Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
This Major provides a solid basis for postgraduate study in meteorology, atmospheric physics, or related fields, as well as the necessary preparation for embarking on a professional career as a meteorologist directly after the B.Sc.
The program is jointly administered by the Department of Physics and the Department of Atmospheric and Oceanic Sciences. Students should consult undergraduate advisers in both departments.
Required Courses (64 credits)

ATOC 214 Introduction: Physics of the Atmosphere (3 credits)
Overview
Atmospheric & Oceanic Sciences : An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.
Terms: Fall 2016
Instructors: Andreas Zuend (Fall)

ATOC 215 Oceans, Weather and Climate (3 credits)
Overview
Atmospheric & Oceanic Sciences : Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Airsea interaction, including hurricanes and seaice formation, extratropical weather systems and fronts, role of the atmosphere and oceans in climate.
Terms: Winter 2017
Instructors: Timothy Merlis (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 214

ATOC 309 Weather Radars and Satellites (3 credits)
Overview
Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synopticscale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.
Terms: Winter 2017
Instructors: Frederic Fabry (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 215

ATOC 312 Rotating Fluid Dynamics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Lagrangian and Eulerian time derivatives. Vorticity, divergence and Helmholtz decomposition. Twodimensional NavierStokes equation for nondivergent flows. Rotating coordinate systems and the shallow water equations. Linear solutions, potential vorticity, and geostrophy in the shallow water context. Shallowwater quasigeostrophic approximation, including Rossby waves and barotrophic (Rayleigh) instability.
Terms: Fall 2016
Instructors: David N Straub (Fall)

ATOC 315 Thermodynamics and Convection (3 credits)
Overview
Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.
Terms: Fall 2016
Instructors: Evangelia Ioannidou (Fall)

ATOC 540 Synoptic Meteorology 1 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.
Terms: Fall 2016
Instructors: Eyad Hashem Atallah (Fall)

ATOC 541 Synoptic Meteorology 2 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasigeostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.
Terms: Winter 2017
Instructors: Eyad Hashem Atallah (Winter)

ATOC 546 Current Weather Discussion (1 credit)
Overview
Atmospheric & Oceanic Sciences : Halfhour briefing on atmospheric general circulation and current weather around the world using satellite data, radar observations, conventional weather maps, and analyses and forecasts produced by computer techniques.
Terms: Winter 2017
Instructors: Eyad Hashem Atallah (Winter)
Winter
2 hours
Prerequisite (Undergraduate): ATOC 540 or permission of instructor
Restriction: Graduate students and finalyear Honours Atmospheric Science students. Others by special permission.

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Stephen W Drury, Thomas F Fox (Fall) Alexander Garver (Winter) Geoffrey McGregor (Summer)

MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2016, Winter 2017
Instructors: Bogdan Lucian Nica (Fall) Michael Pichot (Winter)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2016, Winter 2017
Instructors: Charles Roth (Fall) Stephen W Drury (Winter)

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Xinyang Lu (Fall) John Mitry (Winter) Charles Roth (Summer)

PHYS 230 Dynamics of Simple Systems (3 credits)
Overview
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2016
Instructors: Tamar PeregBarnea (Fall)

PHYS 232 Heat and Waves (3 credits)
Overview
Physics : The laws of thermodynamics and their consequences. Thermodynamics of PVT systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2017
Instructors: Jonathan Cornell (Winter)

PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2016
Instructors: Bradley Siwick (Fall)

PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2017
Instructors: Thomas Brunner (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257

PHYS 331 Topics in Classical Mechanics (3 credits)
Overview
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian mechanics, small vibrations, normal modes. Introduction to Hamiltonian mechanics.
Terms: Winter 2017
Instructors: Olivier LandonCardinal (Winter)

PHYS 333 Thermal and Statistical Physics (3 credits)
Overview
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. FermiDirac and BoseEinstein distributions; applications.
Terms: Winter 2017
Instructors: Sabrina Leslie (Winter)

PHYS 339 Measurements Laboratory in General Physics (3 credits)
Overview
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2017
Instructors: David Cooke (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor

PHYS 340 Majors Electricity and Magnetism (3 credits)
Overview
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2016
Instructors: Robert Rutledge (Fall)

PHYS 342 Majors Electromagnetic Waves (3 credits)
Overview
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the halfwave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2017
Instructors: Guillaume Gervais (Winter)

PHYS 446 Majors Quantum Physics (3 credits)
Overview
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2016
Instructors: Andrew Cumming (Fall)
Complementary Course (3 credits)
Students select one of the following courses:

PHYS 432 Physics of Fluids (3 credits)
Overview
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: Winter 2017
Instructors: Andrew Cumming (Winter)

PHYS 434 Optics (3 credits)
Overview
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Fourier optics; selected special topics such as holography, lasers, beam optics, photonic crystals, advanced spectroscopy, stellar interferometry, quantum optics.
Terms: Winter 2017
Instructors: Daryl Haggard (Winter)

PHYS 439 Majors Laboratory in Modern Physics (3 credits)
Overview
Physics : Advanced level experiments in modern physics stressing quantum effects and some properties of condensed matter.
Terms: Fall 2016
Instructors: Dominic Ryan, Jack Sankey (Fall)