Program Requirements
This is a specialized and demanding program intended primarily, although not exclusively, for students with a theoretical bias who are interested in working in fields of study at the crossroads of physical chemistry and physics. The program will prepare students for either theoretical or experimental graduate work in departments where there is an emphasis on such crossdisciplinary areas as condensed matter physics, chemical physics, or material science.
A student whose average in the required and complementary courses in any year falls below a GPA of 3.00, or whose grade in any individual required or complementary course falls below a C (unless the student improves the grade to a C or above by taking a supplemental exam or retaking the course), may not register in this Honours program the following year, or graduate with the Honours degree, except with permission of both departments.
The student will have two advisers, one from Chemistry and the other from Physics.
Program Prerequisites
Students entering Physics programs from the Freshman program must have successfully completed the courses below or their equivalents. Quebec students must have completed the DEC with appropriate science and mathematics courses.

CHEM 110 General Chemistry 1 (4 credits)
Overview
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2018
Instructors: Mitchell Huot, JeanMarc Gauthier, Ian Sydney Butler, Pallavi Sirjoosingh (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment

CHEM 120 General Chemistry 2 (4 credits)
Overview
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2019
Instructors: Laura Pavelka, Samuel Lewis Sewall, Pallavi Sirjoosingh, Mitchell Huot, JeanMarc Gauthier (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment

PHYS 131 Mechanics and Waves (4 credits)
Overview
Physics : The basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics.
Terms: Fall 2018
Instructors: Kenneth J Ragan (Fall)
Fall
3 hours lectures; 1 hour tutorial, 3 hours laboratory in alternate weeks; tutorial sessions
Corequisite: MATH 139 or higher level calculus course.
Restriction(s): Not open to students who have taken or are taking PHYS 101, or who have taken CEGEP objective 00UR or equivalent.
Laboratory sections have limited enrolment

PHYS 142 Electromagnetism and Optics (4 credits)
Overview
Physics : The basic laws of electricity and magnetism; geometrical optics.
Terms: Winter 2019
Instructors: Michael Hilke (Winter)
Winter
3 hours lectures, 3 hours laboratory in alternate weeks; tutorial sessions
Prerequisite: PHYS 131.
Corequisite: MATH 141 or higher level calculus course.
Restriction: Not open to students who have taken or are taking PHYS 102, or who have taken CEGEP objective 00US or equivalent.
Laboratory sections have limited enrolment
One of:

BIOL 111 Principles: Organismal Biology (3 credits)
Overview
Biology (Sci) : An introduction to the phylogeny, structure, function and adaptation of unicellular organisms, plants and animals in the biosphere.
Terms: Fall 2018
Instructors: Andrew Hendry, Elena Cristescu, Anna Hargreaves (Fall)
Fall
2 hours lecture and 3 hours laboratory
Restriction: Not open to students who have taken CEGEP objective 00UK or equivalent; or BIOL 115.
This course serves as an alternative to CEGEP objective code 00UK
May require departmental approval.
Open to all students wishing introductory biology.
Attendance at first lab is mandatory to confirm registration in the course.
This class will use a Student Response System (clicker) which can be obtained from the Bookstore.

BIOL 112 Cell and Molecular Biology (3 credits)
Overview
Biology (Sci) : The cell: ultrastructure, division, chemical constituents and reactions. Bioenergetics: photosynthesis and respiration. Principles of genetics, the molecular basis of inheritance and biotechnology.
Terms: Winter 2019
Instructors: Joseph Alan Dent, Frieder Schöck (Winter)
MATH 133 and either MATH 140/141 or MATH 150/151.

MATH 133 Linear Algebra and Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Jerome Fortier, Liangming Shen, Yann Batiste Pequignot, Damian Osajda (Fall) Jerome Fortier (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.

MATH 140 Calculus 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Sidney Trudeau, Jerome Fortier, Rebecca Patrias (Fall) Alexander Garver (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited

MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Corentin PerretGentilditMaillard, Jonah Gaster (Fall) Sidney Trudeau, Jerome Fortier, Thomas F Fox (Winter)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited

MATH 150 Calculus A (4 credits)
Overview
Mathematics & Statistics (Sci) : Functions, limits and continuity, differentiation, L'Hospital's rule, applications, Taylor polynomials, parametric curves, functions of several variables.
Terms: Fall 2018
Instructors: Charles Roth (Fall)
Fall
3 hours lecture, 2 hours tutorial
Students with no prior exposure to vector geometry are advised to take MATH 133 concurrently. Intended for students with high school calculus who have not received six advanced placement credits
Restriction: Not open to students who have taken CEGEP objective 00UN or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
MATH 150 and MATH 151 cover the material of MATH 139, MATH 140, MATH 141, MATH 222

MATH 151 Calculus B (4 credits)
Overview
Mathematics & Statistics (Sci) : Integration, methods and applications, infinite sequences and series, power series, arc length and curvature, multiple integration.
Terms: Winter 2019
Instructors: Charles Roth (Winter)
Winter
3 hours lecture; 2 hours tutorial
Each Tutorial section is enrolment limited
Prerequisite: MATH 150
Restriction: Not open to students who have taken CEGEP objective 00UP or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Restriction: Not open to students who have taken MATH 152
Required Courses (68 credits)

CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Laura Pavelka, Danielle Vlaho, Michel Daoust, JeanMarc Gauthier (Fall) JeanPhilip Lumb, Danielle Vlaho, Michel Daoust, JeanMarc Gauthier, Mitchell Huot (Winter) Pallavi Sirjoosingh, Danielle Vlaho, JeanMarc Gauthier (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page (http://www.chemistry.mcgill.ca/advising/outside/equivalent.htm).

CHEM 213 Introductory Physical Chemistry 1: Thermodynamics (3 credits)
Overview
Chemistry : Thermodynamics. Topics include gas laws, kinetic theory of collisions, heat capacity, enthalpy, thermochemistry, bond energies, the entropy and free energy functions, absolute entropies, Maxwell relations and chemical and thermodynamic equilibrium states, phase rule and phase diagrams, ideal solutions, colligative properties, solubility, electrochemistry, DebyeHückel Theory.
Terms: Fall 2018
Instructors: Amy Blum (Fall)

CHEM 273 Introductory Physical Chemistry 2: Kinetics and Methods (3 credits)
Overview
Chemistry : Kinetics: Transition State Theory, complex reactions, freeradical reactions, chain reactions, catalysis, reactions at surfaces, ionic effects of reactions in solution, photochemistry. Methods: physical chemistry laboratory, differential equations and linear algebra applied to physical chemistry, computation methods for data analysis and modeling
Terms: Winter 2019
Instructors: JeanMarc Gauthier, Samuel Lewis Sewall, Robin Stephanie Stein, Eric Russell McCalla (Winter)

CHEM 281 Inorganic Chemistry 1 (3 credits)
Overview
Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acidbase chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.
Terms: Winter 2019
Instructors: Ashok K Kakkar (Winter)
 CHEM 355 Applications of Quantum Chemistry (3 credits)

CHEM 365 Statistical Thermodynamics (2 credits)
Overview
Chemistry : Molecular basis of thermodynamics with applications to ideal gases and simple solids. Topics to be covered will include: calculation of thermodynamic functions, chemical equilibrium constants, Einstein and Debye models of solids, absolute reaction rate theory, DebyeHückel theory of strong electrolytes.
Terms: Winter 2019
Instructors: David M Ronis (Winter)
Winter
Prerequisite: CHEM 345

CHEM 493 Advanced Physical Chemistry Laboratory (2 credits)
Overview
Chemistry : Selected experiments to illustrate physicochemical principles more advanced than those of CHEM 283.
Terms: Fall 2018, Winter 2019
Instructors: Samuel Lewis Sewall, JeanMarc Gauthier, Robin Stephanie Stein (Fall) Samuel Lewis Sewall, JeanMarc Gauthier, Robin Stephanie Stein (Winter)

CHEM 556 Advanced Quantum Mechanics (3 credits)
Overview
Chemistry : Quantum mechanical treatment of species of chemical interest. Introduction to perturbation theory, both timedependent and timeindependent. Treatment of the variational principle. Introduction to atomic spectra. Chemical bonding in terms of both the valence bond and molecular orbital theory. Elementary collision theory. Interaction of radiation with molecules.
Terms: Fall 2018
Instructors: Rustam Khaliullin (Fall)

CHEM 574 Introductory Polymer Chemistry (3 credits)
Overview
Chemistry : A survey course on the structure of polymers, kinetics and mechanisms of polymer and copolymer synthesis; characterization and molecular weight distributions; polymer microstructure, the thermodynamics of polymer solutions; the crystalline and amorphous states, rubber elasticity and structureproperty relationships.
Terms: Fall 2018
Instructors: Christopher Barrett (Fall)

COMP 208 Computers in Engineering (3 credits)
Overview
Computer Science (Sci) : Introduction to computer systems. Concepts and structures for high level programming. Elements of structured programming using FORTRAN 90 and C. Numerical algorithms such as root finding, numerical integration and differential equations. Nonnumerical algorithms for sorting and searching.
Terms: Fall 2018, Winter 2019
Instructors: Nathan Friedman (Fall) Nathan Friedman (Winter)
3 hours
Prerequisite: differential and integral calculus.
Corequisite: linear algebra: determinants, vectors, matrix operations.
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computations. Credits for either of these courses will not count towards the 60credit Major in Computer Science. COMP 208 cannot be taken for credit with or after COMP 250.

MATH 247 Honours Applied Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.
Terms: Winter 2019
Instructors: Tim Hoheisel (Winter)

MATH 248 Honours Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Partial derivatives; implicit functions; Jacobians; maxima and minima; Lagrange multipliers. Scalar and vector fields; orthogonal curvilinear coordinates. Multiple integrals; arc length, volume and surface area. Line integrals; Green's theorem; the divergence theorem. Stokes' theorem; irrotational and solenoidal fields; applications.
Terms: Fall 2018
Instructors: Pengfei Guan (Fall)

MATH 249 Honours Complex Variables (3 credits)
Overview
Mathematics & Statistics (Sci) : Functions of a complex variable; CauchyRiemann equations; Cauchy's theorem and consequences. Taylor and Laurent expansions. Residue calculus; evaluation of real integrals; integral representation of special functions; the complex inversion integral. Conformal mapping; SchwarzChristoffel transformation; Poisson's integral formulas; applications.
Terms: Winter 2019
Instructors: Charles Roth (Winter)

MATH 325 Honours Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First and second order equations, linear equations, series solutions, Frobenius method, introduction to numerical methods and to linear systems, Laplace transforms, applications.
Terms: Winter 2019
Instructors: JeanPhilippe Lessard (Winter)

PHYS 241 Signal Processing (3 credits)
Overview
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2019
Instructors: Matthew Adam Dobbs (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.

PHYS 251 Honours Classical Mechanics 1 (3 credits)
Overview
Physics : Newton's laws, work energy, angular momentum. Harmonic oscillator, forced oscillations. Inertial forces, rotating frames. Central forces, centre of mass, planetary orbits, Kepler's laws.
Terms: Fall 2018
Instructors: Charles Gale (Fall)

PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2018
Instructors: Bradley Siwick (Fall)

PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2019
Instructors: Thomas Brunner (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257

PHYS 350 Honours Electricity and Magnetism (3 credits)
Overview
Physics : Fundamental laws of electric and magnetic fields in both integral and differential form.
Terms: Fall 2018
Instructors: Walter Reisner (Fall)

PHYS 352 Honours Electromagnetic Waves (3 credits)
Overview
Physics : Vector and scalar potentials; plane waves in homogeneous media; refraction and reflection; guided waves; radiation from simple systems; dipole and quadrupole radiation; introduction to fields of moving charges; synchrotron radiation; Bremsstrahlung.
Terms: Fall 2018
Instructors: Andrew Cumming (Fall)
Fall
3 hours lectures
Prerequisite: PHYS 350.
Restriction: Honours students, or permission of the instructor

PHYS 357 Honours Quantum Physics 1 (3 credits)
Overview
Physics : Experimental basis for quantum mechanics; wavepackets; uncertainty principle. Hilbert space formalism. Schrodinger equation: eigenvalues and eigenvectors: applications to 1d problems including the infinite and finite potential wells and the harmonic oscillator. Tunneling. Time independent perturbation theory.
Terms: Fall 2018
Instructors: Tamar PeregBarnea (Fall)

PHYS 457 Honours Quantum Physics 2 (3 credits)
Overview
Physics : Angular momentum and spin operators. Operator methods in quantum mechanics. Coupling of spin and angular momenta. Variational principles and elements of time dependent perturbation theory (the Golden Rule). Solution of the Schrodinger equation in three dimensions. Applications to the hydrogen and helium atoms and to simple problems in atomic and molecular physics.
Terms: Winter 2019
Instructors: Sarah Harrison (Winter)

PHYS 558 Solid State Physics (3 credits)
Overview
Physics : Properties of crystals; free electron model, band structure; metals, insulators and semiconductors; phonons; magnetism; selected additional topics in solidstate (e.g. ferroelectrics, elementary transport theory).
Terms: Fall 2018
Instructors: William Coish (Fall)
Fall
3 hours lectures
Restriction: U3 Honours students, graduate students, or permission of the instructor
Complementary Courses (12 credits)
(with at least 3 credits in Chemistry and 3 credits in Physics)
3 credits selected from:

CHEM 593 Statistical Mechanics (3 credits)
Overview
Chemistry : Intermediate topics in statistical mechanics, including: modern and classical theories of real gases and liquids, critical phenomena and the renormalization group, timedependent phenomena, linear response and fluctuations, inelastic scattering, Monte Carlo and molecular dynamics methods.
Terms: Winter 2019
Instructors: David M Ronis (Winter)

PHYS 559 Advanced Statistical Mechanics (3 credits)
Overview
Physics : Scattering and structure factors. Review of thermodynamics and statistical mechanics; correlation functions (static); mean field theory; critical phenomena; broken symmetry; fluctuations, roughening.
Terms: Fall 2018
Instructors: Lenin Del Rio Amador (Fall)
Fall
3 hours lectures
Restriction: U3 Honours students, graduate students, or permission of the instructor
9 credits selected from the list below:

CHEM 480D1 Undergraduate Research Project 2 (1.5 credits)
Overview
Chemistry : A course designed to give students additional research experience. The student will be assigned a project supervisor and a research project at the beginning of the session. The project will consist of a literature survey, experimental or theoretical work, a written research report and an oral examination.
Terms: Fall 2018
Instructors: Ian Sydney Butler (Fall)
Fall, Winter, Summer
Students must register for both CHEM 480D1 and CHEM 480D2.
No credit will be given for this course unless both CHEM 480D1 and CHEM 480D2 are successfully completed in consecutive terms
CHEM 480D1 and CHEM 480D2 together are equivalent to CHEM 480
Prerequisite(s): CHEM 396 or CHEM 470. Registration by Departmental permission only.

CHEM 480D2 Undergraduate Research Project 2 (1.5 credits)
Overview
Chemistry : A course designed to give students additional research experience. The student will be assigned a project supervisor and a research project at the beginning of the session. The project will consist of a literature survey, experimental or theoretical work, a written research report and an oral examination.
Terms: Winter 2019
Instructors: Ian Sydney Butler (Winter)
Fall, Winter, Summer
Prerequisite: CHEM 396 or CHEM 470 and CHEM 480D1. Registration by Departmental permission only.
No credit will be given for this course unless both CHEM 480D1 and CHEM 480D2 are successfully completed in consecutive terms
CHEM 480D1 and CHEM 480D2 together are equivalent to CHEM 480

CHEM 531 Chemistry of Inorganic Materials (3 credits)
Overview
Chemistry : Structure, bonding, synthesis, properties and applications of covalent, ionic, metallic crystals, and amorphous solids. Defect structures and their use in synthesis of specialty materials such as electronic conductors, semiconductors, and superconductors, and solid electrolytes. Basic principles of composite materials and applications of chemistry to materials processing.
Terms: Winter 2019
Instructors: Mark P Andrews (Winter)
Winter
Prerequisite: CHEM 381

CHEM 575 Chemical Kinetics (3 credits)
Overview
Chemistry : Kinetic laws, measurement of reaction rates, transition state and collision theory, experimental techniques in reaction kinetics, reaction mechanisms, RRKM theory, Marcus theory of electron transfer, photochemistry and catalysis. Recent developments and their application to chemical and biological problems. Elementary reactions in gas, solution and solid phases and on surfaces.
Terms: Winter 2019
Instructors: Gonzalo Cosa (Winter)

CHEM 585 Colloid Chemistry (3 credits)
Overview
Chemistry : Principles of the physical chemistry of phase boundaries. Electrical double layer theory; van der Waals forces; Brownian motion; kinetics of coagulation; electrokinetics; light scattering; solid/liquid interactions; adsorption; surfactants; hydrodynamic interactions; rheology of dispersions.
Terms: Winter 2019
Instructors: Theodorus G Van de Ven (Winter)

PHYS 351 Honours Classical Mechanics 2 (3 credits)
Overview
Physics : Rigid bodies, angular momentum, gyroscope, moment of inertia, principal axes, Euler's equations. Coupled oscillations and normal modes. Lagrangian mechanics and applications. Hamiltonian mechanics. Topics in advanced analytical mechanics.
Terms: Winter 2019
Instructors: Sang Yong Jeon (Winter)

PHYS 434 Optics (3 credits)
Overview
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Fourier optics; selected special topics such as holography, lasers, beam optics, photonic crystals, advanced spectroscopy, stellar interferometry, quantum optics.
Terms: Winter 2019
Instructors: Vanessa Graber (Winter)

PHYS 469 Honours Laboratory in Modern Physics 2 (3 credits)
Overview
Physics : Advanced level experiments in modern physics stressing quantum effects and some properties of condensed matter. Continuation of PHYS 359.
Terms: Fall 2018
Instructors: Jack Childress (Fall)

PHYS 479 Honours Research Project (3 credits)
Overview
Physics : Honours supervised research project.
Terms: Winter 2019
Instructors: Guillaume Gervais (Winter)
6 hours
Restriction: Honours students or permission of instructor. Only open to students who have completed the U2 year in a Physics program.

PHYS 562 Electromagnetic Theory (3 credits)
Overview
Physics : Electrostatics, dielectrics, magnetostatics, timevarying fields, relativity, radiating systems, fields of moving charges.
Terms: Winter 2019
Instructors: Shaun MacDonald Lovejoy (Winter)
Winter
3 hours lectures
Prerequisites (Graduate): U1 or U2 Honours Physics or permission of instructor.
Restriction: U3 Honours students, graduate students, or permission of the instructor