Electrochemical Energy Storage Making Hay When the Sun Shines

TISED Symposium on Storage in Sustainable Electric Energy Systems, Nov 20th, 2014

> Jeff Gostick, PhD, Peng Assistant Professor Department of Chemical Engineering McGill University

Real World Example Green Gas

Problem 1: Surplus power during windy periods

- Windy periods and consumer demand don't always coincide
- Excess power is given away to neighboring countries

Solution:

- Store the energy for later use...

Problem 2: Energy storage options are limited

- Geological energy storage is not available (pumped hydro)
- No other storage options are ready

Solution:

- Water splitting to make hydrogen is old technology

Problem 3: Where to put the hydrogen

2

- Hydrogen storage tanks are expensive
- Hydrogen pipelines and infrastructure are nonexistent

Solution:

Inject hydrogen into
natural gas pipeline –
"Green Gas"

Energy Storage A Battery-Shaped Hole

Energy Storage Rules for Joules

Rule #1	Location dictates options	
---------	---------------------------	--

- **Rule #2** Decouple storage and generation
- Rule #3 Process must be reversible
- Rule #4 Size doesn't matter
- Rule #5 Cost does matter
- Rule #6 Use only plentiful resources
- Rule #7 Provide a real offset of CO₂
- Rule #8+ To Be Determined*

* Complete set of 'Rules' will be discussed at tomorrow's workshop

Rule #1 Location, Location, Location

Geographic Viability

- Pumped Hydro is the perfect solution...
- ...but violates Rule #1
- It is not possible in MOST places

Remote Locations

- Power must be moved from where its generated to where its needed
- Transmission lines have limited capacity
- Deferred transmission requires storage at the generation site
- Sending to a remote hydro reservoir is not feasible

Electrochemical Energy Storage is Location-Neutral

Rule #2 Decouple Storage and Generation

"Would you rather":

Heat your house with a stove made of wood...

...or a wood stove?

Rule #2 Decouple Storage and Generation

More Storage? More Batteries!

A flow of batteries...

Rule #3 Process Must be Reversible

Disposable Batteries

Disposable Batteries

- Active species IS the structure
- It dissolves when used, and can't be recovered

Rechargeable Batteries

- Active species resides IN structure
- It moves IN and OUT reversibly (almost)

Flow Batteries

- Active species and structre are independent
- Reaction is a simple chemical alteration of a species in a fluid

Rechargeable Batteries

Flow Batteries

Rule #4 Size Does NOT Matter

Automotive Applications Require HIGH density

- Space on a vehicle is limited
- Performance and mileage is weight limited

Stationary Applications Have No Size Limits

- Mass is completely irrelevant
- Volume or footprint is not important (within reason)

Power Density = Horsepower

- The amount of power produced by the engine
- Larger engines are more powerful

Energy Density = Range

- The amount of energy in a gallon fuel
- Dictates the size of the fuel tank
- Limits the range of the vehicle

Rule #5 Cost Does Matter

Stationary Applications Have No Size Limits

- Mass is completely irrelevant
- Volume or footprint is not important (within reason)
- Only cost and durability matter
- The longevity of a device helps cost too

Pumped Hydro

- Very cheap raw materials (water)
 - Huge construction, but lasts ages

Electrolyzer

- Very cheap raw materials (water)
- Requires Platinum

Li-Ion Battery

- Fairly cheap raw materials
- Expensive structure, need many!

Flow Battery

- Potentially very cheap chemicals
- Potentially very cheap system

Energy Cost = Chemicals

- The cost of the chemicals used in device
- The amount of the chemicals needed

Power Cost = Equipment

- The cost of building the device
- The size and number of devices needed

Global Energy Production Simply Terra-fying

Power Consumption per Person	*	*]:	۲	
2015	9.51 kW	2.38 k	W 0.73 kW	2.30 kW
2050	2.30 kW	2.30 k	W 2.30 kW	2.30 kW
Population	*	*]:	۲	
2015	35m	1.2b	0 1.5b	7.13b
2050				10b
Total Power Consumption				
2015	16.8 TW		6.2 TW = 6200 GW 3100 Nuclear Power Plants	
2050	23.0 TW	+0.2 IVV		

- Since there are ONLY 1820 weeks between now and 2050...
- Humanity needs to build 1.7 nuclear power plants PER WEEK for the next 35 years
- And that assumes our present supply of 16.8 TW continues uninterrupted

Acknowledgements

- TISED
- Lorne Trottier and his family for their support of TISED
- Prof. Francois Bouffard for organizing this event

