3) | Introduction to Computer Engineering |
| ECSE 321 | (3) | Introduction to Software Engineering |
| ECSE 428 | (3) | Software Engineering Practice        |

## **Complementary Courses**

12 credits from the following:

#### **Engineering Courses**

6-12 credits from the following:

| CHEE 571 | (3) | Small Computer Applications: Chemical Engineering |
|----------|-----|---------------------------------------------------|
| CIVE 460 | (3) | Matrix Structural Analysis                        |
| CIVE 550 | (3) | Water Resources Management                        |
| CIVE 572 | (3) | Computational Hydraulics                          |
| ECSE 322 | (3) | Computer Engineering                              |
| ECSE 420 | (3) | Parallel Computing                                |
| ECSE 421 | (3) | Embedded Systems                                  |
| ECSE 422 | (3) | Fault Tolerant Computing                          |
| ECSE 424 | (3) | Human-Computer Interaction                        |
| ECSE 427 | (3) | Operating Systems                                 |
| ECSE 429 | (3) | Software Validation                               |
| ECSE 526 | (3) | Artificial Intelligence                           |

| ECSE 532 | (3) | Computer Graphics                 |
|----------|-----|-----------------------------------|
| MECH 524 | (3) | Computer Integrated Manufacturing |
| MECH 539 | (3) | Computational Aerodynamics        |

#### **Computer Science Courses**

0-6 credits from the following (no more than 6 credits will count toward the Minor):

| COMP 302 | (3) | Programming Languages and Paradigms |
|----------|-----|-------------------------------------|
| COMP 421 | (3) | Database Systems                    |
| COMP 424 | (3) | Artificial Intelligence             |
| COMP 527 | (3) | Logic and Computation               |

### 12.11.17 Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

This Minor is offered jointly by the Faculties of Engineering and Management. It will appeal to those students who have a concept, process, or product idea in mind and who want to explore the opportunity of commercializing it. It will also be of interest to students who have a general interest in entrepreneurship and intend to pursue a career in small- and medium-sized high-technology/engineering companies.

Engineering students (including B.Eng., B.S.E., and B.Sc.(Arch.) students) may obtain the Technological Entrepreneurship Minor by completing six courses (18 credits). B.Eng. and B.S.E. students may double-count up to two courses (6 credits) of Complementary Studies (Group B, Humanities, and Social Sciences courses) toward the Minor. B.Eng. Mechanical Engineering students may double-count up to 6 credits of Complementary Studies Group B courses and/or Elective courses (for Mechanical Engineering students from a CEGEP background) toward the Minor.

Students considering this Minor should consult the Minor Adviser listed above.

### **Complementary Courses**

18 credits (six courses) from the following:

| BUSA 465 | (3) | Technological Entrepreneurship   |
|----------|-----|----------------------------------|
| FACC 500 | (3) | Technology Business Plan Design  |
| FACC 501 | (3) | Technology Business Plan Project |
| MGCR 352 | (3) | Marketing Management 1           |
| MGCR 423 | (3) | Strategic Management             |
| ORGB 321 | (3) | Leadership                       |
| ORGB 423 | (3) | Human Resources Management       |