Honours Chemistry: Biophysical Chemistry (75 credits)

Note: This is the 2017–2018 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Offered by: Chemistry     Degree: Bachelor of Science

Program Requirements

**NEW PROGRAM**

This program trains students in the fundamentals of chemistry and develops the physical science, computational, and mathematical skills needed for advanced biophysical chemistry research in the biomedical and biotechnology industries. The program features integrative, interdisciplinary courses in bio-physical sciences.

Program Prerequisites

Note: Attainment of the Honours degree requires a CGPA of at least 3.00.

Pre-Program Requirements: Students entering from the Freshman program must have included CHEM 110 and CHEM 120 or CHEM 115, BIOL 111 or BIOL 112, MATH 133, MATH 140/MATH 141 or MATH 150/MATH 151, PHYS 131/PHYS 142, or their equivalents in their Freshman year. Quebec students must have completed the DEC with appropriate science and mathematics courses. Note that students who have successfully completed MATH 150 and MATH 151 do not have to take MATH 222.

Required Courses (65 credits)

The courses marked with an asterisk (*) are omitted from the program of students who have successfully completed them at the CEGEP level. Students completing the program will not be eligible for admission to the Ordre des chimistes du Québec without additional chemistry electives. This program is not currently accredited by the Canadian Society for Chemistry.

Completion of Mathematics MATH 222 and MATH 315 during U1 is strongly recommended.

* Denotes courses with CEGEP equivalents.
** Students who have successfully completed MATH 150 and MATH 151 are not required to take MATH 222.

Bio-Physical Sciences Core

  • BIOL 219 Introduction to Physical Biology of the Cell (4 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course is an introduction to molecular and cell biology, using a physical biology perspective. New technologies and methodologies, both experimental and computational, are embedded in the presentation of each topic.

    Terms: Fall 2017

    Instructors: Jacalyn Vogel, Gil Bub, Mathieu Blanchette, Anthony Mittermaier, Paul Francois, Stephanie Weber (Fall)

    • Prerequisite(s): 1 year of college calculus, chemistry, and physics or equivalents, BIOL 112 or equivalent

    • Corequisite(s): MATH 222 and CHEM 212

    • Restriction(s): Not open to students who have taken or are taking ANAT 212, BIOC 212, BIOL 200, and BIOL 201.

    • Restricted to students in Computer Science-Biology, Biology-Mathematics, Physiology-Physics, Physiology-Mathematics, Biology-Quantitative Biology, Chemistry-Biophysical Chemistry, and Physics-Biological Physics options.

    • This course is meant to prepare students for related 300-level courses in Biology, Chemistry, Physics, etc.

  • BIOL 319 Introduction to Biophysics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Emerging physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynolds-number environments, forces relevant to cells and molecules, chemical potentials, and free energies. These principles are applied to enzymes as molecular machines, membranes, DNA, and RNA.

    Terms: Winter 2018

    Instructors: Paul Wiseman (Winter)

    • Winter. Students with training in physics and biology will be well-suited to the course. .

    • Prerequisites: BIOL 200; MATH 222; PHYS 230 and (PHYS 232 or PHYS 253), or permission of the instructor.

    • Restriction: Not open to students who have taken or are taking PHYS 319

  • BIOL 395 Quantitative Biology Seminar 1 (1 credit)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Overview of concepts and current research in quantitative biology; theoretical ecology and evolution, computational biology, and physical biology.

    Terms: Fall 2017

    Instructors: Frederic Guichard, Jacalyn Vogel (Fall)

    • Fall

    • Prerequisites: BIOL 200, CHEM 212, COMP 250, MATH 222, PHYS 230

    • Restriction: Registration restricted to U2 students in the Quantitative Biology program, joint Computer Science and Biology and joint Math and Biology programs.

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2017, Winter 2018, Summer 2018

    Instructors: Laura Pavelka, Michel Daoust, Jean-Marc Gauthier, Hanadi Sleiman (Fall) Jean-Philip Lumb, Mitchell Huot, Michel Daoust, Jean-Marc Gauthier, Danielle Vlaho (Winter) Danielle Vlaho, Michel Daoust, Jean-Marc Gauthier (Summer)

  • MATH 222 Calculus 3 (3 credits) **

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.

    Terms: Fall 2017, Winter 2018, Summer 2018

    Instructors: Stephen W Drury, Niko Laaksonen (Fall) Stephen W Drury (Winter) Ibrahim Al Balushi (Summer)

  • MATH 223 Linear Algebra (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.

    Terms: Fall 2017, Winter 2018

    Instructors: Bogdan Lucian Nica (Fall) Djivede Kelome (Winter)

    • Fall and Winter

    • Prerequisite: MATH 133 or equivalent

    • Restriction: Not open to students in Mathematics programs nor to students who have taken or are taking MATH 236, MATH 247 or MATH 251. It is open to students in Faculty Programs

  • MATH 315 Ordinary Differential Equations (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.

    Terms: Fall 2017, Winter 2018, Summer 2018

    Instructors: Jean-Christophe Nave (Fall) Jean-Philippe Lessard (Winter) Charles Roth (Summer)

    • Prerequisite: MATH 222.

    • Corequisite: MATH 133.

    • Restriction: Not open to students who have taken or are taking MATH 325.

  • MATH 323 Probability (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.

    Terms: Fall 2017, Winter 2018, Summer 2018

    Instructors: David B Wolfson (Fall) Chien-Lin Su (Winter) Djivede Kelome (Summer)

    • Prerequisites: MATH 141 or equivalent.

    • Restriction: Intended for students in Science, Engineering and related disciplines, who have had differential and integral calculus

    • Restriction: Not open to students who have taken or are taking MATH 356

  • PHYS 329 Statistical Physics with Biophysical Applications (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : This interdisciplinary course introduces Statistical Physics illustrated with modern biophysical applications. Principles covered include partition functions, Boltzmann distribution, bosons, fermions, Bose Einstein condensates, Ferni gases, chemical potential, thermodynamical forces, biochemical kinetics, and an introduction to noise and phase transitions in biology.

    Terms: This course is not scheduled for the 2017-2018 academic year.

    Instructors: There are no professors associated with this course for the 2017-2018 academic year.

Chemistry

  • CHEM 222 Introductory Organic Chemistry 2 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.

    Terms: Fall 2017, Winter 2018, Summer 2018

    Instructors: Laura Pavelka, Michel Daoust, Jean-Marc Gauthier, Dmytro Perepichka (Fall) Nicolas Moitessier, Mitchell Huot, Michel Daoust, Jean-Marc Gauthier, Danielle Vlaho (Winter) Mitchell Huot, Michel Daoust, Jean-Marc Gauthier (Summer)

    • Fall, Winter

    • Prerequisite: CHEM 212 or equivalent.

    • Restriction: Not open to students who have taken an equivalent Organic 2 at CEGEP (see McGill University Basic Math and Sciences Equivalence Table at www.mcgill.ca/mathscitable) or who have or are taking CHEM 234.

  • CHEM 223 Introductory Physical Chemistry 1 (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity, enthalpy, thermochemistry, bond energies. Second law of thermodynamics; the entropy and free energy functions. Third law of thermodynamics, absolute entropies, free energies, Maxwell relations and chemical and thermodynamic equilibrium states.

    Terms: Fall 2017

    Instructors: Amy Blum (Fall)

    • Fall

    • Prerequisites: CHEM 110, CHEM 120 or equivalent, PHYS 142, or permission of instructor.

    • Corequisite: MATH 222 or equivalent.

    • Restrictions: Not open to students who have taken or are taking CHEM 204.

    • Note: Chemistry Honours and Majors must take CHEM 283 either simultaneously or the semester following CHEM 223.

  • CHEM 243 Introductory Physical Chemistry 2 (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Heterogeneous equilibrium: phase rule and phase diagrams. Ideal solutions, colligative properties, solubility. Electrochemistry, Debye-Hückel Theory. Kinetics 2: Transition State Theory, complex reactions, free-radical reactions, chain reactions, catalysis, reactions at surfaces, ionic effects of reactions in solution, photochemistry.

    Terms: Winter 2018

    Instructors: Gonzalo Cosa (Winter)

    • Winter

    • Prerequisites: CHEM 223.

    • Restrictions: Not open to students who have taken or are taking CHEM 203 or CHEM 204. Permission of instructor.

    • Note: Chemistry Honours and Majors that have not taken CHEM 283 should do so concurrently with CHEM 243.

  • CHEM 267 Introductory Chemical Analysis (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods. The laboratory component includes introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.

    Terms: Fall 2017

    Instructors: Jan Hamier, Samuel Lewis Sewall, Jean-Marc Gauthier, Janine Mauzeroll (Fall)

  • CHEM 281 Inorganic Chemistry 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.

    Terms: Winter 2018

    Instructors: Ashok K Kakkar (Winter)

  • CHEM 283 Physical Chemistry Laboratory (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to experiments and data analysis in physical chemistry.

    Terms: Winter 2018

    Instructors: Jean-Marc Gauthier, Samuel Lewis Sewall, Robin Stephanie Stein (Winter)

  • CHEM 345 Introduction to Quantum Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to quantum chemistry covering the historical development, wave theory, methods of quantum mechanics, and applications of quantum chemistry.

    Terms: Fall 2017

    Instructors: Linda G Reven (Fall)

  • CHEM 355 Applications of Quantum Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of the principles of electronic, vibrational and rotational spectroscopy. Magnetic resonance and computational methods.

    Terms: Winter 2018

    Instructors: Linda G Reven (Winter)

  • CHEM 367 Instrumental Analysis 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to modern instrumental analysis emphasizing chromatography, electrochemical methods and computational data analysis. Analytical methods to be examined in detail include gas-liquid and high performance liquid chromatography, LC mass spectrometry, and advanced electro-analysis techniques

    Terms: Fall 2017

    Instructors: Samuel Lewis Sewall, Christopher Thibodeaux, Jean-Marc Gauthier (Fall)

    • Fall

    • Prerequisite(s): CHEM 267.

    • Each lab section is limited enrolment

  • CHEM 377 Instrumental Analysis 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Spectroscopic methods of analysis will be studied with respect to fundamentals, operational aspects and instrument design. Topics will range from UV-visible to x-ray spectrometry. Methodologies will be evaluated with respect to their application in spectrometric systems. Laboratory automation will be studied and applied in the laboratory.

    Terms: Winter 2018

    Instructors: Thomas Preston, Samuel Lewis Sewall, Jean-Marc Gauthier (Winter)

    • Winter

    • Prerequisite: CHEM 367

    • Each lab section is limited enrolment

  • CHEM 470 Research Project 1 (6 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A course designed to give students research experience. The student will be assigned a project supervisor and a research project at the beginning of the session. The project will consist of a literature survey, experimental and /or theoretical work, a written research report and an oral examination.

    Terms: Summer 2018, Fall 2017, Winter 2018

    Instructors: Jean-Philip Lumb (Summer) Ian Sydney Butler (Fall) Ian Sydney Butler (Winter)

    • Fall, Winter

    • Prerequisite: registration by Departmental permission only

  • CHEM 493 Advanced Physical Chemistry Laboratory (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Selected experiments to illustrate physico-chemical principles more advanced than those of CHEM 253 and CHEM 263.

    Terms: Fall 2017, Winter 2018

    Instructors: Samuel Lewis Sewall, Jean-Marc Gauthier, Patanjali Kambhampati (Fall) Samuel Lewis Sewall, Jean-Marc Gauthier (Winter)

    • Prerequisite(s): CHEM 253 and CHEM 345 or permission of instructor

    • Corequisite(s): CHEM 355

    • Restriction(s): Not open to students who are taking or have taken CHEM 393.

    • Fall, Winter

    • Each lab section has limited enrolment.

  • PHYS 242 Electricity and Magnetism (2 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Properties of electromagnetic fields, dipole and quadropole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations and properties of electromagnetic waves, propagation of waves in media.

    Terms: Fall 2017

    Instructors: Hong Guo (Fall)

    • Fall

    • 2 hours lectures

    • Prerequisites: CEGEP Physics, MATH 222

Complementary Courses

(9-10 credits)
3 credits of:

  • CHEM 302 Introductory Organic Chemistry 3 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.

    Terms: Fall 2017

    Instructors: James L Gleason, Masad J Damha (Fall)

    • Fall, Winter

    • Prerequisites: BIOL 112, CHEM 222, or permission of the instructor.

  • CHEM 381 Inorganic Chemistry 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.

    Terms: Fall 2017

    Instructors: David Bohle (Fall)

    • Fall

    • Prerequisite: CHEM 281.

    • Restriction: For Honours and Major Chemistry students

6-7 credits of:

  • BIOL 300 Molecular Biology of the Gene (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.

    Terms: Fall 2017

    Instructors: Frieder Schöck, Nam Sung Moon (Fall)

  • BIOL 301 Cell and Molecular Laboratory (4 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.

    Terms: Fall 2017, Winter 2018

    Instructors: Huanquan Zheng, Paul Harrison, Rodrigo Reyes Lamothe (Fall) Huanquan Zheng, Paul Harrison, Rodrigo Reyes Lamothe (Winter)

    • Fall or Winter

    • 1 hour lecture and one 6-hour laboratory

    • Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.

    • Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.

    • For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.

  • BIOL 316 Biomembranes and Organelles (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The course focuses on biomembranes and subcellular organelles and their implications for disease. The topics include: protein and lipid biochemistry, membrane structure and transport; intracellular compartmentalization, protein sorting and modification, intracellular membrane trafficking; energy transfer, organization and dynamics of chloroplasts and mitochondria; extracellular matrix and cell walls.

    Terms: This course is not scheduled for the 2017-2018 academic year.

    Instructors: There are no professors associated with this course for the 2017-2018 academic year.

  • BIOL 551 Principles of Cellular Control (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Fundamental principles of cellular control, with cell cycle control as a major theme. Biological and physical concepts are brought to bear on control in healthy cells..

    Terms: Winter 2018

    Instructors: Jacalyn Vogel, Paul Francois (Winter)

  • CHEM 302 Introductory Organic Chemistry 3 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.

    Terms: Fall 2017

    Instructors: James L Gleason, Masad J Damha (Fall)

    • Fall, Winter

    • Prerequisites: BIOL 112, CHEM 222, or permission of the instructor.

  • CHEM 381 Inorganic Chemistry 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.

    Terms: Fall 2017

    Instructors: David Bohle (Fall)

    • Fall

    • Prerequisite: CHEM 281.

    • Restriction: For Honours and Major Chemistry students

  • CHEM 502 Advanced Bio-Organic Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : This course will cover biologically relevant molecules, particularly nucleic acids, proteins, and their building blocks. In each case, synthesis and biological functions will be discussed. The topics include synthesis of oligonucleotides and peptides; chemistry of phosphates; enzyme structure and function; coenzymes, and enzyme catalysis; polyketides; antiviral and anticancer agents.

    Terms: Winter 2018

    Instructors: Christopher Thibodeaux, Alexander Wahba (Winter)

    • Winter

    • Prerequisite: CHEM 302

    • Restriction: Not open to students who have taken CHEM 402.

  • CHEM 514 Biophysical Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Physical chemistry concepts needed to understand the function of biological systems at the molecular level, including the structure, stability, transport, and interactions of biological macromolecules.

    Terms: Winter 2018

    Instructors: Amy Blum, Paul Wiseman (Winter)

  • CHEM 520 Methods in Chemical Biology (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An overview of advanced techniques at the leading edge of Chemical Biology, including some or all of: biological imaging, kinetics of enzyme inhibition, combinatorial synthesis, atomic force microscopy of biological molecules, self assembling biomimetic structures, oligonucleotide therapeutics, biomolecular X-ray crystallography, computational methods, and nuclear magnetic resonance applied to protein interactions.

    Terms: Fall 2017

    Instructors: Gonzalo Cosa, Paul Wiseman, David Bohle, Nicolas Moitessier, Christopher Thibodeaux (Fall)

  • CHEM 555 NMR Spectroscopy (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : NMR Spectroscopy explained in terms of quantum mechanics. Topics include multidimensional spectra, molecular dynamics, biomolecular NMR, the density matrix, and the product operator formalism.

    Terms: Fall 2017

    Instructors: Linda G Reven, Robin Stephanie Stein (Fall)

    • Winter

    • Prerequisite: CHEM 355 or equivalent

  • CHEM 575 Chemical Kinetics (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Kinetic laws, measurement of reaction rates, transition state and collision theory, experimental techniques in reaction kinetics, reaction mechanisms, RRKM theory, Marcus theory of electron transfer, photochemistry and catalysis. Recent developments and their application to chemical and biological problems. Elementary reactions in gas, solution and solid phases and on surfaces.

    Terms: Fall 2017

    Instructors: Gonzalo Cosa (Fall)

  • COMP 208 Computers in Engineering (3 credits)

    Offered by: Computer Science (Faculty of Engineering)

    Overview

    Computer Science (Sci) : Introduction to computer systems. Concepts and structures for high level programming. Elements of structured programming using FORTRAN 90 and C. Numerical algorithms such as root finding, numerical integration and differential equations. Non-numerical algorithms for sorting and searching.

    Terms: Fall 2017, Winter 2018

    Instructors: Nathan Friedman (Fall) Nathan Friedman (Winter)

    • 3 hours

    • Prerequisite: differential and integral calculus.

    • Corequisite: linear algebra: determinants, vectors, matrix operations.

    • Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computations. Credits for either of these courses will not count towards the 60-credit Major in Computer Science. COMP 208 cannot be taken for credit with or after COMP 250.

Faculty of Science—2017-2018 (last updated Aug. 23, 2017) (disclaimer)