Master of Engineering (M.Eng.) Biological and Biomedical Engineering (Thesis) (45 credits)

Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Offered by: Biological & Biomedical Engr     Degree: Master of Engineering

Program Requirements

** NEW PROGRAM **

The Biological and Biomedical Engineering (BBME) Master’s program focuses on the interdisciplinary application of methods, paradigms, technologies, and devices from engineering and the natural sciences to problems in biology, medicine, and the life sciences. With its unique multidisciplinary environment, and taking advantage of research collaborations between staff in the Faculties of Medicine, Science, and Engineering. BBME offers thesis-based graduate degrees (M.Eng.) that span broad themes in biomodelling, biosignal processing, medical imaging, nanotechnology, artificial cells and organs, probiotics, bioinformatics, bioengineering, biomaterials, and orthopaedics. BBME’s internationally renowned staff provide frequent and stimulating interactions with physicians, scientists, and the biomedical industry. Through courses and thesis research, this program will prepare students for careers in industry, academia, hospitals and government and provide a solid basis for Ph.D. studies. Candidates should hold a bachelor’s degree in engineering, science, or medicine with a strong emphasis on mathematics, physics, chemistry, and basic physiology or cell biology.

Thesis Courses (24 credits)

  • BBME 693 Thesis Research 1 (6 credits)

    Offered by: Biological & Biomedical Engr (Interfaculty Studies)

    Administered by: Graduate Studies

    Overview

    BBME : Independent research work under the direction of the Thesis Supervisor

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Restriction(s): Only open to students registered in M.Eng in Biological and Biomedical Engineering Master's Program (Thesis)

  • BBME 694 Thesis Research 2 (6 credits)

    Offered by: Biological & Biomedical Engr (Interfaculty Studies)

    Administered by: Graduate Studies

    Overview

    BBME : Independent research work under the direction of the Thesis Supervisor

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Restriction(s): Only open to students registered in M.Eng in Biological and Biomedical Engineering Master's Program (Thesis)

  • BBME 695 Thesis Submission (12 credits)

    Offered by: Biological & Biomedical Engr (Interfaculty Studies)

    Administered by: Graduate Studies

    Overview

    BBME : Independent research work under the direction of the Thesis Supervisor.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Restriction(s): Only open to students registered in M.Eng in Biological and Biomedical Engineering Master's Program (Thesis)

Required Courses (3 credits)

Complementary Courses (18 credits)

12 credits from BMDE or BIEN courses at the 500-level or higher which may also include MDPH 607, of which the following must be included:

3 credits from BMDE and 3 credits from BIEN

3 credits from the following quantitative courses, or other quantitative courses (at the 500-level or higher) approved by the Graduate Program Director.

  • BIEN 510 Engineered Nanomaterials for Biomedical Applications (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction to the interdisciplinary field of biomedical uses of nanotechnology. Emphasis on emerging nanotechnologies and biomedical applications including nanomaterials, nanoengineering, nanotechnology-based drug delivery systems, nano-based imaging and diagnostic systems, nanotoxicology and immunology, and translating nanomedicine into clinical investigation.

    Terms: Fall 2016, Winter 2017

    Instructors: Joseph Kinsella (Fall) Joseph Kinsella (Winter)

  • BIEN 520 High Throughput Bioanalytical Devices (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction to the field of high throughput screening (HTS) analytical techniques and devices used for genomics, proteomics and other â•œomicsâ•š approaches, as well as for diagnostics, or for more special cases, e.g., screening for biomaterials. Introduction into the motivation of HTS and its fundamental physico-chemical challenges; techniques used to design, fabricate and operate HTS devices, such as microarrays and new generation DNA screening based on nanotechnology. Specific applications: DNA, protein and diagnostic and cell and tissue arrays.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite: Permission of instructor.

    • (3-0-6)

  • BIEN 530 Imaging and Bioanalytical Instrumentation (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Microscopy techniques with application to biology and medicine. Practical introduction to optics and microscopy from the standpoint of biomedical research. Discussion of recent literature; hands-on experience. Topics include: optics, contrast techniques, advanced microscopy, and image analysis.

    Terms: Winter 2017

    Instructors: Adam Hendricks (Winter)

    • Prerequisite: Permission of instructor.

    • (3-1-5)

  • BIEN 550 Biomolecular Devices (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Fundamentals of motor proteins in neuronal transport, force generation e.g. in muscles, cell motility and division. A survey of recent advances in using motor proteins to power nano fabricated devices. Principles of design and operation; hands-on-experience in building a simple device.

    Terms: Fall 2016

    Instructors: Adam Hendricks (Fall)

    • Prerequisite: Permission of instructor.

    • (3-1-5)

  • BIEN 560 Biosensors (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction into the motivation of analytical biosensors as well as its fundamental physicochemical challenges. Techniques used to design, fabricate and operate biosensors. Specific applications.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite(s): Permission of instructor.

    • 1. (3-0-6)

  • BIEN 590 Cell Culture Engineering (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Basic principles of cell culture engineering, cell line development and cell culture products; genomics, proteomics and post-translational modifications; elements of cell physiology for medium design and bioprocessing; bioreactor design, scale-up for animal cell culture and single use equipment; challenges in downstream processing of cell-culture derived products; process intensification: fed-batch, feeding strategies and continuous manufacturing; scale-down and process modeling; Process Analytical technologies and Quality by Design (QbD) concept.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • (3-0-6)

    • Prerequisite: Permission of instructor.

  • BMDE 502 BME Modelling and Identification (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Methodologies in systems or distributed multidimensional processes. System themes include parametric vs. non-parametric system representations; linear/non-linear; noise, transients and time variation; mapping from continuous to discrete models; and relevant identification approaches in continuous and discrete time formulations.

    Terms: Winter 2017

    Instructors: Henrietta L Galiana, Georgios Mitsis (Winter)

    • (3-0-6)

    • Prerequisites: Undergraduate basic statistics and: either BMDE 519, or Signals and Systems (e.g., ECSE 303 & ECSE 304) or equivalent

  • BMDE 503 Biomedical Instrumentation (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The principles and practice of making biological measurements in the laboratory, including theory of linear systems, data sampling, computer interfaces and electronic circuit design.

    Terms: Fall 2016

    Instructors: Ross Wagner (Fall)

    • (3-0-6)

    • Prerequisite: Experience with differential equations, in particular Laplace Transforms and complex numbers (e.g. MATH 263 or MATH 381 or equivalent) or permission of instructor.

  • BMDE 509 Quantitative Analysis and Modelling of Cellular Processes (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Quantitative models for key intra- and inter-cellular processes. Key mathematical concepts: stochastic differential equations, Markov models, Gibbs free energy, and Fick's Law. Biological systems: neurons, networks of bacteria, and genetic regulatory systems. Emphasis on the design of quantitative experiments and data analysis.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • BMDE 512 Finite-Element Modelling in Biomedical Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : General principles of quantitative modelling; types of models; principles of the finite-element method, primarily as applied to mechanical systems; introduction to the use of finite-element software; model generation from imaging data; modelling various material types, mainly biological; model validation.

    Terms: Fall 2016

    Instructors: W Robert J Funnell (Fall)

    • (3-0-6)

    • Prerequisite: Differential equations (MATH 271 or equivalent) or permission of instructor

  • BMDE 519 Biomedical Signals and Systems (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.

    Terms: Fall 2016

    Instructors: Robert E Kearney (Fall)

    • (3-0-6)

    • Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor

  • BMDE 610 Functional Neuroimaging Fusion (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Biomedical engineering: Multimodal data fusion of electrophysiology and functional neuroimaging data, including: detailed description of source localization methods for Electro- and MagnetoEncephaloGraphy data, analysis of brain hemodynamic activity through simultaneous recordings with electrophysiology, analysis and reconstruction of Near Infra-Red Spectroscopy data, modeling of the neurovascular coupling,validation methodology.

    Terms: Winter 2017

    Instructors: Christophe Grova (Winter)

6 credits from the list below or from other courses (at the 500-level or higher) which have both biomedical content and content from the physical sciences, engineering, or computer science, with the approval of the supervisor and Graduate Program Director.

  • BIEN 510 Engineered Nanomaterials for Biomedical Applications (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction to the interdisciplinary field of biomedical uses of nanotechnology. Emphasis on emerging nanotechnologies and biomedical applications including nanomaterials, nanoengineering, nanotechnology-based drug delivery systems, nano-based imaging and diagnostic systems, nanotoxicology and immunology, and translating nanomedicine into clinical investigation.

    Terms: Fall 2016, Winter 2017

    Instructors: Joseph Kinsella (Fall) Joseph Kinsella (Winter)

  • BIEN 520 High Throughput Bioanalytical Devices (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction to the field of high throughput screening (HTS) analytical techniques and devices used for genomics, proteomics and other â•œomicsâ•š approaches, as well as for diagnostics, or for more special cases, e.g., screening for biomaterials. Introduction into the motivation of HTS and its fundamental physico-chemical challenges; techniques used to design, fabricate and operate HTS devices, such as microarrays and new generation DNA screening based on nanotechnology. Specific applications: DNA, protein and diagnostic and cell and tissue arrays.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite: Permission of instructor.

    • (3-0-6)

  • BIEN 530 Imaging and Bioanalytical Instrumentation (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Microscopy techniques with application to biology and medicine. Practical introduction to optics and microscopy from the standpoint of biomedical research. Discussion of recent literature; hands-on experience. Topics include: optics, contrast techniques, advanced microscopy, and image analysis.

    Terms: Winter 2017

    Instructors: Adam Hendricks (Winter)

    • Prerequisite: Permission of instructor.

    • (3-1-5)

  • BIEN 550 Biomolecular Devices (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Fundamentals of motor proteins in neuronal transport, force generation e.g. in muscles, cell motility and division. A survey of recent advances in using motor proteins to power nano fabricated devices. Principles of design and operation; hands-on-experience in building a simple device.

    Terms: Fall 2016

    Instructors: Adam Hendricks (Fall)

    • Prerequisite: Permission of instructor.

    • (3-1-5)

  • BIEN 560 Biosensors (3 credits)

    Offered by: Bioengineering (Faculty of Engineering)

    Overview

    BIEN : Introduction into the motivation of analytical biosensors as well as its fundamental physicochemical challenges. Techniques used to design, fabricate and operate biosensors. Specific applications.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite(s): Permission of instructor.

    • 1. (3-0-6)

  • BIOT 505 Selected Topics in Biotechnology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biotechnology : Current methods and recent advances in biological, medical, agricultural and engineering aspects of biotechnology will be described and discussed. An extensive reading list will complement the lecture material.

    Terms: Fall 2016

    Instructors: Elias Georges, Babykumari Chitramuthu, Thomas Ming Swi Chang (Fall)

    • Fall

    • Restriction: U3 students

  • BMDE 501 Selected Topics in Biomedical Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An overview of how techniques from engineering and the physical sciences are applied to the study of selected physiological systems and biological signals. Using specific biological examples, systems will be studied using: signal or finite-element analysis, system and identification, modelling and simulation, computer control of experiments and data acquisition.

    Terms: Fall 2016

    Instructors: W Robert J Funnell (Fall)

    • (3-0-6)

  • BMDE 502 BME Modelling and Identification (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Methodologies in systems or distributed multidimensional processes. System themes include parametric vs. non-parametric system representations; linear/non-linear; noise, transients and time variation; mapping from continuous to discrete models; and relevant identification approaches in continuous and discrete time formulations.

    Terms: Winter 2017

    Instructors: Henrietta L Galiana, Georgios Mitsis (Winter)

    • (3-0-6)

    • Prerequisites: Undergraduate basic statistics and: either BMDE 519, or Signals and Systems (e.g., ECSE 303 & ECSE 304) or equivalent

  • BMDE 503 Biomedical Instrumentation (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The principles and practice of making biological measurements in the laboratory, including theory of linear systems, data sampling, computer interfaces and electronic circuit design.

    Terms: Fall 2016

    Instructors: Ross Wagner (Fall)

    • (3-0-6)

    • Prerequisite: Experience with differential equations, in particular Laplace Transforms and complex numbers (e.g. MATH 263 or MATH 381 or equivalent) or permission of instructor.

  • BMDE 504 Biomaterials and Bioperformance (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Biological and synthetic biomaterials, medical devices, and the issues related to their bioperformance. The physicochemical characteristics of biomaterials in relation to their biocompatibility and sterilization.

    Terms: Winter 2017

    Instructors: Maryam Tabrizian (Winter)

    • (3-0-6)

    • Restriction: Graduate and final-year undergraduate students from physical, biological and medical science, and engineering

  • BMDE 505 Cell and Tissue Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Application of the principles of engineering, physical, and biological sciences to modify and create cells and tissues for therapeutic applications will be discussed, as well as the industrial perspective and related ethical issues.

    Terms: Winter 2017

    Instructors: Satya Prakash (Winter)

    • (3-0-6)

    • 1.5 hours lecture/1.5 hours seminar per week

    • Restriction: graduate and final year undergraduate students from physical, biological, and medical science, and engineering.

  • BMDE 506 Molecular Biology Techniques (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Introduction to major techniques of molecular biology for physical scientists.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • (1-5-3)

    • Prerequisites: MATH 222, BIOL 200 or BIOL 201, CHEM 212 or CHEM 213 or PHYS 253

    • Restrictions: Limited to 18 students. Calculus required, physics or physical chemistry (thermodynamics, statistical mechanics) preferred. Primarily for graduate students or advanced undergraduate students in the physical sciences who are interested in learning molecular biology techniques. Preference given to graduate students in Biomedical Engineering and Physics. Students who have completed BIOC 300 or MIMM 366 are not eligible.

  • BMDE 508 Introduction to Micro and Nano-Bioengineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The micro and nanotechnologies that drive and support the miniaturization and parallelization of techniques for life sciences research, including different inventions, designs and engineering approaches that lead to new tools and methods for the life sciences - while transforming them - and help advance our knowledge of life.

    Terms: Fall 2016

    Instructors: David Juncker (Fall)

    • (3-0-6)

    • Prerequisite: Permission of instructor

    • This course is intended for graduate and advanced undergraduate students having a biological/medical background or an engineering, physical sciences background. Engineering students enrolled in the Minor in Biomedical Engineering, or Honours in Electrical Engineering and Honours in Mechanical Engineering, should be particularly interested.

  • BMDE 509 Quantitative Analysis and Modelling of Cellular Processes (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Quantitative models for key intra- and inter-cellular processes. Key mathematical concepts: stochastic differential equations, Markov models, Gibbs free energy, and Fick's Law. Biological systems: neurons, networks of bacteria, and genetic regulatory systems. Emphasis on the design of quantitative experiments and data analysis.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • BMDE 510 Topics in Astrobiology (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Introduction to astrobiology, defined as the scientific study of the origin, evolution, distribution and destiny of life in the universe. Includes interdisciplinary lectures in prebiotic chemistry, extremophilic microorganisms, analog sites, habitability, astrodynamics, experimental facilities and instrumentation for space experiments and missions, and recent results from orbital and lander missions.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • BMDE 512 Finite-Element Modelling in Biomedical Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : General principles of quantitative modelling; types of models; principles of the finite-element method, primarily as applied to mechanical systems; introduction to the use of finite-element software; model generation from imaging data; modelling various material types, mainly biological; model validation.

    Terms: Fall 2016

    Instructors: W Robert J Funnell (Fall)

    • (3-0-6)

    • Prerequisite: Differential equations (MATH 271 or equivalent) or permission of instructor

  • BMDE 519 Biomedical Signals and Systems (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.

    Terms: Fall 2016

    Instructors: Robert E Kearney (Fall)

    • (3-0-6)

    • Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor

  • BMDE 610 Functional Neuroimaging Fusion (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Biomedical engineering: Multimodal data fusion of electrophysiology and functional neuroimaging data, including: detailed description of source localization methods for Electro- and MagnetoEncephaloGraphy data, analysis of brain hemodynamic activity through simultaneous recordings with electrophysiology, analysis and reconstruction of Near Infra-Red Spectroscopy data, modeling of the neurovascular coupling,validation methodology.

    Terms: Winter 2017

    Instructors: Christophe Grova (Winter)

  • BMDE 650 Advanced Medical Imaging (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Review of advanced techniques in medical imaging including: fast magnetic resonance imaging (MRI), functional MRI, MR angiography and quantitative flow measurement, spiral and dynamic x-ray computed tomography, 2D/3D positron emission tomography (PET), basic PET physiology, tracer kinetics, surgical planning and guidance, functional and anatomical brain mapping, 2D and 3D ultrasound imaging, and medical image processing.

    Terms: Winter 2017

    Instructors: Louis Collins (Winter)

  • BMDE 651 Orthopaedic Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Science and technology related to implants used for various orthopaedic reconstructive procedures, with emphasis on artificial hip and knee joint prostheses.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Restriction: Permission of the instructor.

  • BMDE 652 Bioinformatics: Proteomics (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Overview of high-throughput proteomic technologies commonly employed to study the localization and function of all proteins in an organism, and the bioinformatic approaches to analyze raw data and deposit them in proteome databases.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite: Enrolment in Bioinformatics option program or permission by coordinators.

    • Note: The course is inter-disciplinary and is targeted to students with different scientific backgrounds. A substantial portion of marks will be given based on practical assignments.

  • COMP 526 Probabilistic Reasoning and AI (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Belief networks, Utility theory, Markov Decision Processes and Learning Algorithms.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • COMP 546 Computational Perception (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Computational models of visual perception and audition. Vision problems include stereopsis, motion, focus, perspective, color. Audition problems include source localization and recognition. Emphasis on physics of image formation, sensory signal processing, neural pathways and computation, psychophysical methods.

    Terms: Winter 2017

    Instructors: Michael Langer (Winter)

    • 3 hours

    • Restrictions: Not open to students who have taken COMP 646.

  • COMP 558 Fundamentals of Computer Vision (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Biological vision, edge detection, projective geometry and camera modelling, shape from shading and texture, stereo vision, optical flow, motion analysis, object representation, object recognition, graph theoretic methods, high level vision, applications.

    Terms: Winter 2017

    Instructors: Kaleem Siddiqi (Winter)

  • COMP 761 Advanced Topics Theory 2 (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Administered by: Graduate Studies

    Overview

    Computer Science (Sci) : Advanced topics in theory related to computer science.

    Terms: Winter 2017

    Instructors: Prakash Panangaden (Winter)

  • ECSE 526 Artificial Intelligence (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design principles of autonomous agents, agent architectures, machine learning, neural networks, genetic algorithms, and multi-agent collaboration. The course includes a term project that consists of designing and implementing software agents that collaborate and compete in a simulated environment.

    Terms: Fall 2016

    Instructors: Jeremy Cooperstock (Fall)

  • ECSE 681 Colloquium in Electrical Engineering (4 credits) *

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Administered by: Graduate Studies

    Overview

    Electrical Engineering : Directed reading, seminar and discussion course in various subjects of current interest in electrical engineering research.

    Terms: Fall 2016

    Instructors: Jeremy Cooperstock (Fall)

  • EXMD 610 Molecular Methods in Medical Research (3 credits)

    Offered by: Medicine (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Experimental Medicine : Different molecular methods used in biomedical research, including chromatography, purification and analysis of proteins and nucleic acids, various techniques in molecular biology, transgenic technology, and stem cells. Lectures, some demonstrations, and short seminars given by the students.

    Terms: Winter 2017

    Instructors: William S Powell, Simon Rousseau (Winter)

  • MDPH 607 Introduction to Medical Imaging (3 credits)

    Offered by: Medical Physics Unit (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Medical Physics : A review of the principles of medical imaging as applied to conventional diagnostic radiography, digital subtraction radiography, computed tomography and magnetic resonance imaging. The course emphasizes a linear system approach to the formation, processing and display of medical images.

    Terms: Winter 2017

    Instructors: Ives Levesque (Winter)

  • MDPH 611 Medical Electronics (2 credits)

    Offered by: Medical Physics Unit (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Medical Physics : An introductory course on electronics, with emphasis on digital electronics, data acquisition and microprocessors applied to instrumentation. A basic knowledge of electronics is assumed, but the detailed course contents may vary from year to year, depending on the background of the students.

    Terms: Fall 2016

    Instructors: Pierre Leger (Fall)

  • MDPH 612 Computers in Medical Imaging (2 credits)

    Offered by: Medical Physics Unit (Faculty of Medicine)

    Administered by: Graduate Studies

    Overview

    Medical Physics : The role of computers in the acquisition and storage of data in medical imaging systems, with special reference to computed tomography, gamma cameras, positron emission tomography. Special attention is paid to the interfacing requirements of each device and to image display systems. Demonstrations of some of these systems are included.

    Terms: Winter 2017

    Instructors: Horacio J Patrocinio, Francois Deblois (Winter)

  • MECH 500 Selected Topics in Mechanical Engineering (3 credits) *

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : A course to allow the introduction of new topics in Mechanical Engineering as needs arise, by regular and visiting staff.

    Terms: Fall 2016

    Instructors: Xinyu Liu (Fall)

    • (3-0-6)

  • MECH 561 Biomechanics of Musculoskeletal Systems (3 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : The musculoskeletal system; general characteristics and classification of tissues and joints. Biomechanics and clinical problems in orthopaedics. Modelling and force analysis of musculoskeletal systems. Passive and active kinematics. Load-deformation properties of passive connective tissue, passive and stimulated muscle response. Experimental approaches, case studies.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

  • PHGY 517 Artificial Internal Organs (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiological, bioengineering, chemical and clinical aspects of artificial organs including basic principles and physiopathology of organ failure. Examples: oxygenator, cardiac support, vascular substitutes, cardiac pacemaker, biomaterials and tissue engineering, biocompatibility.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Winter

    • Prerequisite (Undergraduate): permission of instructors.

  • PHGY 518 Artificial Cells (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology, biotechnology, chemistry and biomedical application of artificial cells, blood substitutes, immobilized enzymes, microorganisms and cells, hemoperfusion, artificial kidneys, and drug delivery systems. PHGY 517 and PHGY 518 when taken together, will give a complete picture of this field. However, the student can select one of these.

    Terms: Fall 2016

    Instructors: Thomas Ming Swi Chang, Paul E Barre, Dominique Shum-Tim (Fall)

    • Fall

    • Prerequisite (Undergraduate): permission of instructors.

* When topic is appropriate.

—2016-2017 (last updated ) (disclaimer)