McGill Alert / Alerte de McGill

Updated: Mon, 07/15/2024 - 16:07

Gradual reopening continues on downtown campus. See Campus Public Safety website for details.

La réouverture graduelle du campus du centre-ville se poursuit. Complément d'information : Direction de la protection et de la prévention.

Co-op in Software Engineering (141 credits)

Offered by: Electrical & Computer Engr     Degree: Bachelor of Engineering

Program Requirements

The B.Eng. Co-op in Software Engineering program focuses on the skills needed to design and develop complex software systems, and it includes mandatory co-op terms. The program emphasizes the application of the principles and techniques of engineering, computer science, and mathematical analysis to cover the lifecycle of engineering modern software applications.

Program credit weight: 141-144 credits
Program credit weight for Quebec CEGEP students: 113-116 credits
Program credit weight for out-of-province students: 141-144 credits

Required Year 0 (Freshman) Courses

28 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 113- to 116-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-stud... and select your term of admission.

  • CHEM 120 General Chemistry 2 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A study of the fundamental principles of physical chemistry.

    Terms: Winter 2025

    Instructors: Sirjoosingh, Pallavi; Sewall, Samuel Lewis; Wiseman, Paul; Denisova, Irina (Winter)

    • Winter

    • Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite

    • Each lab section is limited enrolment

  • MATH 133 Linear Algebra and Geometry (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.

    Terms: Fall 2024, Winter 2025

    Instructors: Macdonald, Jeremy (Fall) Roth, Charles (Winter)

    • 3 hours lecture, 1 hour tutorial

    • Prerequisite: a course in functions

    • Restriction(s): 1) Not open to students who have taken CEGEP objective 00UQ or equivalent. 2) Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.

  • MATH 140 Calculus 1 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.

    Terms: Fall 2024, Winter 2025

    Instructors: Sabok, Marcin; Trudeau, Sidney (Fall)

    • 3 hours lecture, 1 hour tutorial

    • Prerequisite: High School Calculus

    • Restriction(s): 1) Not open to students who have taken MATH139 or MATH 150 or CEGEP objective 00UN or equivalent. 2) Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics.

    • Each Tutorial section is enrolment limited

  • MATH 141 Calculus 2 (4 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.

    Terms: Fall 2024, Winter 2025

    Instructors: Trudeau, Sidney (Winter)

    • Prerequisites: MATH 139 or MATH 140 or MATH 150.

    • Restriction(s): Not open to students who have taken CEGEP objective 00UP or equivalent.

    • Restriction(s): Not open to students who have taken or are taking MATH 122,except by permission of the Department of Mathematics and Statistics.

    • Each Tutorial section is enrolment limited

  • PHYS 131 Mechanics and Waves (4 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : The basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics.

    Terms: Fall 2024

    Instructors: Ragan, Kenneth J (Fall)

    • Fall

    • 3 hours lectures; 1 hour tutorial, 3 hours laboratory in alternate weeks; tutorial sessions

    • Corequisite: MATH 139 or higher level calculus course.

    • Restriction(s): Not open to students who have taken or are taking PHYS 101, or who have taken CEGEP objective 00UR or equivalent.

    • Laboratory sections have limited enrolment

  • PHYS 142 Electromagnetism and Optics (4 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : The basic laws of electricity and magnetism; geometrical optics.

    Terms: Winter 2025

    Instructors: Guo, Hong (Winter)

    • Winter

    • 3 hours lectures, 3 hours laboratory in alternate weeks; tutorial sessions

    • Prerequisite: PHYS 131.

    • Corequisite: MATH 141 or higher level calculus course.

    • Restriction: Not open to students who have taken or are taking PHYS 102, or who have taken CEGEP objective 00US or equivalent.

    • Laboratory sections have limited enrolment

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

AND 3 credits Natural Science complementary courses chosen from courses from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering:

Atmospheric and Oceanic Sciences (ATOC)
Biology (BIOL)
Chemistry (CHEM)
Earth and Planetary Sciences (EPSC)
Earth System Science (ESYS)
Physics (PHYS)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

35 credits

  • COMP 202 Foundations of Programming (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.

    Terms: Fall 2024, Winter 2025

    Instructors: M'hiri, Faten (Fall) M'hiri, Faten (Winter)

    • 3 hours

    • Prerequisite: a CEGEP level mathematics course

    • Restrictions: Not open to students who have taken or are taking COMP 204, COMP 208, or GEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.

    • COMP 202 is intended as a general introductory course, while COMP 204 is intended for students in life sciences, and COMP 208 is intended for students in physical sciences and engineering.

  • COMP 206 Introduction to Software Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.

    Terms: Fall 2024, Winter 2025

    Instructors: Errington, Jacob (Fall) Vybihal, Joseph P (Winter)

  • COMP 251 Algorithms and Data Structures (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.

    Terms: Fall 2024, Winter 2025

    Instructors: Alberini, Giulia (Fall) Becerra, David (Winter)

    • 3 hours

    • Prerequisites: COMP 250; MATH 235 or MATH 240

    • COMP 251 uses basic counting techniques (permutations and combinations) that are covered in MATH 240 but not in MATH 235. These techniques will be reviewed for the benefit of MATH 235 students.

    • Restrictions: Not open to students who have taken or are taking COMP 252.

  • COMP 302 Programming Languages and Paradigms (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.

    Terms: Fall 2024, Winter 2025

    Instructors: Pientka, Brigitte (Fall) Errington, Jacob (Winter)

  • COMP 360 Algorithm Design (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.

    Terms: Fall 2024, Winter 2025

    Instructors: Robere, Robert (Fall) Hatami, Hamed (Winter)

  • COMP 421 Database Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Database Design: conceptual design of databases (e.g., entity-relationship model), relational data model, functional dependencies. Database Manipulation: relational algebra, SQL, database application programming, triggers, access control. Database Implementation: transactions, concurrency control, recovery, query execution and query optimization.

    Terms: Winter 2025

    Instructors: Kemme, Bettina; Elsaadawy, Mona (Winter)

  • FACC 100 Introduction to the Engineering Profession (1 credit) **

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : Introduction to engineering practice; rights and code of conduct for students; professional conduct and ethics; engineer's duty to society and the environment; sustainable development; occupational health and safety; overview of the engineering disciplines taught at McGill.

    Terms: Fall 2024, Winter 2025

    Instructors: Frost, David (Fall) Chen, Lawrence (Winter)

    • (1.5-0-1.5)

  • FACC 250 Responsibilities of the Professional Engineer

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : A course designed to provide all Engineering students with further training regarding their responsibilities as future Professional Engineers. Particular focus will be placed on three professional characteristics that future engineers must demonstrate: i) professionalism, ii) ethical and equitable behaviour, and iii) consideration of the impact of engineering on society and the environment.

    Terms: Fall 2024, Winter 2025

    Instructors: Razavinia, Nasim (Fall)

    • Prerequisite(s): FACC 100 or BREE 205

    • Restriction(s): Open to undergraduate students registered in the Bioengineering, Bioresource Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Materials Engineering, Mechanical Engineering, Mining Engineering, and Software Engineering (Faculty of Engineering) programs. Not open to U0 (Year 0)students.

    • (0-0-0.5)

  • FACC 300 Engineering Economy (3 credits)

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : Introduction to the basic concepts required for the economic assessment of engineering projects. Topics include: accounting methods, marginal analysis, cash flow and time value of money, taxation and depreciation, discounted cash flow analysis techniques, cost of capital, inflation, sensitivity and risk analysis, analysis of R and D, ongoing as well as new investment opportunities.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • (3-1-5)

    • Restriction: Not open to students who have taken MIME 310.

  • FACC 400 Engineering Professional Practice (1 credit)

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : Laws, regulations and codes governing engineering professional practice. Responsibility and liability. Environmental legislation. Project and organization management. Relations between engineer and client. Technical practice - analysis, design, execution and operation.

    Terms: Fall 2024, Winter 2025

    Instructors: Kirk, Andrew G (Fall) Wagner, Caroline Elizabeth; Ghoshal, Subhasis (Winter)

    • (1.5-1-0.5)

    • Prerequisites: FACC 250 and [at least 60 program credits for B.Eng./B.S.E. students in the Faculty of Engineering or 45 program credits for B.Eng.(Bioresource) students].

    • Restriction: Not open to students who have taken MIME 221.

  • MATH 240 Discrete Structures (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Introduction to discrete mathematics and applications. Logical reasoning and methods of proof. Elementary number theory and cryptography: prime numbers, modular equations, RSA encryption. Combinatorics: basic enumeration, combinatorial methods, recurrence equations. Graph theory: trees, cycles, planar graphs.

    Terms: Fall 2024, Winter 2025

    Instructors: Macdonald, Jeremy (Fall) Fortier, Jérôme (Winter)

    • Fall and Winter

    • Corequisite: MATH 133.

    • Restriction: For students in any Computer Science, Computer Engineering, or Software Engineering programs. Others only with the instructor's permission. Not open to students who have taken or are taking MATH 235.

  • MATH 262 Intermediate Calculus (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Engineering)

    Overview

    Mathematics & Statistics (Sci) : Series and power series, including Taylor's theorem. Brief review of vector geometry. Vector functions and curves. Partial differentiation and differential calculus for vector valued functions. Unconstrained and constrained extremal problems. Multiple integrals including surface area and change of variables.

    Terms: Fall 2024, Winter 2025

    Instructors: Bélanger-Rioux, Rosalie (Fall) Roth, Charles (Winter)

    • (3-1-5)

    • Prerequisites: MATH 141, MATH 133 or equivalent.

    • Restrictions: Open only to students in the Faculty of Engineering. Not open to students who are taking or have taken MATH 151, MATH 152, OR MATH 222.

  • MATH 263 Ordinary Differential Equations for Engineers (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Engineering)

    Overview

    Mathematics & Statistics (Sci) : First order ODEs. Second and higher order linear ODEs. Series solutions at ordinary and regular singular points. Laplace transforms. Linear systems of differential equations with a short review of linear algebra.

    Terms: Fall 2024, Winter 2025

    Instructors: Lin, Jessica (Fall) Trudeau, Sidney; Bélanger-Rioux, Rosalie (Winter)

    • (3-1-5)

    • Corequisite: MATH 262.

    • Restrictions: Open only to students in the Faculty of Engineering. Not open to students who are taking or have taken MATH 315 or MATH 325.

  • WCOM 206 Communication in Engineering (3 credits)

    Offered by: McGill Writing Centre (Faculty of Arts)

    Overview

    WCOM : Written and oral communication in Engineering (in English): strategies for generating, developing, organizing, and presenting ideas in a technical setting; problem-solving; communicating to different audiences; editing and revising; and public speaking. Course work based on academic, technical, and professional writing in engineering.

    Terms: Fall 2024, Winter 2025

    Instructors: Sundberg, Ross (Fall) Sundberg, Ross (Winter)

    • Restriction: Not open to students who have taken CCOM 206. Only open to students in degree programs.

    • Limited enrolment.

    • Because this course uses a workshop format, attendance at first class is desirable.

* Note: *CCOM 206 must be passed two terms prior to ECSE 201.
** Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Software Engineering Courses

60 credits

  • ECSE 200 Electric Circuits 1 (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Circuit variables. Analysis of resistive circuits, network theorems (Kirchhoff’s laws, Ohm’s law, Norton and Thevenin equivalent). Ammeters, Voltmeters, and Ohmmeters. Analysis methods (nodal and mesh analysis, linearity, superposition). Dependent sources and Op-Amps. Energy storage elements. First and second order circuits.

    Terms: Fall 2024, Winter 2025

    Instructors: Kanaan, Marwan (Fall) Kanaan, Marwan (Winter)

    • (4-2-3)

    • Prerequisite: PHYS 142 or CEGEP equivalent.

    • Corequisite: MATH 263

    • Tutorials assigned by instructor.

  • ECSE 201 Co-operative Work Term 1 (2 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Supervised and evaluated work experience.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 205 Probability and Statistics for Engineers (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Probability: basic probability model, conditional probability, Bayes rule, random variables and vectors, distribution and density functions, common distributions in engineering, expectation, moments, independence, laws of large numbers, central limit theorem. Statistics: descriptive measures of engineering data, sampling distributions, estimation of mean and variance, confidence intervals, hypothesis testing, linear regression.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 211 Design Principles and Methods (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Engineering process: design specifications, parameters, optimization, implementation, troubleshooting and refinement; project management: scheduling, risk analysis, project control; case studies; design examples and project.

    Terms: Fall 2024, Winter 2025

    Instructors: Boulet, Benoit; Kanaan, Marwan; Moon, AJung (Fall) Boulet, Benoit; Kanaan, Marwan; Moon, AJung (Winter)

  • ECSE 222 Digital Logic (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : An introduction to digital logic, binary numbers and Boolean algebra, combinational circuits, optimized implementation of combinational circuits, arithmetic circuits, combinational circuit building blocks, flip-flops, registers, counters, design of digital circuits with VHDL, and synchronous sequential circuits.

    Terms: Fall 2024, Winter 2025

    Instructors: Vaisband, Boris (Winter)

  • ECSE 223 Model-Based Programming (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Integration of modelling with programming; abstraction in software engineering; structural modelling; state-based modelling; modelling of object-oriented systems, code generation; natural language constraints in modelling notations; architectural and design patterns; integrated development environments; programming tools (debugging, continuous build/integration, version control and code repositories, diff, defect and issue tracking, refactoring); code review processes.

    Terms: Fall 2024, Winter 2025

    Instructors: Mussbacher, Gunter (Fall) Kanaan, Marwan (Winter)

  • ECSE 250 Fundamentals of Software Development (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Software development practices in the context of object-oriented programming. Elementary data structures such as lists, stacks and trees. Recursive and non-recursive algorithms: searching and sorting, tree and graph traversal. Asymptotic notation: Big O. Introduction to tools and practices employed in commercial software development.

    Terms: Fall 2024, Winter 2025

    Instructors: Lin, Hsiu-Chin (Fall) Wei, Lili (Winter)

  • ECSE 301 Co-operative Work Term 2 (2 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Supervised and evaluated work experience.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 310 Thermodynamics of Computing (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : An introduction to thermodynamics from the perspective of computer engineering. The first and second laws of thermodynamics; elementary information theory (bits, entropy); energy storage and dissipation in electrical circuits; effects of noise in switching circuits; the fluctuation-dissipation theorem; Landauer’s principle; reversible and irreversible computation; energy costs of communication; thermal resistance, heat sinking, and cooling technologies for computing circuits.

    Terms: Fall 2024, Winter 2025

    Instructors: Kirk, Andrew G (Fall) Zhao, Songrui (Winter)

  • ECSE 316 Signals and Networks (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Introduction to the physical and software architecture of networks and the analysis and representation of signals; client-server and peer-to-peer architectures; layered design principles; network applications and socket programming; multimedia streaming, web transfer, and voice-over-IP; continuous-time and discrete-time signals; Fourier transforms and frequency domain analysis and representation of signals; filtering and sampling; flow and congestion control; solutions of linear constant-coefficient differential equations, transient and steady state response; Laplace transforms; addressing and routing for unicast, multicast, and broadcast transmission; wired and wireless access systems; multiple access protocols. Examples: Ethernet, http, TCP/IP, 802.11, OSPF, BGP.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 321 Introduction to Software Engineering (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design, development and testing of software systems. Software life cycle: requirements analysis, software architecture and design, implementation, integration, test planning, and maintenance. The course involves a group project.

    Terms: Fall 2024, Winter 2025

    Instructors: Wei, Lili (Fall) Galasso-Carbonnel, Jessie (Winter)

  • ECSE 324 Computer Organization (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Basic computer structures; instruction set architecture; assembly language; input/output; memory; software; processor implementation; computer arithmetic. Lab work involving assembly language level programming of single-board computers.

    Terms: Fall 2024, Winter 2025

    Instructors: Dubach, Christophe (Fall)

  • ECSE 326 Software Requirements Engineering (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Techniques for eliciting requirements; languages and models for specification of requirements; analysis and validation techniques, including feature-based, goal-based, and scenario-based analysis; quality requirements; requirements traceability and management; handling evolution of requirements; requirements documentation standards; requirements in the context of system engineering; integration of requirements engineering into software engineering processes.

    Terms: Fall 2024

    Instructors: Mussbacher, Gunter (Fall)

  • ECSE 401 Co-operative Work Term 3 (2 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Supervised and evaluated work experience.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 402 Co-operative Work Term 4 (2 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Supervised and evaluated work experience.

    Terms: Fall 2024, Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 420 Parallel Computing (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Modern parallel computing architectures for shared memory, message passing and data parallel programming models. The design of cache coherent shared memory multiprocessors. Programming techniques for multithreaded, message passing and distributed systems. Use of modern programming languages and parallel programming libraries.

    Terms: Fall 2024, Winter 2025

    Instructors: Giannacopoulos, Dennis (Fall) Zilic, Zeljko (Winter)

  • ECSE 427 Operating Systems (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Operating system services, file system organization, disk and cpu scheduling, virtual memory management, concurrent processing and distributed systems, protection and security. Aspects of the DOS and UNIX operating systems and the C programming language. Programs that communicate between workstations across a network.

    Terms: Fall 2024, Winter 2025

    Instructors: Maheswaran, Muthucumaru (Fall)

  • ECSE 428 Software Engineering Practice (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Software engineering practice in industry, related to the design and commissioning of large software systems. Ethical, social, economic, safety and legal issues. Metrics, project management, costing, marketing, control, standards, CASE tools and bugs. The course involves a large team project.

    Terms: Fall 2024, Winter 2025

    Instructors: Sabourin, Robert (Fall)

    • (3-1-5)

    • Students meet with the instructor and/or teaching assistant for one hour each week to discuss their project.

    • Prerequisite: ECSE 321

  • ECSE 429 Software Validation (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Correct and complete implementation of software requirements. Verification and validation lifecycle. Requirements analysis, model based analysis, and design analysis. Unit and system testing, performance, risk management, software reuse. Ubiquitous computing.

    Terms: Fall 2024, Winter 2025

    Instructors: Sabourin, Robert (Fall)

  • ECSE 458D1 Capstone Design Project (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : A design project undertaken with close mentorship by a staff member and under the supervision of the course instructor. The project consists of defining an engineering problem, reviewing relevant background, acquiring/analyzing data, and seeking solutions using appropriate simulation/analysis tools and experimental investigations. Professional engineering practices will be followed.

    Terms: Fall 2024

    Instructors: Psaromiligkos, Ioannis; Kanaan, Marwan (Fall)

  • ECSE 458D2 Capstone Design Project (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : See ECSE 458D1 for course description.

    Terms: Winter 2025

    Instructors: Psaromiligkos, Ioannis; Kanaan, Marwan (Winter)

    • Prerequisite: ECSE 458D1

    • No credit will be given for this course unless both ECSE 458D1 and ECSE 458D2 are successfully completed in consecutive terms

Note: ECSE 458N1 and ECSE 458N2 can be taken instead of ECSE 458D1 and ECSE 458D2.

Complementary Courses

15-18 credits

Technical Complementaries

9-12 credits (3 courses) must be taken, chosen as follows:
3-4 credits (1 course) from List A
6-8 credits (2 courses) from List A or List B

* COMP 350 and ECSE 343 cannot both be taken
** ECSE 551 and COMP 551 cannot both be taken
*** COMP 424 and ECSE 526 cannot both be taken

List A

3-12 credits from the following:

  • ECSE 325 Digital Systems (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design of digital systems. Implementation technologies; arithmetic modules; synthesis and advanced modelling techniques; verification; timing analysis; design for testability; asynchronous circuits; hardware/software co-design.

    Terms: Winter 2025

    Instructors: Clark, James J (Winter)

  • ECSE 415 Introduction to Computer Vision (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : An introduction to the automated processing, analysis, and understanding of image data. Topics include image formation and acquisition, design of image features, image segmentation, stereo and motion correspondence matching techniques, feature clustering, regression and classification for object recognition, industrial and consumer applications, and computer vision software tools.

    Terms: Fall 2024, Winter 2025

    Instructors: Clark, James J (Fall) Arbel, Tal (Winter)

  • ECSE 416 Telecommunication Networks (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Architecture and protocols of contemporary networks; wired and wireless access systems; flow and congestion control; network optimization; randomized multiple access protocols; queueing disciplines; low-power wireless networks. Examples: Ethernet, TCP/IP, 802.11, 802.15.4. Lab experiments addressing routing protocols, TCP, queuing disciplines and quality-of-service, and network security.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 439 Software Language Engineering (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Practical and theoretical knowledge for developing software languages and models; foundations for model-based software development; topics include principles of model-driven engineering; concern-driven development; intentional, structural, and behavioral models as well as configuration models; constraints; language engineering; domain-specific languages; metamodeling; model transformations; models of computation; model analyses; and modeling tools.

    Terms: Winter 2025

    Instructors: Mussbacher, Gunter (Winter)

    • (3-2-4)

    • Prerequisites: ECSE 321 or COMP 303.

    • Restricted to Software Engineering students.

  • ECSE 444 Microprocessors (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design techniques for developing modern microprocessor-based systems, multiple state-of-art instructions set architectures (ISAs) and associated assembly languages, use of tools for compiling, linking, memory overlay; debug techniques for start-stop and real-time debugging, together with debug infrastructure and interfaces: flash patching, variable watching and instruction stream tracing. Use of coprocessors and computer peripherals, such as SPI, I2C, I2S, SAI, USB, wireless standards, timers, DMA units and FLASH accelerators. Interfacing and processing sensor data including multi-sensor integration. Design techniques that promote structured approaches for separation of concerns in computing and communication. Real-time systems and software engineering for tightly integrated hardware.

    Terms: Fall 2024, Winter 2025

    Instructors: Zilic, Zeljko (Fall) Zilic, Zeljko (Winter)

    • Prerequisite(s): ECSE 324

    • Restriction(s): Not open to students who have taken ECSE 426.

    • (3-4-5)

  • ECSE 544 Computational Photography (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : An overview of techniques and theory underlying computational photography. Topics include: radiometry and photometry; lenses and image formation; electronic image sensing; colour processing; lightfield cameras; image deblurring; super-resolution methods; image denoising; flash photography; image matting and compositing; high dynamic range imaging and tone mapping; image retargeting; image stitching.

    Terms: Winter 2025

    Instructors: Clark, James J (Winter)

List B

0-8 credits from the following:

  • COMP 307 Principles of Web Development (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : The course discusses the major principles, algorithms, languages and technologies that underlie web development. Students receive practical hands-on experience through a project.

    Terms: Fall 2024

    Instructors: Vybihal, Joseph P (Fall)

  • COMP 330 Theory of Computation (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Finite automata, regular languages, context-free languages, push-down automata, models of computation, computability theory, undecidability, reduction techniques.

    Terms: Fall 2024, Winter 2025

    Instructors: Waldispuhl, Jérôme (Fall) Crépeau, Claude (Winter)

  • COMP 350 Numerical Computing (3 credits) *

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.

    Terms: Fall 2024

    Instructors: Chang, Xiao-Wen (Fall)

  • COMP 370 Introduction to Data Science (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Comprehensive introduction to the data science process. Orientation to the use and configuration of core data science toolkits, data collection and annotation fundamentals, principles of responsible data science, the use of quantitative tools in data science, and presentation of data science findings.

    Terms: Fall 2024

    Instructors: Ruths, Derek (Fall)

    • Prerequisites: COMP 206 and COMP 250

    • Restrictions: Not open to students who have taken COMP 598 when the topic was "Introduction to Data Science" or "Data Science".

  • COMP 409 Concurrent Programming (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Characteristics and utility of concurrent programs; formal methods for specification, verification and development of concurrent programs; communications, synchronization, resource allocation and management, coherency and integrity.

    Terms: Winter 2025

    Instructors: Verbrugge, Clark (Winter)

  • COMP 417 Introduction Robotics and Intelligent Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : This course considers issues relevant to the design of robotic and of intelligent systems. How can robots move and interact. Robotic hardware systems. Kinematics and inverse kinematics. Sensors, sensor data interpretation and sensor fusion. Path planning. Configuration spaces. Position estimation. Intelligent systems. Spatial mapping. Multi-agent systems. Applications.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • COMP 424 Artificial Intelligence (3 credits) ***

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to search methods. Knowledge representation using logic and probability. Planning and decision making under uncertainty. Introduction to machine learning.

    Terms: Fall 2024

    Instructors: Meger, David; Farnadi, Golnoosh (Fall)

  • COMP 512 Distributed Systems (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Models and Architectures. Application-oriented communication paradigms (e.g. remote method invocation, group communication). Naming services. Synchronization (e.g. mutual exclusion, concurrency control). Fault-tolerance (e.g. process and replication, agreement protocols). Distributed file systems. Security. Examples of distributed systems (e.g. Web, CORBA). Advanced Topics.

    Terms: Fall 2024

    Instructors: Kemme, Bettina (Fall)

  • COMP 520 Compiler Design (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : The structure of a compiler. Lexical analysis. Parsing techniques. Syntax directed translation. Run-time implementation of various programming language constructs. Introduction to code generation for an idealized machine. Students will implement parts of a compiler.

    Terms: Winter 2025

    Instructors: Dubach, Christophe (Winter)

  • COMP 521 Modern Computer Games (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Genre and history of games, basic game design, storytelling and narrative analysis, game engines, design of virtual worlds, real-time 2D graphics, game physics and physical simulation, pathfinding and game AI, content generation, 3D game concerns, multiplayer and distributed games, social issues.

    Terms: Fall 2024

    Instructors: Verbrugge, Clark (Fall)

  • COMP 525 Formal Verification (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Propositional logic - syntax and semantics, temporal logic, other modal logics, model checking, symbolic model checking, binary decision diagrams, other approaches to formal verification.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • COMP 529 Software Architecture (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Development, analysis, and maintenance of software architectures, with special focus on modular decomposition and reverse engineering.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • COMP 533 Model-Driven Software Development (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Model-driven software development; requirements engineering based on use cases and scenarios; object-oriented modelling using UML and OCL to establish complete and precise analysis and design documents; mapping to Java. Introduction to meta-modelling and model transformations, use of modelling tools.

    Terms: Winter 2025

    Instructors: Kienzle, Jörg (Winter)

  • COMP 547 Cryptography and Data Security (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : This course presents an in-depth study of modern cryptography and data security. The basic information theoretic and computational properties of classical and modern cryptographic systems are presented, followed by a cryptanalytic examination of several important systems. We will study the applications of cryptography to the security of systems.

    Terms: Fall 2024

    Instructors: Crépeau, Claude (Fall)

  • COMP 549 Brain-Inspired Artificial Intelligence (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Overview of the influence of neuroscience and psychology on Artificial Intelligence (AI). Historical topics: perceptrons, the PDP framework, Hopfield nets, Boltzmann and Helmholtz machines, and the behaviourist origins of reinforcement learning. Modern topics: deep learning, attention, memory and consciousness. Emphasis on understanding the interdisciplinary foundations of modern AI.

    Terms: Winter 2025

    Instructors: Richards, Blake (Winter)

    • Prerequisites: MATH 222, MATH 223, and MATH 323; or equivalents.

    • Restrictions: Not open to students who have taken COMP 596 when the topic was "Brain-Inspired Artificial Intelligence".

  • COMP 550 Natural Language Processing (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : An introduction to the computational modelling of natural language, including algorithms, formalisms, and applications. Computational morphology, language modelling, syntactic parsing, lexical and compositional semantics, and discourse analysis. Selected applications such as automatic summarization, machine translation, and speech processing. Machine learning techniques for natural language processing.

    Terms: Fall 2024

    Instructors: Cheung, Jackie (Fall)

  • COMP 551 Applied Machine Learning (4 credits) *

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Selected topics in machine learning and data mining, including clustering, neural networks, support vector machines, decision trees. Methods include feature selection and dimensionality reduction, error estimation and empirical validation, algorithm design and parallelization, and handling of large data sets. Emphasis on good methods and practices for deployment of real systems.

    Terms: Fall 2024, Winter 2025

    Instructors: Prémont-Schwarz, Isabeau; Rabbany, Reihaneh (Fall) Li, Yue (Winter)

  • COMP 559 Fundamentals of Computer Animation (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Fundamental mathematical and computational issues in computer animation with a focus on physics based simulation: overview of numerical integration methods, accuracy and absolute stability, stiff systems and constraints, rigid body motion, collision detection and response, friction, deformation, stable fluid simulation, use of motion capture, and other selected topics.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • COMP 562 Theory of Machine Learning (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Concentration inequalities, PAC model, VC dimension, Rademacher complexity, convex optimization, gradient descent, boosting, kernels, support vector machines, regression and learning bounds. Further topics selected from: Gaussian processes, online learning, regret bounds, basic neural network theory.

    Terms: Winter 2025

    Instructors: Oberman, Adam (Winter)

    • Prerequisites: MATH 462 or COMP 451 or (COMP 551, MATH 222, MATH 223 and MATH 324) or ECSE 551.

    • Restrictions: Not open to students who have taken or are taking MATH 562. Not open to students who have taken COMP 599 when the topic was "Statistical Learning Theory" or "Mathematical Topics for Machine Learning". Not open to students who have taken COMP 598 when the topic was "Mathematical Foundations of Machine Learning".

  • COMP 588 Probabilistic Graphical Models (4 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Representation, inference and learning with graphical models; directed and undirected graphical models; exact inference; approximate inference using deterministic optimization based methods, stochastic sampling based methods; learning with complete and partial observations.

    Terms: Winter 2025

    Instructors: Ravanbakhsh, Siamak (Winter)

  • ECSE 343 Numerical Methods in Engineering (3 credits) *

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Number representation and numerical error. Symbolic vs. numerical computation. Curve fitting and interpolation. Numerical differentiation and integration. Optimization. Data science pipelines and data-driven approaches. Preliminary machine learning. Solutions of systems of linear equations and nonlinear equations. Solutions of ordinary and partial differential equations. Applications in engineering, physical simulation, CAD, machine learning and digital media.

    Terms: Winter 2025

    Instructors: Khazaka, Roni (Winter)

  • ECSE 421 Embedded Systems (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Definition, structure and properties of embedded systems. Real-time programming: interrupts, latency, context, re-entrancy, thread and process models. Microcontroller and DSP architectures, I/O systems, timing and event management. Real-time kernels and services. Techniques for development, debugging and verification. Techniques for limited resource environments. Networking for distributed systems.

    Terms: Winter 2025

    Instructors: Cooperstock, Jeremy (Winter)

  • ECSE 422 Fault Tolerant Computing (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Introduction to fault-tolerant systems. Fault-tolerance techniques through hardware, software, information and time redundancy. Failure classification, failure semantics, failure masking. Exception handling: detection, recovery, masking and propagation, termination vs. resumption. Reliable storage, reliable communication. Process groups, synchronous and asynchronous group membership and broadcast services. Automatic redundancy management. Case studies.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 424 Human-Computer Interaction (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : The course highlights human-computer interaction strategies from an engineering perspective. Topics include user interfaces, novel paradigms in human-computer interaction, affordances, ecological interface design, ubiquitous computing and computer-supported cooperative work. Attention will be paid to issues of safety, usability, and performance.

    Terms: Fall 2024

    Instructors: Cooperstock, Jeremy (Fall)

  • ECSE 425 Computer Architecture (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Trends in technology. CISC vs. RISC architectures. Pipelining. Instruction level parallelism. Data and Control Hazards. Static prediction. Exceptions. Dependencies. Loop level paralleism. Dynamic scheduling, branch prediction. Branch target buffers. Superscalar and N-issue machines. VLIW. ILP techniques. Cache analysis and design. Interleaved and virtual memory. TLB translations and caches.

    Terms: Winter 2025

    Instructors: Emad, Amin (Winter)

    • (3-1-5)

    • Prerequisites: ECSE 324

    • Tutorials assigned by instructor.

  • ECSE 437 Software Delivery (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design, development, and implementation of code integration processes, release pipelines, and deployment strategies.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 446 Realistic Image Synthesis (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Introduction to mathematical models of light transport and the numerical techniques used to generate realistic images in computer graphics. Offline (i.e., raytracing) and interactive (i.e., shader-based) techniques.

    Terms: Fall 2024

    Instructors: Nowrouzezahrai, Derek (Fall)

  • ECSE 507 Optimization and Optimal Control (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : General introduction to optimization methods including steepest descent, conjugate gradient, Newton algorithms. Generalized matrix inverses and the least squared error problem. Introduction to constrained optimality; convexity and duality; interior point methods. Introduction to dynamic optimization; existence theory, relaxed controls, the Pontryagin Maximum Principle. Sufficiency of the Maximum Principle.

    Terms: Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 509 Probability and Random Signals 2 (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Multivariate Gaussian distributions; finite-dimensional mean-square estimation (multivariate case); principal components; introduction to random processes; weak stationarity: correlation functions, spectra, linear processing and estimation; Poisson processes and Markov chains: state processes, invariant distributions; stochastic simulation.

    Terms: Fall 2024

    Instructors: Mahajan, Aditya (Fall)

  • ECSE 525 Satellite Navigation Systems (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Fundamentals of satellite navigation. Overview of existing systems. Augmentation systems. Signal processing techniques, and receiver structures. Kalman Filtering techniques in satellite navigation. Selected applications of satellite navigation.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 526 Artificial Intelligence (3 credits) ***

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design principles of autonomous agents, agent architectures, machine learning, neural networks, genetic algorithms, and multi-agent collaboration. The course includes a term project that consists of designing and implementing software agents that collaborate and compete in a simulated environment.

    Terms: Fall 2024

    Instructors: Cooperstock, Jeremy (Fall)

    • (3-0-6)

    • Prerequisite: ECSE 324

    • Restriction: Not open to students who have taken or are taking COMP 424.

  • ECSE 532 Computer Graphics (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Fundamental mathematical, algorithmic and representational issues in computer graphics: overview of graphics pipeline, homogeneous coordinates, projective transformations, line-drawing and rasterization, hidden surface removal, surface modelling (quadrics, bicubics, meshes), rendering (lighting, reflectance models, ray tracing, texture mapping), compositing colour perception, and other selected topics.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • ECSE 551 Machine Learning for Engineers (4 credits) **

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Introduction to machine learning: challenges and fundamental concepts. Supervised learning: Regression and Classification. Unsupervised learning. Curse of dimensionality: dimension reduction and feature selection. Error estimation and empirical validation. Emphasis on good methods and practices for deployment of real systems.

    Terms: Fall 2024, Winter 2025

    Instructors: Armanfard, Narges (Fall) Armanfard, Narges (Winter)

  • ECSE 552 Deep Learning (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Overview of mathematical background and basics of machine learning, deep feedforward networks, regularization for deep learning, optimization for training deep learning models, convolutional neural networks, recurrent and recursive neural networks, practical considerations,applications of deep learning, recent models and architectures in deep learning.

    Terms: Winter 2025

    Instructors: Emad, Amin (Winter)

  • ECSE 554 Applied Robotics (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : The approach and the challenges in the key components of manipulators and locomotors: representations, kinematics, dynamics, rigid-body chains, redundant systems, underactuated systems, control, planning, and perception. Practical aspects of robotics: collisions, integrating sensory feedback, and development of real-time software.

    Terms: Fall 2024

    Instructors: Lin, Hsiu-Chin (Fall)

    • Prerequisites: ECSE 205, COMP 206, ECSE 250, and (ECSE 343 or MATH 247) or equivalents.

    • (3-0-9)

    • Students should be comfortable with C++ and a Unix-like programming environment. Interested students may contact the instructor for more information prior to the start of the course.

  • ECSE 556 Machine Learning in Network Biology (4 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Basics of machine learning; basics of molecular biology; network-guided machine learning in systems biology; network-guided bioinformatics analysis; analysis of biological networks; network module identification; global and local network alignment; construction of biological networks.

    Terms: Fall 2024

    Instructors: Emad, Amin (Fall)

    • 3-0-9

    • Restrictions: Permission of Instructor.

  • ECSE 557 Introduction to Ethics of Intelligent Systems (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Ethics and social issues related to AI and robotic systems. Consideration for normative values (e.g., fairness) in the design. Ethics principles, data and privacy issues, ethics challenges in interaction and interface design.

    Terms: Fall 2024

    Instructors: Moon, AJung (Fall)

  • ECSE 561 Automated Program Analysis and Testing (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Introduction to automated software analysis and testing techniques. Foundations of program analysis, software fault models, and test coverage models. Development and design of automated program analysis and test generation techniques.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • MATH 247 Honours Applied Linear Algebra (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.

    Terms: Winter 2025

    Instructors: Hoheisel, Tim (Winter)

    • Winter

    • Prerequisite: MATH 133 or equivalent.

    • Restriction: Intended for Honours Physics and Engineering students

    • Restriction: Not open to students who have taken or are taking MATH 236, MATH 223 or MATH 251

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

  • ANTH 212 Anthropology of Development (3 credits)

    Offered by: Anthropology (Faculty of Arts)

    Overview

    Anthropology : Processes of developmental change, as they affect small communities in the Third World and in unindustrialized parts of developed countries. Problems of technological change, political integration, population growth, industrialization, urban growth, social services, infrastructure and economic dependency.

    Terms: Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Winter

  • BTEC 502 Biotechnology Ethics and Society (3 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Overview

    Biotechnology : Examination of particular social and ethical challenges posed by modern biotechnology such as benefit sharing, informed consent in the research setting, access to medical care worldwide, environmental safety and biodiversity and the ethical challenges posed by patenting life.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Restriction: U3 and over.

  • ECON 225 Economics of the Environment (3 credits)

    Offered by: Economics (Faculty of Arts)

    Overview

    Economics (Arts) : A study of the application of economic theory to questions of environmental policy. Particular attention will be given to the measurement and regulation of pollution, congestion and waste and other environmental aspects of specific economies.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Restriction: Not open to students who have taken 154-325 or 154-425

  • ECON 347 Economics of Climate Change (3 credits)

    Offered by: Economics (Faculty of Arts)

    Overview

    Economics (Arts) : The course focuses on the economic implications of, and problems posed by, predictions of global warming due to anthropogenic emissions of greenhouse gases. Attention is given to economic policies such as carbon taxes and tradeable emission permits and to the problems of displacing fossil fuels with new energy technologies.

    Terms: Winter 2025

    Instructors: Cairns, Robert D (Winter)

    • Prerequisites: ECON 208 and ECON 209 or those listed under Prerequisites above

  • ENVR 201 Society, Environment and Sustainability (3 credits)

    Offered by: Bieler School of Environment (School of Environment)

    Administered by: Faculty of Science

    Overview

    Environment : This course deals with how scientific-technological, socio-economic, political-institutional and behavioural factors mediate society-environment interactions. Issues discussed include population and resources; consumption, impacts and institutions; integrating environmental values in societal decision-making; and the challenges associated with, and strategies for, promoting sustainability. Case studies in various sectors and contexts are used.

    Terms: Fall 2024

    Instructors: Badami, Madhav Govind; Cardille, Jeffrey; Garver, Geoffrey (Fall)

    • Fall

    • Section 001: Downtown Campus

    • Section 051: Macdonald Campus

  • GEOG 200 Geographical Perspectives: World Environmental Problems (3 credits)

    Offered by: Geography (Faculty of Science)

    Overview

    Geography : Introduction to geography as the study of nature and human beings in a spatial context. An integrated approach to environmental systems and the human organization of them from the viewpoint of spatial relationships and processes. Special attention to environmental problems as a constraint upon Third World development.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Fall

    • 3 hours

  • GEOG 203 Environmental Systems (3 credits)

    Offered by: Geography (Faculty of Science)

    Overview

    Geography : An introduction to system-level interactions among climate, hydrology, soils and vegetation at the scale of drainage basins, including the study of the global geographical variability in these land-surface systems. The knowledge acquired is used to study the impact on the environment of various human activities such as deforestation and urbanisation.

    Terms: Fall 2024

    Instructors: Chmura, Gail L; MacDonald, Graham; Knox, Sara (Fall)

    • Fall

    • 3 hours

    • Restriction: Because of quantitative science content of course, not recommended for B.A. and B.Ed. students in their U0 year.

  • GEOG 205 Global Change: Past, Present and Future (3 credits)

    Offered by: Geography (Faculty of Science)

    Overview

    Geography : An examination of global change, from the Quaternary Period to the present day involving changes in the physical geography of specific areas. Issues such as climatic change and land degradation will be discussed, with speculations on future environments.

    Terms: Winter 2025

    Instructors: Chmura, Gail L (Winter)

    • Winter

    • 3 hours

  • GEOG 302 Environmental Management 1 (3 credits)

    Offered by: Geography (Faculty of Science)

    Overview

    Geography : An ecological analysis of the physical and biotic components of natural resource systems. Emphasis on scientific, technological and institutional aspects of environmental management. Study of the use of biological resources and of the impact of individual processes.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • 3 hours

    • Prerequisite: Any 200-level course in Geography or MSE or BIOL 308 or permission of instructor.

  • MGPO 440 Strategies for Sustainability (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Management Policy : This course explores the relationship between economic activity, management, and the natural environment. Using readings, discussions and cases, the course will explore the challenges that the goal of sustainable development poses for our existing notions of economic goals, production and consumption practices and the management of organizations.

    Terms: Fall 2024, Winter 2025

    Instructors: Melville, Donald (Fall)

    • Restriction: Open to U2, U3 students only

  • PHIL 343 Biomedical Ethics (3 credits)

    Offered by: Philosophy (Faculty of Arts)

    Overview

    Philosophy : An investigation of ethical issues as they arise in the practice of medicine (informed consent, e.g.) or in the application of medical technology (in vitro fertilization, euthanasia, e.g.)

    Terms: Fall 2024

    Instructors: Hirose, Iwao (Fall)

  • RELG 270 Religious Ethics and the Environment (3 credits)

    Offered by: Religious Studies (Faculty of Arts)

    Overview

    Religious Studies : Environmental potential of various religious traditions and secular perspectives, including animal rights, ecofeminism, and deep ecology.

    Terms: Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • SOCI 235 Technology and Society (3 credits)

    Offered by: Sociology (Faculty of Arts)

    Overview

    Sociology (Arts) : An examination of the extent to which technological developments impose constraints on ways of arranging social relationships in bureaucratic organizations and in the wider society: the compatibility of current social structures with the effective utilization of technology.

    Terms: Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

  • SOCI 312 Sociology of Work and Industry (3 credits)

    Offered by: Sociology (Faculty of Arts)

    Overview

    Sociology (Arts) : The development of the world of work from the rise of industrial capitalism to the postindustrial age. Responses of workers and managers to changing organizational, technological and economic realities. Interrelations between changing demands in the workplace and the functioning of the labour market. Canadian materials in comparative perspective.

    Terms: Winter 2025

    Instructors: Eidlin, Barry (Winter)

  • URBP 201 Planning the 21st Century City (3 credits)

    Offered by: Urban Planning (Faculty of Engineering)

    Overview

    Urban Planning : The study of how urban planners respond to the challenges posed by contemporary cities world-wide. Urban problems related to the environment, shelter, transport, human health, livelihoods and governance are addressed; innovative plans to improve cities and city life are analyzed.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • (3-1-5)

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from the following:

  • ARCH 528 History of Housing (3 credits)

    Offered by: Architecture (Faculty of Engineering)

    Overview

    Architecture : Indigenous housing both transient and permanent, from the standpoint of individual structure and pattern of settlements. The principal historic examples of houses including housing in the age of industrial revolution and contemporary housing.

    Terms: Fall 2024

    Instructors: Adams, Annmarie (Fall)

    • (2-0-7)

    • Prerequisite: ARCH 251 or permission of instructor

  • BUSA 465 Technological Entrepreneurship (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Business Admin : Concentrating on entrepreneurship and enterprise development, particular attention is given to the start-up, purchasing and management of small to medium-sized industrial firms. The focal point is in understanding the dilemmas faced by entrepreneurs, resolving them, developing a business plan and the maximum utilization of the financial, marketing and human resources that make for a successful operation.

    Terms: Fall 2024, Winter 2025

    Instructors: An, Kwangjun (Fall) An, Kwangjun (Winter)

  • CLAS 203 Greek Mythology (3 credits)

    Offered by: History and Classical Studies (Faculty of Arts)

    Overview

    Classics : A survey of the myths and legends of Ancient Greece.

    Terms: Winter 2025

    Instructors: Kozak, Lynn (Winter)

  • ENVR 203 Knowledge, Ethics and Environment (3 credits)

    Offered by: Bieler School of Environment (School of Environment)

    Administered by: Faculty of Science

    Overview

    Environment : Introduction to cultural perspectives on the environment: the influence of culture and cognition on perceptions of the natural world; conflicts in orders of knowledge (models, taxonomies, paradigms, theories, cosmologies), ethics (moral values, frameworks, dilemmas), and law (formal and customary, rights and obligations) regarding political dimensions of critical environments, resource use, and technologies.

    Terms: Fall 2024, Winter 2025

    Instructors: Kosoy, Nicolas; Freeman, Julia (Fall) Hirose, Iwao; Janzwood, Amy (Winter)

    • Fall - Macdonald Campus; Winter - Downtown

    • Section 001: Downtown Campus

    • Section 051: Macdonald Campus

  • ENVR 400 Environmental Thought (3 credits)

    Offered by: Bieler School of Environment (School of Environment)

    Administered by: Faculty of Science

    Overview

    Environment : Students work in interdisciplinary seminar groups on challenging philosophical, ethical, scientific and practical issues. They will explore cutting-edge ideas and grapple with the reconciliation of environmental imperatives and social, political and economic pragmatics. Activities include meeting practitioners, attending guest lectures, following directed readings, and organizing, leading and participating in seminars.

    Terms: Fall 2024, Winter 2025

    Instructors: Kosoy, Nicolas; Freeman, Julia (Fall) Sieber, Renee; Janzwood, Amy (Winter)

    • Fall - Macdonald Campus; Winter - Downtown

    • Section 001: Downtown Campus

    • Section 051: Macdonald Campus

    • Prerequisite: ENVR 203

    • Restriction: Open only to U3 students, or permission of instructor

  • FACC 220 Law for Architects and Engineers (3 credits)

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : Aspects of the law which affect architects and engineers. Definition and branches of law; Federal and Provincial jurisdiction, civil and criminal law and civil and common law; relevance of statutes; partnerships and companies; agreements; types of property, rights of ownership; successions and wills; expropriation; responsibility for negligence; servitudes/easements, privileges/liens, hypothecs/ mortgages; statutes of limitations; strict liability of architect, engineer and builder; patents, trade marks, industrial design and copyright; bankruptcy; labour law; general and expert evidence; court procedure and arbitration.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • (3-0-6)

  • FACC 500 Technology Business Plan Design (3 credits)

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : This course combines several management functional areas such as marketing, financial, operations and strategy with the skills of creativity, engineering innovation, leadership and communications. Students learn how to design an effective and winning business plan around a technology or engineering project in small, medium or large enterprises.

    Terms: Fall 2024

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • (3-0-6)

    • Prerequisite: FACC 300 or permission of instructor.

    • Recommended to be taken in combination with FACC 501.

  • FACC 501 Technology Business Plan Project (3 credits)

    Offered by: Engineering - Dean's Office (Faculty of Engineering)

    Overview

    Faculty Course : Students work in teams to develop a comprehensive business plan project based on a technological or engineering innovation while utilizing site visits.

    Terms: Winter 2025

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • (1-0-8)

    • Prerequisite: FACC 300 or permission of instructor

    • Restrictions: Not open to students who have taken FACC 480.

    • Recommended to be taken in combination with FACC 500.

  • HISP 225 Hispanic Civilization 1 (3 credits)

    Offered by: Languages,Literatures,Cultures (Faculty of Arts)

    Overview

    Hispanic Studies (Arts) : A survey of historical and cultural elements which constitute the background of the Hispanic world up to the 18th century; a survey of the pre-Columbian indigenous civilizations (Aztec, Maya and Inca) and the conquest of America.

    Terms: Fall 2024

    Instructors: Jouve-Martin, Jose (Fall)

    • Fall

    • Taught in English

  • HISP 226 Hispanic Civilization 2 (3 credits)

    Offered by: Languages,Literatures,Cultures (Faculty of Arts)

    Overview

    Hispanic Studies (Arts) : A survey of the constitution of the ideological and political structures of the Spanish Empire in both Europe and America until the Wars of Independence; a survey of the culture and history of the Hispanic people from the early 19th Century to the present.

    Terms: Winter 2025

    Instructors: Jouve-Martin, Jose (Winter)

    • Winter

    • Taught in English

  • INDR 294 Introduction to Labour-Management Relations (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Industrial Relations : An introduction to labour-management relations, the structure, function and government of labour unions, labour legislation, the collective bargaining process, and the public interest in industrial relations.

    Terms: Fall 2024, Winter 2025

    Instructors: Westgate, Chantal (Fall) Westgate, Chantal (Winter)

  • INTG 201 Integrated Management Essentials 1 (3 credits) **

    Offered by: Management (Desautels Faculty of Management)

    Overview

    INTG : Essentials of management using an integrated approach. Three modules (managing money, managing people and managing information) cover fundamentals of accounting, finance, organizational behaviour and information systems; and illustrate how the effective management of human, financial and technological resources contributes to the success of an organization. Emphasizes an integrated approach to management, highlighting how organizations function as a whole and the importance of being able to work across functional and organizational boundaries.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Only open to U1, U2, U3 non-Management students. Not open to students in the Desautels Faculty of Management or students who have taken two or more of courses MGCR 211, MGCR 222 or MGCR 341.

    • Limited enrolment; priority registration to students in Minors in Entrepreneurship. Note: this course is not part of the Desautels Minors in Management, Finance, Marketing or Operations Management (for non-Management students).

  • INTG 202 Integrated Management Essentials 2 (3 credits) **

    Offered by: Management (Desautels Faculty of Management)

    Overview

    INTG : Essentials of management using an integrated approach. Four modules (managing customer relationships, managing processes, managing digital innovation and managing the enterprise) cover fundamentals of marketing, strategy, operations and information systems; and illustrate how this knowledge is harnessed in an organization to create value for customers and other stakeholders. Emphasizes an integrated approach to management, highlighting how organizations function as a whole and the importance of being able to work across functional and organizational boundaries.

    Terms: This course is not scheduled for the 2024-2025 academic year.

    Instructors: There are no professors associated with this course for the 2024-2025 academic year.

    • Restriction(s): Only open to U1, U2, U3 students. Not open to students in the Desautels Faculty of Management or students who have taken two or more of courses MGCR 331, MGCR 352, MGCR 423 or MGCR 472.

    • Limited enrolment; priority registration to students in Minors in Entrepreneurship. It is suggested that students take INTG 201 prior to INTG 202, but is not required. Note: this course is not part of the Desautels Minors in Management, Finance, Marketing or Operations Management (for non-Management Students).

  • MATH 338 History and Philosophy of Mathematics (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Egyptian, Babylonian, Greek, Indian and Arab contributions to mathematics are studied together with some modern developments they give rise to, for example, the problem of trisecting the angle. European mathematics from the Renaissance to the 18th century is discussed, culminating in the discovery of the infinitesimal and integral calculus by Newton and Leibnitz. Demonstration of how mathematics was done in past centuries, and involves the practice of mathematics, including detailed calculations, arguments based on geometric reasoning, and proofs.

    Terms: Fall 2024

    Instructors: Fortier, Jérôme (Fall)

  • MGCR 222 Introduction to Organizational Behaviour (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Management Core : Individual motivation and communication style; group dynamics as related to problem solving and decision making, leadership style, work structuring and the larger environment. Interdependence of individual, group and organization task and structure.

    Terms: Fall 2024, Winter 2025

    Instructors: Findlay, Sylvia Miriyam; Gordon, Sarah; Ody-Brasier, Amandine (Fall) Mackey, Jeraul; Dakhlallah, Diana; Galperin, Roman (Winter)

    • Restriction: Not open to U0 students.

  • MGCR 352 Principles of Marketing (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Management Core : Introduction to marketing principles, focusing on problem solving and decision making. Topics include: the marketing concept; marketing strategies; buyer behaviour; Canadian demographics; internal and external constraints; product; promotion; distribution; price. Lectures, text material and case studies.

    Terms: Fall 2024, Winter 2025

    Instructors: Etemad, Hamid; Aronovitch, Aviva; Cyrius, Fabienne; Blanchette, Simon (Fall) Doré, Bruce; Zhao, Clarice (Winter)

    • Restrictions: Open to U1, U2, U3 students.

  • ORGB 321 Leadership (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Organizational Behaviour : Leadership theories provide students with opportunities to assess and work on improving their leadership skills. Topics include: the ability to know oneself as a leader, to formulate a vision, to have the courage to lead, to lead creatively, and to lead effectively with others.

    Terms: Fall 2024

    Instructors: Westgate, Chantal (Fall)

    • Prerequisite: MGCR 222 or permission of Instructor and approval of the BCom Program Office.

    • Restrictions: Restricted to U2 and U3 students.

  • ORGB 423 Human Resources Management (3 credits) *

    Offered by: Management (Desautels Faculty of Management)

    Overview

    Organizational Behaviour : Issues involved in personnel administration. Topics include: human resource planning, job analysis, recruitment and selection, training and development, performance appraisal, organization development and change, issues in compensation and benefits, and labour-management relations.

    Terms: Fall 2024, Winter 2025

    Instructors: Gauvin, Tatiana (Fall) Gauvin, Tatiana (Winter)

    • Prerequisite: MGCR 222

    • Requirement for the Institute of Internal Auditors

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

Elective Course (3 credits)

One 3-credit course at the 200-level or higher from any department at McGill, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.

Faculty of Engineering—2024-2025 (last updated Apr. 3, 2024) (disclaimer)
Back to top